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Abstract

Neural networks have been proven to be vulnerable to

a variety of adversarial attacks. From a safety perspec-

tive, highly sparse adversarial attacks are particularly dan-

gerous. On the other hand the pixelwise perturbations of

sparse attacks are typically large and thus can be poten-

tially detected. We propose a new black-box technique

to craft adversarial examples aiming at minimizing l0-

distance to the original image. Extensive experiments show

that our attack is better or competitive to the state of the art.

Moreover, we can integrate additional bounds on the com-

ponentwise perturbation. Allowing pixels to change only in

region of high variation and avoiding changes along axis-

aligned edges makes our adversarial examples almost non-

perceivable. Moreover, we adapt the Projected Gradient

Descent attack to the l0-norm integrating componentwise

constraints. This allows us to do adversarial training to

enhance the robustness of classifiers against sparse and im-

perceivable adversarial manipulations.

1. Introduction

State-of-the-art neural networks are not robust [3, 30,

12], in the sense that a very small adversarial change of a

correctly classified input leads to a wrong decision. While

[30, 12] have brought up this problem in object recognition

tasks, the problem itself has been discussed for some time

in the area of email spam classification [9, 19]. This non-

robust behavior of neural networks is a problem when such

classifiers are used for decision making in safety-critical

systems e.g. in autonomous driving or medical diagnosis

systems. Thus it is important to be aware of the possible

vulnerabilities as they can lead to fatal failures beyond the

eminent security issue [18].

Recent research on attacks can be divided into white-box

attacks [23, 6, 5, 21, 8], where one has access to the model

at attack time, and black box attacks [7, 4, 13, 2] where one

can just query the output of the classifier or the confidence

scores of all classes. Typically the attacks try to find points

on or close to the decision boundary, where the distance is

measured in the pixels space, most often wrt the l∞- and

original l_0

l_0 + l_inf l_0 + �-map

Figure 1: Upper left: original image with box for zoom,

Upper Right: our l0-attack, very few pixels, only 0.04%, are

changed, but the modified pixels are clearly visible, Lower

left: the result of the l0 + l∞-attack as proposed in [22], the

modifications are sparse, 2.7% of the pixels are changed,

but clearly visible, Lower right: our sparse, 2.7% of the

pixels are changed, but imperceivable attack (l0 + σ-map).

l2-norm [23, 6, 5, 8], or one tries to maximize the loss resp.

minimize the confidence in the correct class in some ǫ-ball

around the original image [21]. Non pixelwise attacks ex-

ploiting geometric transformations have been proposed in

[14, 32]. While it has been argued that adversarial changes

will not happen in practical scenarios, this argument has

been refuted in [16, 11]. Adversarial attacks during training

have been early on proposed as a potential defense [30, 12],

now known as adversarial training. In the form proposed

in [21] this is one of the few defenses which could not be

broken easily [5, 1].

In this paper we are dealing specifically with sparse ad-
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versarial attacks, that is we want to modify the smallest

amount of pixels in order to change the decision. There

are currently white-box attacks based on variants of gradi-

ent based methods integrating the l0-constraint [6, 22] or

mainly black-box attacks which use either local search or

evolutionary algorithms [24, 29, 28]. The paper has the

following methodological contributions: 1) we suggest a

novel black-box attack based on local search which outper-

forms all existing l0-attacks, 2) we present closed form ex-

pressions or simple algorithms for the projections onto the

l0-ball (or intersection of l0-ball and componentwise con-

straints) in order to extend the PGD attack of [21] to the

considered scenario, 3) since sparse attacks are often clearly

visible and thus, at least in some cases, easy to detect (see

upper right image of Figure 1), we combine the sparsity

constraint (l0-ball) with componentwise constraints, and

we extend the two l0-attacks mentioned above to produce

sparse and imperceivable adversarial perturbations.

Compared to [22] who introduce global componentwise

constraints (see lower left image of Figure 1) we propose

to use locally adaptive componentwise constraints. These

local constraints ensure that the change is typically not visi-

ble, that is we neither change color too much, nor we change

pixels along edges aligned with the coordinate axis (see the

Appendix for a visualization) or in regions which have uni-

form color (see lower right image of Figure 1). This is in

line with, and significantly improves upon, [20], who sug-

gest to perturb pixels in regions of high variance to have less

recognizable modifications. In fact the often employed l∞-

attacks which modify each pixel only slightly but have to

manipulate all pixels seem not to model perturbations which

could actually occur. We think that our sparse and imper-

ceivable attacks could happen in practice and correspond

to modifications which do not change the semantics of the

images even on very small scales. The good news of our pa-

per is that the success rate of such attacks (50-70% success

rate for standard models) is smaller than that of the com-

monly used ones - nevertheless we find it disturbing that

such manipulations are possible at all. Thus we also test

if adversarial training can reduce the success rate of such

attacks. We find that adversarial training wrt l2 partially

decreases the effectiveness of l0-attacks, while adversarial

training wrt either l2 or l∞ helps to be more robust against

sparse and imperceivable attacks. Finally, we introduce ad-

versarial training aiming specifically at robustness wrt both

our attack models.

2. Sparse and imperceivable adversarial at-

tacks

Let f : Rd −→ R
K be a multi-class classifier, where d

is the input dimension and K the number of classes. A test

point x ∈ R
d is classified as c = argmax

r=1,...,K
fr(x). The min-

imal adversarial perturbation y∗ of x ∈ R
d with respect to

a distance function γ : Rd −→ R+ is given as the solution

y∗ ∈ R
d of the optimization problem

min
y∈Rd

γ(y − x)

s.th. argmax
r=1,...,K

fr(y) 6= argmax
r=1,...,K

fr(x),

y ∈ C,

(1)

where C is a set of constraints valid inputs need to satisfy

(e.g. images are scaled to be in [0, 1]d). Said otherwise: y∗

is the closest point to x wrt the distance function γ which

is classified differently from x.

2.1. Sparse l0attack

In an l0-attack one is interested in finding the smallest

number of pixels which need to be changed so that the deci-

sion changes. We write in the following gray-scale images

x with d pixels as vectors in [0, 1]d and color images x with

d pixels as matrices x in [0, 1]d×3, and xi denotes the i-th
pixel with the three color channels in RGB. The correspond-

ing distance function γ is thus given for gray-scale images

as the standard l0-norm

γ(y − x) =
d

∑

i=1

✶|yi−xi|6=0, (2)

and for color images as

γ(y − x) =
d

∑

i=1

max
j=1,...,3

✶|yij−xij |6=0, (3)

where the inner maximization checks if any color channel

j of the pixel i is changed. From a practical point of view

the l0-attack tests basically how vulnerable the model is to

failure of pixels or large localized changes on an object e.g.

a sticker on a refrigerator or dirt/dust on a windshield.

2.2. Sparse and Imperceivable attack

The problem of l0-attacks is that they are completely un-

constrained in the way how they change each pixel. Thus

the perturbed pixels have usually completely different color

than the surrounding ones and thus are easily visible. On

the other hand l∞-attacks, using the distance function

γ(y − x) = max
i=1,...,d

max
j=1,...,3

|yij − xij |,

are known to result in very small changes per pixel but have

to modify every pixel and color channel. This seems to

be a quite unrealistic perturbation model from a practical

point of view. A much more realistic attack model which

could happen in a practical scenario is when the changes are
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sparse but also imperceivable. In order to achieve this we

come up with additional constraints on the allowed chan-

nelwise change. In [22] they suggest to have global bounds,

for some fixed δ > 0, in the form

xij − δ ≤ yij ≤ xij + δ,

which should ensure that the changes are not visible (we

call an attack with l0-norm and these global component-

wise bounds an l0 + l∞-attack in the following). However,

these global bounds are completely agnostic of the image

and thus δ has to be really small so that the changes are

not visible even in regions of homogeneous color, e.g. sky,

where almost any variation is easily spotted. We suggest

image-specific local bounds taking into account the image

structure. We have two specific goals:

1) We do not want to make changes along edges which

are aligned with the coordinate axis as they can be eas-

ily spotted and detected.

2) We do not want to change the color too much and

rather just adjust its intensity and keep approximately

also its saturation level.

In order to achieve this we compute the standard deviation

of each color channel in x- and y-axis directions with the

two immediate neighboring pixels and the original pixel.

We denote the corresponding values as σ
(x)
ij and σ

(y)
ij and

define σij =
√

min{σ
(x)
ij , σ

(y)
ij }. Since σ

(x)
ij , σ

(y)
ij ∈ [0, 1]

the square root increases more significantly, in relative

value, smaller min{σ
(x)
ij , σ

(y)
ij }. In this way we both enlarge

the space of the possible adversarial examples and prevent

perturbations in areas of zero variance. In fact we allow the

changed image y just to have values given by

yij = (1 + λiσij)xij , with − κ ≤ λi ≤ κ, (4)

where κ > 0. Additionally, we enforce box constraints

y ∈ [0, 1]d×3. Note that the parameter λi corresponds to

a change in intensity of pixel i by maximally plus/minus

κ
∑3

j=1 σijxij as

3
∑

j=1

yij =
3

∑

j=1

xij + λi

3
∑

j=1

σijxij .

Thus we are just changing intensity of the pixel instead of

the actual color. Moreover, note that this change also pre-

serves the saturation of the color value1 if the σij are equal

for j = 1, . . . , 3. Thus we fulfill the second requirement

from above. Moreover, the first requirement is satisfied as

1In the HSV color space the saturation of a color is defined as 1 −

min{R,G,B}
max{R,G,B}

, where R,G,B are the red/green/blue color channels in

RGB color space.

σij =
√

min{σ
(x)
ij , σ

(y)
ij }, meaning that if along one of the

coordinates there is no change in all color channels then

the pixel cannot be modified at all. Thus pixels along a

coordinate-aligned edge showing no change in color will

not be changed. The attack model of sparse and imperceiv-

able attacks will be abbreviated as l0 + σ-map. For gray-

scale images x ∈ [0, 1]d we use instead

yi = xi + λiσi, with − κ ≤ λi ≤ κ. (5)

as there the approximate preservation of color saturation is

not needed.

3. Algorithms for sparse (and imperceivable)

attacks

In this paper we propose two methods to generate l0-,

l0 + l∞ and l0 + σ-attacks. The first one is a randomized

black-box attack based on the logits (the output of the neural

network before the softmax layer) of the classifier. The sec-

ond is a generalization of projected gradient descent (PGD)

on the loss of the correct label [21] to our different attack

models. For each attack model we will derive algorithms

for the projection onto the corresponding sets.

3.1. Scorebased sparse (and imperceivable) attack

Most of the existing black-box l0-attacks either start with

perturbing a small set of pixels and then enlarge this set

until they find an adversarial example [26, 24] or, given a

successful adversarial manipulation, try to progressively re-

duce the number of pixels exploited to change the classifica-

tion [6, 28]. Instead we introduce a flexible attack scheme

where at the beginning one checks pixelwise targeted at-

tacks and then sorts them according to the resulting gap in

the classifier outputs. Then we introduce a probability dis-

tribution on the sorted list and sample one-pixel changes to

generate attacks where more pixels are manipulated simul-

taneously. The distribution we use is biased towards the

one-pixel perturbations which produce, when applied indi-

vidually, already large changes in the classifier output. In

this non-iterative scheme there is thus no danger to get stuck

in suboptimal points. Moreover, while the attack has to test

many points, its non-iterative nature allows to check the per-

turbed points in large batches which is thus much faster than

an evolutionary attack. Even if the scheme is simple it out-

performs all existing methods including white-box attacks.

One-pixel modifications In the first step we check all

one pixel modifications of the original image x ∈ [0, 1]d×3

(color) or x ∈ [0, 1]d (gray-scale). The tested modifications

depend on the attack model.

1. l0-attack: for each pixel i we generate 8 = 23 images

changing the original color value to one of the 8 cor-

ners of the RGB color cube. Thus we name our method
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CornerSearch. This results in a set of 8d images, all

one pixel modifications of the original image x, which

we denote by (z(j))8dj=1. For gray-scale images one just

checks the extreme gray-scale values (black and white)

and gets (z(j))2dj=1.

2. l0 + l∞-attack: for each pixel i we generate 8 images

changing the original color value of (xij)
3
j=1 by the

corners of the cube [−ǫ, ǫ]3 resulting again in (z(j))8dj=1

images. For gray-scale we use xi ± ǫ resulting in total

in (z(j))2dj=1 images. If necessary we clip to satisfy the

constraint z(j) ∈ [0, 1]d×3 or z(j) ∈ [0, 1]d.

3. l0 + σ-map attack: for color images we generate for

each pixel i two images by setting

yij = (1± κσij)xij , j = 1, . . . , 3,

where κ and σij are as defined in Section 2. For gray

scale images x ∈ [0, 1]d we use

yi = xi ± κσi.

Finally, we clip yij and yi to [0, 1]. Thus, this results

in (z(j))2dj=1 images. We call it σ-CornerSearch.

After the generation of all the images we get the classi-

fier output f(z(j))Mj=1 for each of them, where M is the

total number of generated images, either M = 2d or

M = 8d. Then, separately for each class r 6= c, where

c = argmax
r=1,...,K

fr(x), we sort the values of

fr(z
(j))− fc(z

(j))

in decreasing order π(r). That means for all 1 ≤ s ≤M−1

fr(z
(π(r)

s ))− fc(z
(π(r)

s )) ≥ fr(z
(π

(r)
s+1))− fc(z

(π
(r)
s+1)).

We introduce also an order π(c), sorting in decreasing order

the quantities

maxr 6=c fr(z
(j))− fc(z

(j)).

The idea behind generating these one-pixel perturbations is

to identify the pixels which push most the decision towards

a particular class r or in case of the set π(c) towards an un-

specific change. If fr(z
(π

(r)
1 )) − fc(z

(π
(r)
1 )) > 0 for some

r, then the decision has changed by only modifying one

pixel. In this case the algorithm stops immediately. Oth-

erwise, one could try to iteratively select the most effec-

tive change and repeat the one-pixel perturbations. How-

ever, this is overly expensive and again suffers if subopti-

mal pixel modifications are chosen in the initial steps of the

iterative scheme. Thus we suggest in the next paragraph a

sampling scheme based on the obtained orderings, where

one randomly selects k one-pixel modifications to combine

in order to produce a multi-pixels attack.

Multi-pixels modifications Most of the times the modi-

fications of one pixel are not sufficient to change the deci-

sion. Suppose we want to generate a candidate for a targeted

adversarial sample towards class r by changing at most k
pixels, choosing among the first N one-pixel perturbations

according to the ordering π(r). We do this by sampling k
indices (s1, . . . , sk) in {1, . . . , N} from the probability dis-

tribution on {1, . . . , N} defined as

P (Z = i) =
2N − 2i+ 1

N2
, i = 1, . . . , N. (6)

The candidate image y(r) is generated by applying all the k

one-pixel changes defined in the images z(π
(r)
s1

), . . . , z(π
(r)
sk

)

to the original image x. Please note that we only sample

from the top N one-pixel changes found in the previous

paragraph and that the distribution on {1, . . . , N} is biased

towards sampling on the top of the list e.g. P (Z = 1) =
2N−1
N2 is 2N − 1 larger than P(Z = N) = 1

N2 . This bias

ensures that we are mainly accumulating one-pixel changes

which have led individually already to a larger change of the

decision towards the target class r. We produce candidate

images y(1), . . . , y(K) for all K classes, having K − 1 can-

didate images targeted towards changes in a particular class

and one image where the attack is untargeted (for r = c). In

total we repeat this process Niter times. The big advantage

of the sampling scheme compared to an iterative scheme is

that all these images can be fed into the classifier in batches

in parallel which compared to a sequential processing is sig-

nificantly faster. Moreover, it does not depend on previous

steps and thus cannot get stuck in some suboptimal regions.

As shown in the experiments this relatively simple sampling

scheme performs better than sophisticated evolutionary al-

gorithms (black-box attacks) and even white-box attacks.

Since we want to find adversarial examples differing

from x in as few pixels as possible, we generate the batches

y(1), . . . , y(K) of candidate images as described above,

gradually increasing k, up to a threshold kmax, until we get a

classification different from the original class c. Algorithm

1 summarizes the main steps.

4. PGD for sparse and imperceivable attacks

The projected gradient descent (PGD) attack of Madry

et al [21] is not aiming at finding the smallest adversarial

perturbation but instead argues from the viewpoint of robust

optimization about maximizing the loss

max
z∈C(x)

L(c, f(z)),

where L : {1, . . . ,K} × R
K → R+ is usually chosen to

be the cross-entropy loss, c is the correct label of the point

x and the set C(x) ⊂ [0, 1]d×3 (color images with d pixels)

or C(x) ⊂ [0, 1]d (gray-scale images). The interpretation

4727



Algorithm 1: CornerSearch

Input : x original image classified as class c, K
number of classes, N, kmax, Niter

Output: y adversarial example

1 y ← ∅

2 create one-pixels modifications (z(i))Mi=1

3 if exists u ∈ (z(i))Mi=1 classified not as c then

4 y ← u, return

5 end

6 compute orderings π(1), . . . , π(K),

7 k ← 2
8 while k ≤ kmax do

9 for r = 1, . . . ,K do

10 create the set Y (r) of Niter “k-pixels

modifications” towards class r (see

paragraph above)

11 if ∃u ∈ Y (r) classified not as c then

12 y ← u, return

13 end

14 end

15 k ← k + 1

16 end

in terms of robust optimization [21] has led to a now well-

accepted way of adversarial training with the goal of getting

robust wrt a fixed set of perturbations. The usage of PGD

attacks during training is the de facto standard for adversar-

ial training, which we will also use later on in Section 5.

Commonly used as the set of allowed perturbations is the

l∞-ball: C(x) = {z | ‖z − x‖∞ ≤ ǫ, z ∈ [0, 1]d} as the

projection can be done analytically.

In order to extend PGD to l0- and l0+l∞-attacks, we first

have to capture the sets allowed in our attack models in Sec-

tion 2 and then find fast algorithms for the projections onto

these sets. Once this is available PGD is ready to be used as

an attack and for adversarial training. In the Appendix we

also show how to project onto the intersection of the l0-ball

and the componentwise constraints given by the σ-map, for

both color and gray-scale images. Thanks to this, we can

introduce an l0 + σ-map version of PGD, called σ-PGD,

able to produce the sparse and imperceivable perturbations

we have introduced.

4.1. Projection onto the l0ball and l0+l∞ball

Given an original color image x ∈ [0, 1]d×3 we want to

project a given point y ∈ R
d×3 onto the set

C(x) =
{

z ∈ R
d×3

∣

∣

d
∑

i=1

max
j=1,2,3

✶|zij−xij |>0 ≤ k,

lij ≤ zij ≤ uij

}

.

We can write the projection problem onto C(x) as

min
z∈Rd×3

d
∑

i=1

3
∑

j=1

(yij − zij)
2

s. th. lij ≤ zij ≤ uij , i = 1, . . . , d, j = 1, . . . , 3

d
∑

i=1

max
j=1,2,3

✶|zij−xij |>0 > 0 ≤ k

Ignoring the combinatorial constraint, we first solve for

each pixel i the problem

min
zi∈R3

d
∑

i=1

3
∑

j=1

(yij − zij)
2

s. th. lij ≤ zij ≤ uij , i = 1, . . . , d, j = 1, . . . , 3

The solution is given by z∗ij = max{lij ,min{yij , uij}}.
We note that each pixel can be optimized independently

from the other pixels. Thus we sort in decreasing order π
the gains

φi :=

3
∑

j=1

(yij − xij)
2 −

3
∑

j=1

(yij − z∗ij)
2.

achieved by each pixel i. Thus the final solution differs from

x in the k pixels (or less if there are less than k pixels with

positive φi) which have the largest gain and is given by

zπij =

{

z∗πij
for i = 1, . . . , k, j = 1, . . . , 3,

xπij else.
.

Using lij = 0 and uij = 1 we recover the projection

onto the intersection of l0-ball and [0, 1]d×3. For l0 + l∞
note that the two constraints

0 ≤ zij ≤ 1, −ǫ ≤ zij − xij ≤ ǫ,

are equivalent to:

max{0,−ǫ+ xij} ≤ zij ≤ min{1, xij + ǫ}.

Thus by using

lij = max{0,−ǫ+ xij}, uij = min{1, xij + ǫ},

the set C(x) is equal to the intersection of the l0-ball of

radius k, the l∞-ball of radius ǫ around x and [0, 1]d×3,

5. Experiments

In the experimental section, we evaluate the effectiveness

of our score-based l0-attack CornerSearch and our white-

box attack PGD0. Moreover, we give illustrative exam-

ples of our sparse and imperceivable l0 + σ-map attacks

σ-CornerSearch and σ-PGD (the latter in the Appendix).

Finally, we test adversarial training wrt various norms as

a defense against our l0- and l0 + σ-map-attacks. The

code is available at https://github.com/fra31/

sparse-imperceivable-attacks.
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LocSearchAdv PA 10x CW SparseFool JSMA CornerSearch

black-box Yes Yes No No No Yes

MNIST

success rate 91.39% 92.35% 87.9% 100% 99.6% 97.38%

mean (pixels) 17.56 8.82 46.04 19.44 83.92 9.21

median (pixels) - 8 44 12 46 7

CIFAR-10

success rate 97.32% 100% 100% 100% 100% 99.56%

mean (pixels) 38.4 4.63 16.55 16.10 54.5 2.75

median (pixels) - 3 11 12 47 2

Table 1: Comparison of different l0-attacks. While SparseFool is always successful it requires significantly more pixels to

be changed. Our method CornerSearch requires out of all attacks the least median amount of pixels to be changed.

SparseFool CornerSearch

black-box No Yes

success rate 100% 93.26%

mean (pixels) 143.2 106.7

median (pixels) 101 50

Table 2: l0-attacks on Restricted ImageNet. We attack

the 89 correctly classified points out of 100 points from

the validation set with SparseFool [22] and our algorithm

CornerSearch. Due to the limit on the allowed number of

pixel changes, CornerSearch is not always successful, but

requires many less pixels to be changed.

5.1. Evaluation of l0attacks

We compare CornerSearch with state-of-the-art attacks

for sparse adversarial perturbations: LocSearchAdv [24],

Pointwise Attack (PA) [28], Carlini-Wagner l0-attack (CW)

[6], SparseFool (SF) [22], JSMA [26]. The first two operate

in a black-box scenario, exploiting only the classifier out-

put, like our method, while the latter three require access to

the network itself (white-box attacks). Note that SparseFool

is actually an l1-attack, that means it uses the l1-norm as

distance measure in (1) in order to avoid the combinatorial

problem arising from the usage of the l0-norm. However,

SparseFool can produce sparse attacks and in [22] has been

shown to outperform l0-attacks in terms of sparsity. We

use the implementation of the Pointwise Attack in [27]

with 10 restarts as done in [28], CW and JSMA from [25],

while we reimplemented SparseFool. Since neither the

code nor the models used in [24] are available (the results

for LocSearchAdv are taken from [24]), we decided to

compare the performance of the different attacks on one of

the architectures reported in [24], the Network in Network

[17] with batch normalization, retrained on MNIST and

CIFAR-10.

We run the attacks on the first 1000 points of the corre-

sponding test sets. We use CornerSearch with kmax = 50,

N = 100 and Niter = 1000. In Table 1 we report the

success rate of each method, that is the fraction of correctly

Figure 2: Evaluation of PGD0. We compute for 1000 test

points the robust accuracy of the classifier when the attack

is allowed to perturb at most k pixels. We can see that

PGD0 (red dots) outperforms SparseFool, thus being the

best “cheap” attack, and it is even the best one on MNIST

for k ≥ 4.

classified points which can be successfully attacked, mean

and median number of pixels that every attack needs to

modify to change the decision. Please recall that MNIST

consists of images with 784 pixels and CIFAR-10 with

1024 pixels. Although CornerSearch does not find an

adversarial example for each test point, since we fix the

maximum number of pixels that can be modified, both the

average and median number of changed pixels are lower

than those of the other methods, that is less pixels need to

be perturbed by our method to change the decision (with

the only exception of the mean on MNIST, where anyway

CornerSearch has higher success rate and lower median

than PA). On MNIST CornerSearch requires for at least

4729



50% of all test images 0.89% of the pixels to be changed

and for CIFAR-10 it is even just 0.2%.

Using the derivation in Section 4 of the projection onto

the l0- resp. l0 + l∞-ball, we introduce an l0 version of

the well-known PGD attack on the cross-entropy function

L, namely PGD0. The iterative scheme, to be repeated for a

fixed number of iterations, is, given an input x assigned to

class c,

z(i) = x(i−1) + η · ∇L(c,f(x(i−1))/‖∇L(c,f(x(i−1))‖
1

x(i) = Pk(z
(i)),

(7)

where η ∈ R+, x(0) = x, Pk(z) represents the projection

onto the l0-ball, with the radius fixed at k, and the l∞-ball

defined by the box constraint x ∈ [0, 1]d. Note that PGD0

needs k to be specified and thus does not aim at the minimal

modification to change the decision as in (1). In order to

evaluate the robust accuracy, that is the accuracy of the

classifier when the goal of the attacker is to change the

decision of all correctly classified images using k-pixels

modifications, one needs to evaluate PGD0 for each value

of k separately, whereas all other attacks yield the robust

accuracy for all levels of sparsity in one run.

For comparison we run PGD0, using 20 iterations and 10

random restarts, with 10 sparsity values k on the networks

of Table 1 (see Appendix for more details). In Figure

2 we show the robust accuracy of the different attacks.

PGD0 achieves the best results on MNIST for k ≥ 4,

outperforms SparseFool and is even close to CornerSearch

on CIFAR-10. As PGD0 is very fast, it is a valuable

alternative to our more expensive score-based attack.

We further test CornerSearch on Restricted ImageNet,

that is a subset of ImageNet [10] where some of the classes

are grouped to form 9 distinct macro-classes. We use the

ResNet-50 from [31] and compare our attack to SparseFool

[22] (we do not run the other methods as either no code is

available or they do not scale to the size of the images). The

images have 50176 pixels.

In Table 2 we report the statistics on 100 points for Sparse-

Fool and our attack with kmax = 1000, Niter = 1000. As

for the other datasets, SparseFool always finds an adversar-

ial example, whereas the smallest mean and median adver-

sarial modification is achieved by CornerSearch, although

with an inferior success rate. The runtime for SparseFool

is around 55 times smaller than for CornerSearch. The run-

time of our attack directly scales with the number of pixels

and the time of a forward pass of the network, both large in

this case. However, please note that SparseFool is a white-

box attack, whereas ours is a black-box attack. For a com-

parison to PGD0, given 100 pixels of budget, SF achieves a

success rate of 49.4%, CS 64.0%, PGD0 39.3%.

l0 l0 + σ
training PA SF PGD0 CS σPGD σCS

MNIST k = 15 k = 50
plain 25.6 41.2 3.6 9.2 49.2 80.4

l∞-at 1.6 96.0 60.0 0.0 88.2 90.0

l2-at 73.0 85.0 34.0 55.4 80.2 89.2

l0-at 55.8 63.6 74.6 39.8 57.8 73.8

l0 + σ-at 19.4 26.8 9.4 15.4 93.6 95.4

CIFAR-10 k = 10 k = 100
plain 15.2 57.0 7.0 2.2 27.6 52.4

l∞-at 28.6 57.6 22.6 10.8 50.4 63.6

l2-at 37.6 60.6 25.4 13.8 53.2 66.0

l0-at 64.2 63.8 54.8 46.0 34.6 58.2

l0 + σ-at 41.6 54.4 6.0 5.6 62.8 67.6

Table 3: Evaluation of adversarial training. Robust accu-

racy (%) given by l0- and l0 + σ-attacks (changing at most

k pixels and for l0 + σ-attacks fixing κ = 0.8 for MNIST

and κ = 0.4 for CIFAR-10) on models adversarially trained

wrt different metrics.

5.2. Sparse and Imperceivable manipulations

We illustrate the differences of the adversarial modifica-

tions found by l0-, l0 + l∞- and l0 + σ-map attacks. In

Figures 3 and 4 we show some examples. As discussed

before the adversarial modifications produced wrt only the

l0-norm are the sparsest but also the easiest to recognize.

The l0+ l∞-attack provides images where, although the ab-

solute value of the individual modification is bounded (we

use here δ = 0.1 for CIFAR-10, δ = 0.05 for ImageNet),

some perturbations are visible since either colors are not ho-

mogeneous with the neighbors (second rows of the left part

of Figure 3 and right part of Figure 4) or modifications of

an uniform background are introduced (second row of the

right part of Figure 3 and left part of Figure 4). On the other

hand, the adversarial modifications of σ-CornerSearch are

imperceivable while still being very sparse (third rows of

Figures 3 and 4), showing that the σ-map, also shown in the

Figures rescaled so that the largest component is equal to 1,

is able to correctly identify the area where a change is diffi-

cult to perceive (see in particular the zoomed images).

We provide a comparison of the adversarial examples

crafted by σ-CornerSearch and σ-PGD in the Appendix.

5.3. Adversarial training

In order to increase robustness of the models to sparse

adversarial manipulations, we adapt adversarial training to

our cases. We use PGD0 presented above for adversarial

training in order to achieve robustness against l0-attacks

(l0-at), while we use σ-PGD to enhance robustness against
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original l_0 perturbation sparsity:0.2% original l_0 perturbation sparsity:0.098%

l_0 + l_inf perturbation sparsity:1.2% l_0 + l_inf perturbation sparsity:0.59%

�-map l_0 + ✁-map perturbation sparsity:7.9% ✂-map l_0 + ✄-map perturbation sparsity:3.3%

Figure 3: Different attacks on CIFAR-10. We illustrate the differences of the adversarial examples (second column) found

by CornerSearch (l0), l0+l∞-attack and σ-CornerSearch respectively first, second and third row. The third column shows the

adversarial perturbations rescaled to [0, 1], the fourth the map of the modified pixels (sparsity column). The original image

can be found top left and the RGB representation of the σ-map bottom left.

original l_0 zoom sparsity:0.05% original l_0 zoom sparsity:0.05%

l_0 + l_inf zoom sparsity:2.7% l_0 + l_inf zoom sparsity:1.8%

☎-map l_0 + ✆-map zoom sparsity:2.7% ✝-map l_0 + ✞-map zoom sparsity:2.3%

Figure 4: Different attacks on Restricted ImageNet. We illustrate the differences of the adversarial examples (second

column, zoom in third column) found by CornerSearch (l0), l0 + l∞-attack and σ-CornerSearch, respectively first, second

and third row. The fourth column shows the map of the modified pixels (sparsity column). The original image is in the top

left and the RGB representation of the rescaled σ-map in the bottom left.

sparse and imperceivable attacks (l0 + σ-at). With these

two techniques we train models on MNIST and CIFAR-10

(more details about the architectures and hyerparameters in

the Appendix). We compare them to the models trained on

the plain training set and with adversarial training wrt the

l∞- and l2-norm (l∞-at and l∞-at). In Table 3 we report the

robust accuracy on 500 points (we fix the maximum num-

ber of pixels to be modified to k, and the parameter of the

l0 + σ attacks defined in (4) and (5) to κ = 0.8 for MNIST

and κ = 0.4 for CIFAR-10).

On MNIST the models trained on l2 and l0 perturbations

are the most robust against l0-attacks, while on CIFAR-10

the l0-at model is more than 3 times more resistant than all

the others. Similarly to [22] we find that l∞-at does not

help for l0-robustness. Notably, on both dataset our attacks

PGD0 and CornerSearch (CS) achieve the best results and

then are the most suitable to evaluate robustness.

Regarding the l0 + σ-map attacks, we see that the l0 + σ-

at models are the least vulnerable, but also l∞-at and l2-at

show some robustness. Note that σ-PGD is more successful

than σ-CornerSearch but produces less sparse perturbations

as it always fully exploits the budget of k pixels to mod-

ify while σ-CS mostly uses just a few of them, making the

modifications even more difficult to spot (see Appendix).
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