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Abstract

This paper presents a deep multi-model fusion network

to attentively integrate multiple models to separate layers

and boost the performance in single-image dehazing. To

do so, we first formulate the attentional feature integra-

tion module to maximize the integration of the convolution-

al neural network (CNN) features at different CNN layers

and generate the attentional multi-level integrated features

(AMLIF). Then, from the AMLIF, we further predict a haze-

free result for an atmospheric scattering model, as well as

for four haze-layer separation models, then fuse the results

together to produce the final haze-free image. To evaluate

the effectiveness of our method, we compare our network

with several state-of-the-art methods on two widely-used

dehazing benchmark datasets, as well as on two sets of real-

world hazy images. Experimental results demonstrate clear

quantitative and qualitative improvements of our method

over the state-of-the-arts.

1. Introduction

In hazy conditions, floating particles in the atmosphere

absorb and scatter the light, thereby distorting the pho-

to contents and degrading the accuracy of subsequent vi-

sual analysis. To overcome the issues, many method-

s [8, 11, 23, 28, 36, 35] have been proposed to recover the

underlying haze-free image from the single hazy input.

The image degradation caused by the haze is usually for-
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(a) Input image (b) Our result

(c) DCPDN [36] (CVPR’18) (d) PDNet [35] (ECCV’18)

Figure 1: Haze removal on a real-world photo under heavy

haze. Results in (b)-(d) are obtained by training these net-

works using the training set of NTIRE-dehazing challenge.

mulated by an atmospheric scattering (AS) model [36, 35]:

I(p) = J(p)× T (p) +A(p)× (1− T (p)) , (1)

where I is the observed hazy image; p is the pixel location;

J is the underlying scene radiance image to be recovered;

T is the transmission map, which represents the distance-

dependent factor affecting the fraction of light that reaches

the camera sensor; and A is the global atmospheric light,

indicating the ambient light intensity.

Early dehazing methods employed hand-crafted priors

based on the statistics of clean images to estimate the trans-

mission map T [5, 9, 30, 2], such as local max contrast [31],

dark channel prior [13], color-line prior [10], and color at-

tenuation prior [44], then use the atmospheric scattering
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model to recover the underlying haze-free results. Although

improving the overall scene visibility, using hand-crafted

priors tend to introduce undesirable artifacts such as col-

or distortions [19]. Recently, learning-based methods, such

as convolutional neural network (CNN) based framework-

s, have shown remarkable improvements by learning the

transmission map from the labelled datasets [6, 27, 19], or

by directly learning the mapping from the input hazy im-

ages to haze-free counterparts [23, 28, 36, 35]. However,

most existing dehazing networks are based only on the haze

related atmospheric scattering model (Eq. (1)) to learn the

transmission maps or haze-free images, thus tend to over-

dehaze or under-dehaze input images; see Figures 1 (c)-(d).

Similar to other image restoration tasks (e.g., image de-

noising [33, 12, 38, 41], image smoothing [42], and image

deraining [43, 37, 16]), we can model the image dehazing

as a layer separation problem by considering the input hazy

image as a combination of multiple layers. The image de-

hazing separates the input hazy image (I) into a haze-free

layer (J) and another layer (H), which contain haze infor-

mation:

I = Φ(J, H) , (2)

where Φ denotes the layer separation function for the com-

plex hazing process, and we explore four specific layer de-

compositions for the function Φ; see Section 3 for details.

In this work, we develop an end-to-end deep multi-model

fusion network by integrating dehazed results recovered

from the atmospheric scattering model and the hazing layer

separation model into a single network architecture for im-

proving the dehazing performance. To do so, we first utilize

a CNN to generate feature maps with different scales, then

produce an attentional multi-level integrated feature (AM-

LIF) map by integrating features from different CNN lay-

ers. Based on the AMLIF, we obtain a dehazed result from

the atmospheric scattering model and four results from the

layer separation models with different hazing layer decom-

positions. Lastly, we develop an attentional fusion module

to integrate these results into our final result. Overall, we

summarize the major contributions of this work as:

• First, we develop an end-to-end deep neural network by

fusing the atmospheric scattering model and hazing layer

separation model for improving dehazing performance.

• Second, we develop the attention mechanism based mod-

ule to integrate features from different convolutional lay-

ers of a CNN, and then predict dehazed results from the

integrated features, based on the atmospheric scattering

model and several specific layer separation formulations

for fully exploiting the complementary information be-

tween different hazing models.

• Third, we evaluate the proposed method on two widely-

used dehazing benchmark datasets and various real-world

hazy images by comparing it with state-of-the-art dehaz-

ing methods. The experimental results show that the de-

veloped network outperforms other dehazing methods on

all the benchmarks and real hazy images. Overall, the

method in this work sets a new state-of-the-art perfor-

mance on single image dehazing.

2. Related Work

Hand-crafted-prior-based methods investigated image

priors from the hazy and clean images for estimating the

transmission map for single-image dehazing, such as the

dark channel prior (DCP) in He et al. [13], color-line pri-

ors in Fattal [10], and haze-line in Berman et al. [4]; please

refer to Zhang et al. [36] for details. These methods tend to

introduce undesirable artifacts (e.g., color distortions) in the

results [28] since their hand-crafted priors from human ob-

servations do not always hold in diverse real-world images.

Deep learning-based methods have been developed for

single-image dehazing by witnessing the success of convo-

lutional neural networks (CNNs) in many computer vision

tasks [26, 14, 7], Early attempts designed CNNs to only es-

timate the transmission map and then used the atmospheric

scattering model (see Eq. (1)) for recovering the clean im-

age. Ren et al. [27] first designed a coarse-scale network

to predict a holistic transmission map and then a fine-scale

network to refine the transmission map. Cai et al. [6] de-

veloped a DehazeNet equipped with BReLU based feature

extraction layers for transmission map prediction. Hence,

inaccuracies on the transmission map estimation tend to de-

grade the quality of the dehazed result.

Recently, end-to-end CNNs have been designed to di-

rectly learn the clean image from a hazy input for dehaz-

ing. Yang et al. [35] integrated the haze imaging model

constraints and image prior learning into a single dehazing

network for clean image prediction. Li et al. [23] intro-

duced the VGG [29] features and an L1-regularized gra-

dient prior into conditional generative adversarial network

(cGAN) [17] for clean image estimation. Ren et al. [28]

designed an encoder-decoder network (GFN) to learn con-

fidence maps from three derived inputs and fused them into

the final dehazed result. However, these deep models for-

mulated a disjoint optimization, so it failed to capture the

relations among the transmission map, atmospheric light,

and dehazed result, and hindered the overall dehazing per-

formance. Unlike them, Zhang et al. [36] proposed a sin-

gle dehazing network (DCPDN) to jointly learn the trans-

mission map, atmospheric light and haze-free images for

capturing their relations. Although improving the dehazing

performance, the DCPDN [36] still under-dehaze or over-

dehaze input hazy images, since only the atmospheric scat-

tering model is considered when designing the CNN; see

Figure 1 (c). To further boost clean image prediction, we

consider the dehazing process as a layer separation model
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Figure 2: Overview of the developed DM2F-Net: (i) it starts by generating multi-layer features (MLF) from different CNN

layers; (2) we develop an attentional feature integration module (AFIM) (see Figure 3) to refine MLF, and then predict a

dehazed result from the refined features by developing a scattering model based module (see Figure 5); (3) we formulate four

specific hazing layer decompositions (see Figure 4) to predict their dehazed results (denoted as J1, J2, J3 and J4); (4) we

fuse these dehazed results to produce our final result by learning weighting maps (W0, W1, W2, W3, and W4). Note that

convolutional parameters in the five AFIMs are not shared.
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Figure 3: The schematic illustration about the attentional feature integration module (AFIM) of Figure 2.

(see Eq. (2)), and develop an efficient end-to-end dehazing

network by fully fusing dehazed results from both the atmo-

spheric scattering model and the layer separation.

3. Our Approach
Figure 2 shows the architecture of our network (denot-

ed as DM2F-Net), which fuses the atmospheric scattering

(AS) and layer separation models for dehazing. Given an

input hazy image, we develop attentional feature integration

modules (AFIMs; see Section 3.1) to produce feature maps

(denoted as AMLIF) by learning attention maps to leverage

the complementary information among different CNN fea-

tures. Then, we predict the AS model based result (denoted

as J0) from AMLIF by joint learning. Moreover, we com-

pute four dehazed results (denoted as J1, J2, J3 and J4) for

four-layer separation formulations from another four AM-

LIF. Finally, we learn attention maps to weight all these de-

hazed results for generating the final result; see Section 3.2.

3.1. Attentional Feature Integration Module

Note that the features at shallow layers in a convolution-

al neural network (CNN) are responsible for discovering

the fine detail information but lack of semantic information

of input hazy image. Hence, the dehazing prediction from

these features can capture most of the background details,

but many non-haze details are also corrupted with haze. On

the other hand, features at deep CNN layers are responsible

for capturing the semantic information to remove most of

the haze in the input image but somehow lack of non-haze

background details due to their relatively larger receptive

fields than shallow layers. Hence, we design an attentional

feature integration module (AFIM) to leverage complemen-

tary among different CNN layers for the clean image predic-

tion by automatically learning attention maps for weighting

concatenated features from different CNN layers; see Fig-

ure 3 for the AFIM architecture.

To do so, taking concatenated features (denoted as MLF)

from different CNN layers as the input, the AFIM first uti-

lizes three convolutional layers and a softmax function to

produce attention weights Ωx (see Figure 3):

Ωx = Softmax(σ(Θ ∗ MLF + b)) , (3)

where Θ and b are the weights and bias of three convo-

lutional layers on the MLF; The three convolution kernel

sizes are 3 × 3, 3 × 3, and 1 × 1; and σ is the ReLU acti-

vation function [18]. Then, the attention map Ωx is multi-

plied to the concatenated features (MLF) in a layer-by-layer

manner, and then the multiplied features are added together

across the channel direction. After that, we employ a residu-

al block [14] to produce the output attentional concatenated
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decompositions formulations (see Figures 4 (a)-(d)). Note that the channels of R1, R2, R3, and R4 are 3.
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Figure 5: The schematic illustration about how to produce

the dehazed result (denoted as J0) using the AS model.

multi-level features (AMLIF) of our AFIM. In the residual

block, we use two 3× 3 and a 1× 1 convolutional layers to

produce the residual component; see Figure 3.

3.2. Dehazing Prediction

This section shows how to predict dehazed results for the

atmospheric scattering model (Section 3.2.1), and the layer

separation models (Section 3.2.2), as well as merge them

for our final result (Section 3.2.3).

3.2.1 Prediction from Atmospheric Scattering Model

To predict the dehazed result for the atmospheric scatter-

ing (AS) model, we develop a AFIM to generate AMLIF

(see Section 3.1), and then jointly estimate the transmission

map, atmospheric light and the dehazed result from AMLIF

by embedding the AS model to the network. Figure 5 shows

the detailed architecture. Specifically, we employ two 3× 3
convolutional layers and a sigmoid function on the AMLIF

for computing the transmission map. Then, we use a global

average pooling [15] on the AMLIF, followed by two fully

connected layers and a sigmoid function to estimate the at-

mospheric light. After that, we compute the dehazed result

(denoted as J0) by re-formulating AS model in Eq. (1) as:

J0(p) =
I(p)−A0 × (1− T0(p))

T0(p)
, (4)

where p denotes the pixel location; I is the input hazy im-

age; A0 is the computed atmospheric light; and T0 is the

estimated transmission map.

3.2.2 Prediction from Layer Separation Model

Apart from the atmospheric scattering model (see Eq. 1),

we integrate the dehazed results from layer separation mod-

els together for improving the dehazing performance, since

these models can learn the complementary dehazing infor-

mation of the scattering model. Note that the image hazing

process is pretty complicated and accurate layer decompo-

sition in the single image dehazing task is non-trivial. In

this regard, we empirically explore four specific layer for-

mulations (with common mathematical operations on the

layer composition) as the decomposition basis and use the

attention mechanism to linearly combine these four bases

to obtain the dehazed results respectively; Figure 4 shows

how to predict dehazed results (denoted as J1, J2, J3 and

J4) using the four-layer decomposition basis. For a specific

layer decomposition, we apply the developed AFIM to gen-

erate AMLIF and then use the decomposition formulation

to obtain the dehazed result from the AMLIF.

Specifically, we first consider the layer multiplication

mechanism for the hazing layer decomposition model:

J1(p) = I(p)×R1(p) , (5)

where p is the pixel location; I is the hazy input; and J1
and R1 denote the two layers, which are decomposed from

the I using the Eq. (5). Figure 4 (a) shows the architecture

of predicting dehazed result (denoted as J1) based on the

Eq. (5) by taking AMLIF and I as the input. Specifically,

we apply two 3× 3 convolutional layers on the AMLIF for

predicting R1, and then compute the dehazed result J1 by

using Eq. (5) with the estimated R1 and input I .

Secondly, we model the dehazing layer separation as a
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(a) input image

PSNR=32.79

SSIM = 0.9138

(b) J0

PSNR=30.82

SSIM = 0.9452

(c) J1

PSNR=29.97

SSIM = 0.9558

(d) J2

PSNR=30.19

SSIM = 0.9590

(e) J3

PSNR=29.72

SSIM = 0.9429

(f) J4

PSNR=37.33

SSIM = 0.9789

(g) our result

(h) W0 (i) W1 (j) W2 (k) W3 (l) W4 (m) ground truth

Figure 6: Visualization of dehazed results predicted by the the atmospheric scattering (AS) model (J0) and the four layer

separation models (J1-J4), as well as the corresponding attention weights learned in five dehazing models: W0, W1, W2, W3

and W4. (a) Input hazy image; (b)-(f): J0 to J4; (g) our result; (h)-(l): W0 to W4; and (m) the haze-free ground truth.

classical linear combination with an addition operation:

J2(p) = I(p) +R2(p) , (6)

where J2 and R2 denote two layers after performing the

layer decomposition in the Eq. (6). With the linear com-

bination formulation in Eq. (6), We estimate the dehazed

result (denoted as J2) by first utilizing two 3 × 3 convolu-

tional layers on the AMLIF to compute R2, and then adding

R2 into the input I , as shown in Figure 4 (b).

The third formulation is to explore the exponentiation

operation for separating the hazy input I into J3 and R3:

J3(p) = (I(p))R3(p) , (7)

Figure 4 (c) shows how to obtain the dehazed result J3 for

Eq. (7). Specifically, we use two 3 × 3 convolutional lay-

ers on the AMLIF for predicting R3, and then compute J3
according to Eq. (7).

Our last layer separation for image dehazing is given by:

J4(p) = log(1 + I(p)×R4(p)) , (8)

where J4 and R4 are two decomposed layers for Eq. (8). We

use two 3 × 3 convolutional layers on AMLIF to estimate

R4 and then Eq. (8) to compute J4; see Figure 4 (d).

3.2.3 Final Result

After obtaining results of different hazing models, we lever-

age the attention mechanism [21, 40] to integrate these pre-

dictions for final result of our network. To do so, we learn

five attention maps from the multi-layer integration features

(AMIF) for different predictions by performing a 1× 1 con-

volutional layer, two 3× 3 convolutional layers, a 1× 1 con-

volutional layer, and a softmax layer; see Figure 2. Then,

the final result (denoted as Jf ) is computed as:

Jf = W0 × J0 +W1 × J1 +W2 × J2

+W3 × J3 +W4 × J4 +W5 × J5 ,
(9)

where W0, W1, W2, W3 and W4 are the learned attention

maps for dehazed results J0, J1, J2, J3 and J4, respectively.

3.3. More analysis

Different models’ Result Visualization. Figures 6 (b)-(f)

demonstrate dehazed results of the atmospheric scattering

(AS) model (J0) and four layer separation models (J1 to

J4). As can be seen, the AS model (J0) can better recov-

er the input hazy image than other layer separation models

(J1 to J4), which are also verified by its higher PSNR/SSIM

values. More importantly, when removing the haze, the AS

model tends to over-smooth parts of non-haze background

details, and those details are preserved in the dehazed re-

sults of layer separation models respectively, which demon-

strates that our layer separation models can learn the com-

plementary dehazing information of the AS model.

Attention map visualization. Figures 6 (h)-(i) visualize

the learned attention weights (W0, W1, W2, W3 and W4) of

five dehazing models. Obviously, for each dehazing mod-

el, the learned attention map has smaller weights on their

blurred regions, while automatically highlighting these re-

gions, which are better recovered by this image dehazing

model. Furthermore, since there are complementary in-

formation among the dehazed results of the five dehazing

modes, the attention maps (W0, W1, W2, W3 and W4) can

automatically select the best one among all the five dehazed

results to predict the final result of our method by highlight-

ing different regions of the input image, as shown in W0,

W1, W2, W3 and W4. Hence, our method integrating these

five dehazing models by using these learned attention maps

in our method incurs a better performance of image dehaz-

ing, as shown in Figure 6 (g) (compared to the haze-free

ground truth in Figure 6 (m)).

Why only four models. The main goal of our layer sepa-

ration models is to separate the input hazy image into two

layers (see Eq. 2): one is with haze-free background detail-
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(a) Input image (b) NLD [4] (f) DCPDN [35](d) PDNet [34] (e) GFN [27](c) AOD-Net [18] (g) Our method (h) Ground Truth

PSNR / SSIM= 15.911 / 0.665 20.221 / 0.737 15.879 / 0.721 23.964 / 0.815 24.377 / 0.820 25.529 / 0.834 / 1

Figure 7: Haze removal results by various methods on a real-world photo in O-HAZE [1]. Please zoom in for a better view.

s while another layer contains only haze information. Our

four layer separation models (see Figure 2) contain com-

mon mathematical operations for two-layer combinations,

and they are “+(-)” in J1, “×(÷)” in J2, exponentiation in

J3, and logarithm in J4. Furthermore, for better approx-

imating the mathematical formulation in the presence of

haze, we use the attention mechanism to produce weight-

ing maps for linearly combining all these four models in the

final haze-free predictions, and these weights are optimized

when minimizing the training loss of our network, which is

computed from many hazy and haze-free image pairs of the

training set. Our superior performance on real-world and

synthetic benchmarks have demonstrated the effectiveness

of our four-layer separation models for image dehazing.

3.4. Training Strategy

Loss function. As shown in Figure 2, our network adds

haze-free supervision on the dehazed results (J0, J1, J2, J3
and J4) from atmospheric scattering model and layer sep-

aration models, as well as our final result (Jf ). When pre-

dicting the dehazed result based on the scattering model,

we also add a transmission map supervision on the estimat-

ed transmission map and an atmospheric light supervision

on the computed atmospheric light. The total loss Θ is:

Θ = α0‖J0 −GH‖1 + α1||J1 −GH ||1 + α2||J2 −GH ||1

+ α3||J3 −GH ||1 + α4||J4 −GH ||1 + α4||Jf −GH ||1

+ α6||T0 −GT ||1 + α7||A0 −GA||1 ,
(10)

where GA, GT and GH denote ground truth of the atmo-

spheric light, transmission map, and single-image dehazing;

‖.‖1 denotes the L1 norm based loss for computing differ-

ence between the prediction and the corresponding ground

truth. α0, α1, α2, α3, α4, α5, α6 and α7 are the weight

of each L1 loss. We empirically set α6 as 10, while other

weights are fixed as 1 in both training and testing stages.

Training parameters. We initialize the parameters of the

basic CNN by a pre-trained ResNeXt [34] on the ImageNet,

and other parameters by Gaussian random noise. We ran-

domly cropped 256× 256 image patches from the entire

training images and adopt the Adam optimizer with itera-

tion number of 20, 000 for training. The learning rate is ad-

justed by the poly policy [24] with the initial learning rate

of 0.0002 and power of 0.9. We use a mini-batch size of

16 and 4 hours to train our model using a single NVIDIA

GTX 1080Ti GPU based on the PyTorch library. Processing

a 640 × 480 image takes around 0.032 sec.

4. Experimental Results

We compare our dehazing network against state-of-the-

art methods, including DCP [13], NLD [4], MSCNN [27],,

DehazeNet [6], AOD-Net [19], GFN [28], DCPDN [36],

and PDNet [35]. Furthermore, we employ three widely-

used metrics for quantitative comparisons, and they are

peak signal to noise ratio (PSNR) [41], structural similar-

ity index (SSIM) [32], and CIEDE2000 [39]. Our code,

trained models, and dehazed results on the benchmark

datasets are publicly available at https://github.

com/zijundeng/DM2F-Net.

4.1. Results on Real-world Images

NTIRE 2018 outdoor dehazing challenge (O-HAZE).

According to the final ranking of O-HAZE challenge [1],

top 5 PSNR/SSIM results are 24.598/0.777 (Team: BJ-

TU), 24.232/0.687 (Team: KAIST-VICLAB), 24.029/0.775

(Team: Scarlet Knights), 23.877/0.775 (Team: FKS), and

23.207/0.770 (Team: Ranjanisi). We use the training data

of O-HAZE dataset [3] to train our network and test on its

testing data, Table 1 reports the PSNR and SSIM results of

our network and state-of-the-arts. Obviously, our method

(PNSR/SSIM: 25.188/0.777) outperforms the top 5 teams

and compared dehazing methods in terms of the PSNR and

SSIM on a large margin. It demonstrates that our method

can better restore the outdoor real-world hazy scenes, which

is also verified by the visual comparisons in Figure 7.
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(a) Input haze image (b) NLD [4]

CVPR’ 16

(c) DehazeNet [6]

TIP’ 16

(d) AOD-Net [19]

ICCV’ 17

(e) PDNet [35]

ECCV’ 18

(f) GFN [28]

CVPR’ 18

(g) DCPDN [36]

CVPR’ 18

(h) Our method

Figure 8: Dehazing real-world hazy photos using various methods (b)-(h). Please zoom in for a better illustration.

Table 1: Comparisons on real-world & synthetic dehazing datasets.
O-HAZE [3] HAZERD [39] TestA-DCPDN [36] SOTS [28]

method PSNR SSIM CIEDE2000 SSIM PSNR SSIM PSNR SSIM

DM2F-Net (ours) 25.188 0.777 12.9285 0.656 35.61 0.9829 34.29 0.9844

DCPDN [36] 22.777 0.742 14.6251 0.546 29.27 0.9533 28.13 0.9592

GFN [28] 22.578 0.737 16.3619 0.511 25.59 0.9398 22.30 0.8800

PDNet [35] 17.403 0.658 16.9360 0.495 21.98 0.9083 22.83 0.9210

AOD-Net [19] 19.586 0.679 16.6743 0.500 20.46 0.8379 20.86 0.8788

DehazeNet [6] 16.207 0.666 17.1261 0.479 19.92 0.8575 21.14 0.8500

MSCNN [27] 19.068 0.765 13.7952 0.624 17.98 0.8203 17.57 0.8100

NLD [4] 16.610 0.750 16.4010 0.577 16.95 0.7959 17.27 0.7500

Li et al.[22] 14.43 0.583 15.91 0.623 15.34 0.781 17.05 0.794

Meng et al.[25] 23.92 0.725 16.85 0.578 24.33 0.904 23.49 0.936

DCP [13] 16.586 0.735 17.9014 0.534 13.91 0.8642 16.62 0.8179

HAZERD. The HAZERD dataset [39] only has 15 hazy

outdoor images with more realistic haze for testing. Hence,

we train our network and competitors on the synthetic RE-

SIDE dataset [20, 28] and test on the HAZERD dataset. Ta-

ble 1 reports the quantitative results, and our network has

larger SSIM and smaller CIEDE2000 than other competi-

tors, demonstrating that our method has superior dehazing

performance on realistic images of HAZERD.

Collected real hazy photos. Additionally, Figure 8 shows

the visual comparisons on real-world hazy photos we col-

lected. As revealed in Figure 8, NLD suffers from the color

distortions, while DehazeNet, AOD-Net, PDNet, GFN, and

DCPDN again tend to leave haze or darken some region-

s. Contrarily, our method predicts better dehazed results in

terms of effectively removing the haze while producing re-

alistic colors, as shown in these blown-up views of Figure 8.

4.2. Results on Synthetic Images

We evaluate our network on two synthetic benchmark-

s: “TestA-DCPDN” [36] and “SOTS” [20, 28] and report

our results using the same training strategy of [36, 28].

To do the fair comparisons, we obtained the results of

compared methods by obtaining their released code and

re-training deep networks by using training sets of two

dehazing benchmarks. Table 1 also reports average P-

SNR and SSIM values of different dehazing methods on

“TestA-DCPDN” and “SOTS”. Deep learning-based dehaz-

ing competitors have larger PNSR and SSIM values than the

hand-crafted prior based methods (DCP & NLD). Further-

more, our method has the largest PSNR and SSIM values

on TestA-DCPDN [36] and SOTS [20, 28] among all the

dehazing networks, which demonstrate that our method has

a superior performance of recovering the clean images for

the two dehazing datasets.

Figure 9 presents visual comparisons on a synthetic im-

age of two benchmarks. NLD overestimates the haze thick-

ness and thus causes color distortion. Although improving

the dehazing performance than NLD, these dehazing net-

works (e.g., AOD-Net, GFN, PDNet, and DCPDN) tend to

leave there are still some remaining haze or darken several

areas in the results; see Figures 9 (c)-(f). In contrast, our de-

hazed result (Figure 9 (g)) is closest to the haze-free ground

truth image (see Figure 9 (h)). Overall, the dehazed result

of our network have higher visual quality and fewer color
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PSNR / SSIM = 14.08 / 0.4103 14.42 / 0.6949 18.86 / 0.8108 19.93 / 0.8116 23.73 / 0.9411 35.69 / 0.9788 ∞ / 1

(a) Input image (b) NLD [4] (c) AOD-Net [19] (d) PDNet [35] (e) GFN [28] (f) DCPDN [36] (g) Our method (h) Ground truth

Figure 9: Haze removal on a synthetic hazy photo. Please zoom in for a better illustration.

Table 2: Average PSNR and SSIM values in ablation study.
TestA-DCPDN [36] SOTS [28]

method PSNR SSIM PSNR SSIM

basic+AS 34.36 0.9679 32.42 0.9717

basic+J1 30.57 0.9558 28.93 0.9486

basic+J2 31.70 0.9656 30.92 0.9654

basic+J3 32.30 0.9714 32.64 0.9758

basic+J4 29.98 0.9510 28.85 0.9446

ours w/o AFIM 34.71 0.9810 33.93 0.9823

DM2F-Net (ours) 35.61 0.9829 34.29 0.9844

Input haze image Our method

Figure 10: An example of a failure case.

distortions, which are also verified by the largest PSNR and

SSIM value of our method in Figure 9.

4.3. Ablation Study

We perform an ablation study experiment to verify the

major components of our network. Here, we consider

six baseline networks, and report their results on TestA-

DCPDN [36] and SOTS [20, 28]. The first baseline (denot-

ed as “basic+AS”) is constructed by only using the atmo-

spheric scattering model of our network (see Figure 2) for

dehazing; Then, we construct another four baselines by on-

ly taking J1 (“basic+J1”), J2 (“basic+J2”), J3 (“basic+J3”)

and J4 (“basic+J4”) as the results of our network, respec-

tively. The last baseline (denoted as “ours w/o AFIM”) is

built by removing the attentional feature integration module

(AFIM) from our network (Figure 2) to verify the AFIM.

Table 2 compares our method against six baselines. Ap-

parently, our method has better dehazed results than “ba-

sic+AS”, which indicates that the layer separation mod-

el in our method can help to improve the dehazed result-

s. Similarly, our method has a superior PSNR and SSIM

performance than all four specific layer decomposition-

s (“basic+J1”, “basic+J2”, “basic+J3” and “basic+J4”),

demonstrating that the atmospheric scattering model in our

method also contributes better results to our dehazing net-

work. Lastly, our method has larger PSNR and SSIM values

than “ours w/o AFIM”, which shows that leveraging AFIM

to integrate features at different CNN layers for the clean

image prediction can also help our method to obtain superi-

or dehazing results.

Failure cases. Like other works (e.g., [23]), our method

might not work well for night hazy images; see an example

input and result shown in Figure 10. It is because exist-

ing training datasets do not contain similar hazy conditions.

This can be alleviated by collecting more data samples.

5. Conclusion

This work presents a multi-model fusing network for

boosting the single-image dehazing. Our key idea is to de-

sign a new deep multi-modal fusion framework that allows

us to simultaneously explore multiple dehazing models (in-

cluding an atmospheric scattering (AS) model and four de-

hazing models) to combine their strengths and maximize

the methods dehazing capability. On the contrary, existing

dehazing methods mainly examine the AS model and tend

to fail in various real-world complex hazing situations. Ex-

perimental results demonstrate the superior performance of

our method over the state-of-the-arts.

Acknowledgments. The work is supported by CUHK

Research Committee Funding (Direct Grants) under project

code - 4055103, Research Grants Council of the Hong Kong

Special Administrative Region (No. CUHK 14201717),

Science and Technology Plan Project of Guangzhou

(No.201704020141), Shenzhen Science and Technolo-

gy Program (Project no. JCYJ20170413162617606),

NSFC (Grant No. 61772206, U1611461, 61472145),

Guangdong R&D key project of China (Grant No.

2018B010107003), Guangdong High-level personnel pro-

gram (Grant No. 2016TQ03X319), Guangdong NSF (Grant

No. 2017A030311027), and Guangzhou key project in in-

dustrial technology (Grant No. 201802010027).

2460



References

[1] Cosmin Ancuti, Codruta O. Ancuti, and Radu Timofte. N-

TIRE 2018 challenge on image dehazing: Methods and re-

sults. In CVPR Workshops, pages 891–901, 2018. 6

[2] Codruta Orniana Ancuti and Cosmin Ancuti. Single image

dehazing by multi-scale fusion. IEEE Transactions on Image

Processing, 22(8):3271–3282, 2013. 1

[3] Codruta O. Ancuti, Cosmin Ancuti, Radu Timofte, and

Christophe De Vleeschouwer. O-HAZE: a dehazing bench-

mark with real hazy and haze-free outdoor images. In CVPR

Workshops, pages 754–762, 2018. 6, 7

[4] Dana Berman, Shai Avidan, et al. Non-local image dehazing.

In CVPR, pages 1674–1682, 2016. 2, 6, 7, 8

[5] Dana Berman, Tali Treibitz, and Shai Avidan. Air-light esti-

mation using haze-lines. In IEEE International Conference

on Computational Photography (ICCP), pages 1–9. IEEE,

2017. 1

[6] Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and

Dacheng Tao. DehazeNet: An end-to-end system for single

image haze removal. IEEE Transactions on Image Process-

ing, 25(11):5187–5198, 2016. 2, 6, 7

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. DeepLab: Semantic im-

age segmentation with deep convolutional nets, atrous con-

volution, and fully connected CRFs. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 40(4):834–848,

2018. 2

[8] Ziang Cheng, Shaodi You, Viorela Ila, and Hongdong

Li. Semantic single-image dehazing. arXiv preprint arX-

iv:1804.05624, 2018. 1

[9] Raanan Fattal. Single image dehazing. ACM Trans. on

Graphics (SIGGRAPH), 27(3):72:1–10, 2008. 1

[10] Raanan Fattal. Dehazing using color-lines. ACM Trans. on

Graphics (SIGGRAPH), 34(1):13:1–14, 2014. 1, 2

[11] Adrian Galdran, Aitor Alvarez-Gila, Alessandro Bria, Javier

Vazquez-Corral, and Marcelo Bertalmıo. On the duality be-

tween Retinex and image dehazing. In CVPR, pages 8212–

8221, 2018. 1

[12] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu

Feng. Weighted nuclear norm minimization with applica-

tion to image denoising. In CVPR, pages 2862–2869, 2014.

2

[13] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze

removal using dark channel prior. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 33(12):2341–2353,

2011. 1, 2, 6, 7

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 2, 3

[15] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In CVPR, pages 7132–7141, June 2018. 4

[16] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, and Pheng-Ann Heng.

Depth-attentional features for single-image rain removal. In

CVPR, pages 8022–8031, 2019. 2

[17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A E-

fros. Image-to-image translation with conditional adversarial

networks. In CVPR, pages 1125–1134, 2017. 2

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

ImageNet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems (NIPS), pages 1097–1105, 2012. 3

[19] Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and

Dan Feng. AOD-Net: An all-in-one network for dehazing

and beyond. In ICCV, pages 4770–4778, 2017. 2, 6, 7, 8

[20] Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng,

Wenjun Zeng, and Zhangyang Wang. Benchmarking single-

image dehazing and beyond. IEEE Transactions on Image

Processing, 28(1):492–505, 2019. 7, 8

[21] Guanbin Li, Yuan Xie, Liang Lin, and Yizhou Yu. Instance-

level salient object segmentation. In CVPR, pages 247–256,

2017. 5

[22] Kunming Li, Yu Li, Shaodi You, and Nick Barnes. Photo-

realistic simulation of road scene for data-driven methods in

bad weather. In ICCV Workshop, pages 491–500, 2017. 7

[23] Runde Li, Jinshan Pan, Zechao Li, and Jinhui Tang. Single

image dehazing via conditional generative adversarial net-

work. In CVPR, pages 8202–8211, June 2018. 1, 2, 8

[24] Wei Liu, Andrew Rabinovich, and Alexander C Berg.

ParseNet: Looking wider to see better. In ICLR, 2016. 6

[25] Gaofeng Meng, Ying Wang, Jiangyong Duan, Shiming X-

iang, and Chunhong Pan. Efficient image dehazing with

boundary constraint and contextual regularization. In ICCV,

pages 617–624, 2013. 7

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In Advances in neural information

processing systems (NIPS), pages 91–99, 2015. 2

[27] Wenqi Ren, Si Liu, Hua Zhang, Jinshan Pan, Xiaochun Cao,

and Ming-Hsuan Yang. Single image dehazing via multi-

scale convolutional neural networks. In ECCV, pages 154–

169, 2016. 2, 6, 7

[28] Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun

Cao, Wei Liu, and Ming-Hsuan Yang. Gated fusion net-

work for single image dehazing. In CVPR, pages 3253–3261,

2018. 1, 2, 6, 7, 8

[29] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. ICLR,

2015. 2

[30] Matan Sulami, Itamar Glatzer, Raanan Fattal, and Mike W-

erman. Automatic recovery of the atmospheric light in hazy

images. In IEEE International Conference on Computation-

al Photography (ICCP), pages 1–11. IEEE, 2014. 1

[31] Robby T Tan. Visibility in bad weather from a single image.

In CVPR, pages 1–8. IEEE, 2008. 1

[32] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE Transactions on Image Process-

ing, 13(4):600–612, 2004. 6

[33] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising

and inpainting with deep neural networks. In Advances in

neural information processing systems (NIPS), pages 341–

349, 2012. 2

[34] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, pages 5987–5995, 2017. 6

2461



[35] Dong Yang and Jian Sun. Proximal dehaze-net: A prior

learning-based deep network for single image dehazing. In

ECCV, pages 702–717, 2018. 1, 2, 6, 7, 8

[36] He Zhang and Vishal M Patel. Densely connected pyramid

dehazing network. In CVPR, pages 3194–3203, 2018. 1, 2,

6, 7, 8

[37] He Zhang and Vishal M Patel. Density-aware single image

de-raining using a multi-stream dense network. In CVPR,

pages 695–704, 2018. 2

[38] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: Residual learning

of deep CNN for image denoising. IEEE Transactions on

Image Processing, 26(7):3142–3155, 2017. 2

[39] Yanfu Zhang, Li Ding, and Gaurav Sharma. HAZERD: an

outdoor scene dataset and benchmark for single image de-

hazing. In ICIP, pages 3205–3209. IEEE, 2017. 6, 7

[40] Lei Zhu, Zijun Deng, Xiaowei Hu, Chi-Wing Fu, Xuemiao

Xu, Jing Qin, and Pheng-Ann Heng. Bidirectional feature

pyramid network with recurrent attention residual modules

for shadow detection. In ECCV, pages 121–136, 2018. 5

[41] Lei Zhu, Chi-Wing Fu, Michael S Brown, and Pheng-Ann

Heng. A non-local low-rank framework for ultrasound

speckle reduction. In CVPR, pages 5650–5658, 2017. 2,

6

[42] Lei Zhu, Chi-Wing Fu, Yueming Jin, Mingqiang Wei, Jing

Qin, and Pheng-Ann Heng. Non-local sparse and low-

rank regularization for structure-preserving image smooth-

ing. In Computer Graphics Forum, volume 35, pages 217–

226, 2016. 2

[43] Lei Zhu, Chi-Wing Fu, Dani Lischinski, and Pheng-Ann

Heng. Joint bi-layer optimization for single-image rain

streak removal. In ICCV, pages 2526–2534, 2017. 2

[44] Qingsong Zhu, Jiaming Mai, Ling Shao, et al. A fast single

image haze removal algorithm using color attenuation prior.

IEEE Transactions on Image Processing, 24(11):3522–3533,

2015. 1

2462


