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Abstract

Video object detection is more challenging than image
object detection because of the deteriorated frame qual-
ity. To enhance the feature representation, state-of-the-art
methods propagate temporal information into the deterio-
rated frame by aligning and aggregating entire feature maps
from multiple nearby frames. However, restricted by fea-
ture map’s low storage-efficiency and vulnerable content-
address allocation, long-term temporal information is not
fully stressed by these methods. In this work, we propose
the first object guided external memory network for online
video object detection. Storage-efficiency is handled by ob-
ject guided hard-attention to selectively store valuable fea-
tures, and long-term information is protected when stored in
an addressable external data matrix. A set of read/write op-
erations are designed to accurately propagate/allocate and
delete multi-level memory feature under object guidance.
We evaluate our method on the ImageNet VID dataset and
achieve state-of-the-art performance as well as good speed-
accuracy tradeoff. Furthermore, by visualizing the external
memory, we show the detailed object-level reasoning pro-
cess across frames.

1. Introduction

State-of-the-art image-based object detectors [13, 9, 27,
5, 23, 26, 22] provide effective detection frameworks for
general object detection. However, their performance de-
cays when they are directly applied to videos due to the low
quality of video frames, such as motion blur, out-of-focus
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(a) Densely aggregated meth- (b) Recurrently  aggregated

ods [46, 2, 35]. In order to pro-
vide sufficient temporal infor-
mation for detecting one frame,
multiple feature maps have to
be stored and aligned.

methods [44, 39, 43]. All past
information is compressed into
one temporal feature map. This
temporal feature map has to be
aligned at each time step.

@ Alignment & aggregation
[I. Temporal information (memory)
I Feature map (undetected frame)

™ Feature map (previous frame)

- | ‘ Feature map (current frame)
I Bounding box area
(c) Our method using an object guided external memory. Only features
within bounding boxes can be stored for storage-efficiency, and each
feature is deleted only when redundant to protect long-term information.

Figure 1: Comparison between our method and others. Af-
ter alignment & aggregation, the aggregated feature map is
used for detection on current frame. Best viewed in color.

and occlusion.

In order to improve the detection performance in a prin-
cipled way, state-of-the-art video object detectors [45, 44,
2, 35, 39, 43] exploit rich temporal information in videos
to enhance the feature representation on these deteriorated
frames. Feature maps of different frames are first aligned
due to frame content displacement and then aggregated with
the current frame. These temporal feature maps, referred
to as various names like spatial-temporal memory [39] or
memory buffer [45], are taken directly as memory to prop-
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agate temporal information. Here, we put these methods
under a unified view in terms of how memory is read from
and written to.

In densely aggregated methods (Figure 1(a)), memory
is composed of multiple nearby feature maps. Reading in-
volves aligning and aggregating all memory feature maps
into the current frame. The aggregated feature map is used
for detection on the current frame. Writing happens after
each detection, where nearby feature maps of the next frame
are written to replace the current memory. These meth-
ods aim at providing sufficient temporal information for the
current frame. In recurrently aggregated methods (Figure
1(b)), memory consists of only one feature map. Reading
and writing happen simultaneously. When the memory fea-
ture map is aligned and aggregated into the current frame,
the aggregated feature map is used for detection on the cur-
rent frame and becomes the new memory. These methods
are faster in computation and are capable of online causal
inference. In both densely aggregated and recurrently ag-
gregated methods, the memory is composed of complete-
sized feature maps within the detection network, whose size
and content address are dependent on the behaviour of the
detection network and input frame, thus we refer to this
memory as “internal”.

The internal memory has drawbacks in temporal prop-
agation. In dense methods, usually more than 20 nearby
feature maps [45, 2] are stored to provide sufficient informa-
tion. Because of the complete-sized feature maps in internal
memory, the redundant information irrelevant to the detect-
ing objects is also stored and propagated, leading to low
storage-efficiency. In recurrent methods, all past informa-
tion is compressed into one feature map, in which the spatial
location of information is solely dependent on the location
of the current frame content. As a result, long-term informa-
tion is easily interrupted when the current frame content is
deteriorated, drastically changing in appearance or out-of-
sight, since the current aggregated feature map will become
new internal memory.

To better exploit temporal information, in this work, we
propose an object guided external memory network for on-
line video object detection, as shown in Figure 1(c). By ex-
ternal memory [11], hereinafter, we mean the kind of mem-
ory whose size and content address are independent of the
detection network and the input frame. Our method targets
at the drawbacks of internal memory. First, object infor-
mation produced in detection offers a natural hard atten-
tion [25] to improve storage-efficiency. By selectively stor-
ing features within detected bounding boxes instead of en-
tire feature maps, more temporal information across longer
time steps can be stored into the same amount of storage.
Second, as motivated by Neural Turing Machine (NTM)
[10, 11] and Memory Network [37, 31], long term depen-
dency and reasoning power can be tackled by storing pre-

vious pieces of temporal information into an addressable
data matrix for essential period of time and deleting only
redundant ones. Important information from the past can
be accurately recalled without the risk of being accidentally
forgotten. The size of our external memory varies with the
number of features stored. Novel read and write operations
are designed to access this dynamic external memory, where
attention-based [34, 17, 10] read focuses on propagating
variable sized memory accurately to the current frame while
balancing present/memory feature signal strength in the ag-
gregated feature map, and write selectively stores new fea-
tures and deletes redundant memory under object guided
hard attention.

To our best knowledge, this is the first work on explor-
ing external memory in video object detection. Meanwhile,
we test with different levels of visual features in exter-
nal memory, including pixel level features from convolu-
tional feature maps with finer details and instance level fea-
tures produced by roi-pooling with higher semantic infor-
mation, and achieve complementary detection performance.
To show the reasoning power and importance of long-term
dependency, we further visualize our external memory and
read operation, in which the reasoning process for hard ex-
amples reveals how high quality objects in memory lead
to a correct prediction on the current deteriorated frame
across large temporal distance. In addition, based on the
property of external memory, we can propagate memory
to feature maps of different sizes, which inspires us to ex-
plore speed-accuracy tradeoff by reducing computation on
sparsely down-scaled frames.

To sum up, our contributions are listed as follows:

e We propose to use object guided hard attention to im-
prove storage-efficiency and propagate temporal infor-
mation through external memory to address long-term
dependency in video object detection.

e We design an object guided external memory network
and novel write and read operations to efficiently store
and accurately propagate multi-level features.

e Extensive experiment studies on the ImageNet VID
dataset show our network can achieve state-of-the-art
performance as well as good speed-accuracy tradeoff,
meanwhile we visualize the external memory to show
the reasoning details and importance of long-term de-
pendency.

2. Related Work

Single Image Object Detection. The state-of-the-art
image-based object detectors [13, 9, 27, 5, 23, 26, 22] are
built upon deep convolutional neural networks (CNNs). A
feature network, consisting of deep CNNs [14, 33, 30],
takes an image as input, and the output feature map is sent
to a detection-specific sub-network to produce detection re-
sults in the form of bounding box coordinates and object
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class. Roi-pooling [13, 27] performs max pooling within
proposal regions on the feature map and resizes it to a fixed
size. Region Proposal Network is introduced in Faster-
RCNN [27] to generate region proposals and can be end-
to-end trained. In R-FCN [5], position-sensitive score maps
and position-sensitive roi-pooling (psroi-pooling) are pro-
posed to address translation-variance for accurate and effi-
cient detection. We use R-FCN as our single frame baseline.

Video Object Detection. The task of video object de-
tection aims to detect every frame of a video. Box level
methods [19, 20, 12, 8, 3, 24] optimize the bounding box
linkage across multiple frames. T-CNN [19, 20] leverages
optical flow to propagate the bounding box across frames
and links the bounding box into tubelets with tracking algo-
rithms. Seq-NMS [12] considers all bounding boxes within
a video and re-scores them for optimal bounding box link-
age. DTTD [8] simultaneously achieves detections and
trackings. The frame level detections are linked by across-
frame tracklets to provide the final prediction. STL [3] de-
tects on sparse key frames, and propagates the predicted
bounding box to non-key frames through motion and scales.
DorT [24] combines detection and tracking for efficient de-
tection.

Feature level methods [45, 44, 2, 35, 39, 43] aggregate
feature maps from nearby frames to improve feature repre-
sentation and recognition ability in a principled way. Fea-
ture maps to be aggregated are usually aligned before aggre-
gation due to frame content displacement. Some methods
[46, 45, 36] use FlowNet [7, 18] to provide flow information
for feature map alignment, and the aligned feature maps are
densely [46, 36] or recurrently aggregated [44]. STSN [2]
applies deformable convolution [6] across multiple nearby
frames for temporal inference. LWDN [43] uses locally
weighted deformable units to align different levels of fea-
ture maps from nearby frames. STMN [39] uses Match-
Trans module to align feature maps and recurrently aggre-
gates temporal information from nearby frames. However,
temporal information is still stored and propagated through
entire feature maps. Our method also belongs to feature
level. All the feature level methods above are our baselines.

External Memory. External memory for long term de-
pendency and inference in neural networks has been studied
on various tasks, such as learning simple algorithms [10],
question answering [37, 31, 11], language modeling [31],
dialog system [38] and meta learning [29]. Recurrent neu-
ral networks are known to suffer from the vanishing gradi-
ent problem. Some variations like Long Short Term Mem-
ory [16] and Gated Recurrent Units [4] address this problem
but their memory (hidden states) size is usually small with
limited capacity to remember the past and is not fully ca-
pable of carrying complex tasks that demand a search from
the past during inference. To tackle this, in recent work on
different tasks [10, 37, 31, 11, 31, 38, 29], external memory

is used to enhance the sequential inference ability of neural
networks. The external memory is usually an addressable
external data matrix. It is maintained by an individual net-
work, usually with attentional read and write process. In-
formation can be retrieved from the external memory by an
attention-based global search and aggregation. New infor-
mation is written to the external memory on specific loca-
tion, thus memory information can be explicitly reserved
for a long period. Besides the attention or content-based
addressing mechanism, in NTM [10], a location-based ad-
dressing is proposed for algorithmic tasks like sort and copy.

Attention for Memory Addressing. Attention is used
as a “soft” addressing mechanism on external memory
[10, 11, 37, 31]. In order to retrieve information from the
memory, an attention weight is computed on the similarity
between all memory locations and the input features that
query the memory, then all memory is aggregated based
on these attention weights. Besides external memory, such
addressing mechanism has also been used in self-attention
[1, 34, 17, 42], non-local neural networks [36] and convolu-
tional feature extraction [40] for aligning features, and mod-
eling long-term dependency of different locations within a
sentence or an image. One advantage of this attention mech-
anism is that the modeling of dependency is irrelevant of
feature locations and their distance in a sentence or an im-
age. Based on this property, we are able to accurately prop-
agate scattered memory through read without consideration
of spatial location.

Hard attention is also used in memory addressing [41]
and feature selection [40, 25]. Different from the soft at-
tention, hard attention is non-differentiable and is trained
with reinforcement learning [32] or predefined based on
human knowledge. It improves computation efficiency be-
cause only highly relevant information is selected and pro-
cessed. We leverage the box and class information produced
by detection to define hard attention for feature selection
and comparison. Soft and hard attentions are respectively
used in our read and write operations.

3. Detection with Object Guided External
Memory

3.1. Framework Overview and Detection Process

Our proposed framework is built upon the single im-
age detector, by incorporating a novel object guided exter-
nal memory network N,,.,, to accurately propagate/store
temporal information into/from the single image detector
at each frame’s detection. N,,.,, consists of two exter-
nal memory matrices Mp;, and M;,;, where pixel and in-
stance level features are stored respectively, and a set of
read and write operations to access them. Detailed struc-
ture of N,,em 1S described in the next section. For a fair
comparison with the previous work [45, 44, 35, 2, 43], we
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Figure 2: Our proposed framework using object guided external memory network. Best viewed in color.

use R-FCN [5] as the backbone detector.

The detection process of our proposed framework is
straight-forward, as shown in Figure 2. Given a video, our
framework detects each frame in an online order. Suppose
that frame ¢ is the current detecting frame of a video. First,
the convolutional feature map F' is produced by the fea-
ture network Ny.q¢. Through read operation, memory in
M,;, is propagated to I’ and they are aggregated as en-
hanced feature map F. F is used to produce both the
position-sensitive map S and the region proposals. Sec-
ond, S is position-sensitive roi-pooled (psroi-pooled) to
produce instance features R = {R;,---,R,} with each
R;,i € {1,--- ,n} being a psroi-pooled instance feature.
Through read operation again, memory in M;,,s; is propa-
gated to I and they are aggregated as the enhanced instance
features R = {R;,---,R,}. Bach R;,i € {1,--- ,n}
is pooled to produce one detection result. Thlrd, Non-
Maximum Suppression (NMS) is applied to remove dupli-
cates. After detection of frame ¢, guided by information of
detected objects, N,,em can select valuable features from
F and R, and store them into the external memory through
write operation. Meanwhile, redundant features in the ex-
ternal memory are deleted. We define feature vectors from
F as pixel level features, and R as instance level features.
These are the two levels of features stored into the external
memory matrices Mp;, and M;,,; respectively.

3.2. Object Guided External Memory Network

The proposed object guided external memory network
Nmem contains two external memory matrices M,;, and
M;,st, and novel read, write operations, which are de-

scribed later in this section. Note that the external memory
only stores features from the same video.

External memory matrices store pixel and instance fea-
tures, with each row of M, being a feature vector from
some locations in a convolutional feature map F, and
each row of M;,s; being one psroi-pooled instance feature
Ri,i € {1---,n} that is reshaped into a vector. The size
of the external data matrix grows when new features are
written into the memory, and decreases when features are
deleted from the memory. Unless a video ends or write
operation explicitly deletes a feature, features in external
memory matrices are permanently stored.

Read operation propagates the memory matrices My,
and M, into feature map F' and instance features R re-
spectively. It involves three steps, similar to the attention
mechanism used in [34, 17, 42], compute attention weight
(Eq. (1)), align memory (Eq. (2)) and aggregate memory
with input feature map (Eq. (3)), as shown in the green
boxes in Figure 2. The challenge is that the external mem-
ory size varies, leading to big difference of signal strength
in the aligned memory. To address this, we introduce scale
parameters 6 and /3 to ensure that the features in aligned
memory are in proper magnitude and signal strength of
present/memory features in the output aggregated feature
maps is balanced.

Let m € R!*¢ be the memory matrix, either M, or
M;,,s:, with the 7" row denoted as m;. Let z € R™*¢ be
the corresponding input feature matrix reshaped from F’ or
R, with the jth row denoted as x;. First, we compute the
attention weights w = {w; ; } between m and x:
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exp(S(m;, z;))
ijleacp(S(miy x;))

Wi 5 = s (D
where S € R evaluates the similarity between m; and ;.

Second, with the attention weights, external memory ma-
trix m is aligned into m € R™*¢ with the 5" row denoted
as ™m; being:

my = 0,5 w; my, )

where 8 = {6;} € R is a set of scale parameters to ensure
m is in a similar magnitude to x.

Third, the aligned memory mm is added into the input
features @, producing the output of read, y € R™*¢ with
the j*" row denoted as y; being:

y; = Bz + (1= Bj)my, )
where 8 = {f3;} € R™ is another set of scale parameters to

balance  and 1. Finally, y is reshaped into the same shape
as input feature map F’, becoming the enhanced feature map

F, or split into n instance features {Ri, -, Ry}
The similarity measure S is given by:
AWgm;)" (Woz;)

“4)

S(my,zj) = )
U Wk [Wowsl|
where Wi, Wq € R¢X¢ are learnable embedding weights,
and they embed the original features into a sub-space for
similarity comparison. A € R is a learnable temperature pa-
rameter to control the concentration of attention, as in NTM
[10]. The scale parameters 6 and /3 are given by:
1
0; = ,

maz(Xt_ w; ;1
w5 s

min(S_ w; j, 1)+ 1

B =

Note that Zézlwm # 1, given how w; ; is computed in Eq.
(1). This is a key difference from the other work [10, 34,
17], in which the denominator in Eq. (1) integrals along
1 axis. We do this to ensure that newly appeared features
or background features are less affected by memory, and
its effect can be observed in the attention visualization in
Figure 3(a). 6 attenuates the signal strength of m when
too much memory information is concentrated on a same
location of the input feature map. S ensures that m will not
dominate @ in the output y.

In practice we use multi-head attention [34, 17]. N sets
of embedding weights {Wij, ..., W'}, {W, ..., Wi’} are
applied, thus N sets of attention weights {w?,...w™} are
computed by Eq. (1). Meanwhile, m is embedded to N
sub-spaces by {Wi, ..., W{¥}, where W € R¥*¢ k =
1,---, N and Eq. (2) is changed to

m¥ = 0,5 wf;(Wimy). (6)

All {fn;, - Th;\’ } are concatenated into one vector 1m; =

1

o
d . — 13N

and 3, we have w; j; = X_ w

[ ,ﬁz;.\r ] to compute the output y. For computing 6

k.

1,7 N

Write operation selects and stores pixel and instance
level features into the external memory, meanwhile it re-
moves redundant features from the external memory, as
shown in the blue box in Figure 2. The methods are dif-
ferent for the two levels of features. For pixel level features,
write is guided by detected objects. It first selects high qual-
ity feature vectors belonging to detected objects in current
enhanced feature map ﬁ‘, and then it stores the selected fea-
tures at new rows in external memory matrix Mp;,. Re-
dundant features in M,,;, are deleted after new features are
stored. We define the features belonging to an object b as all
vectors {Z, } whose locations in feature map F' are within
the bounding box of object b:

Op = (&g, -, T,y ) (7)

where ny, is the total number of vectors belonging to Oy,. We
also define the quality of Oy, as the classification score s of
object b.

To select Oy, into the external memory, first, the feature
quality of Oy, needs to be larger than a threshold 7. Second,
Oy should either be dissimilar to any O, that is already in
the external memory and shares the same class with b or
be similar to some O, in the external memory but O} has
higher quality. Once O, is stored in the external memory,
any O, that is similar to Oy, is considered redundant and is
removed out of Mp;;.

Similarity between two objects is calculated with off-
the-shelf w = {w;;} calculated by Eq. (1). Leti €
{k1, ..., kn, } denotes the indices of the feature vectors that
belong to Oy, and j € {k1,...,kyn, } denotes those of O,
then the similarity between O, and O, is computed as:

1

D(0y,0,) = i (8)

T AN

D € R measures how much the attention of memory ob-
ject O), is concentrated on the area of Oy in feature map
F'. Since attention calculated by Eq. (1) is based on feature
similarity, focused attention between two objects suggests
that they are similar. For objects b and p of the same class,
they are similar if D(Oy, O,,) > max (=2, a) with n being
the total number of locations in feature map F' and « being
a constant.

In practice, in case that no object is detected, we also
include object-irrelevant features into the external memory.
We select these features by hard attention using L?-norms
of feature vectors [25]. For a feature map with shape n xc, a
feature vector x; is selected if exp(f;) /S exp(f;) > L,
where f; = % Unlike features belonging to detected
objects, when storing these object-irrelevant features into
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the external memory, they replace all older features that are
also picked based on L2-norms.

For instance level features, psroi-pooling is a natural
hard attention on R = {R;,---, R, }. Since they are al-
ready selected when Non-Maximum Suppression (NMS) is
adopted on proposals before psroi-pooling, write operation
chooses R of a frame, and stores them into the memory data
matrix M, to replace all older instance memory. Each
Ri,i = 1,---,n is reshaped into a vector, and all the re-
shaped {RL} are packed into a matrix to be stored in M, ;.

3.3. Efficient Detection with External Memory

As observed in previous work [46], some adjacent
frames have similar content. Meanwhile, our proposed
memory network enables us to propagate memory to fea-
ture maps of different sizes. For time efficiency, we set a
key frame schedule, and down-sample all non-key frames
to reduce their computation time in Nyqq;, Which is the
bottle neck in detection inference time. We update exter-
nal memory only on full size key frames, and propagate
the high quality features to down-sampled non-key frames
to compensate for deterioration caused by down-sampling.
The attention-based read operation is irrelevant to spatial
location, as well as image size, thus features from differ-
ent size inputs can be seamlessly aggregated. As a result,
apart from high performance with our full model, we also
seek for speed-accuracy tradeoff with this method in online
video object detection.

4. Experiments
4.1. Experiment Set-up and Implementation Details

Dataset. We evaluate our method on the ImageNet [28]
VID dataset. The ImageNet VID is introduced in 2015 as a
large scale benchmark for video object detection. There are
3862 videos in the training set and 555 videos in the valida-
tion set. It contains 30 object categories. These categories
are a subset of the categories of ImageNet DET set.

Training and testing. As a common practice in [45, 46,
44, 35, 2], we train on both the ImageNet VID and the
DET datasets. For the DET dataset, we select the same
30 categories from the DET dataset as in the VID dataset.
We train R-FCN for 200K iteration, with a learning rate
0.0005 for the first 120K epochs and 0.00005 for the last
80K epochs. Each batch contains 1 randomly sampled im-
age. The images are resized to have a shorter side of 600
pixels. The feature network is initialized with weights pre-
trained on the ImageNet dataset. Then we add embedding
weights from read to train them end-to-end. The read oper-
ation is added between feature maps and position-sensitive
roi-pooled position-sensitive score maps from consecutive
training samples respectively. We first only train embedding
weights for 60K iterations with a learning rate 0.0001 and

then train the whole network for 10K iterations with a learn-
ing rate 0.00005. Each batch contains 4 images randomly
sampled from a same video. A maximum frame interval is
set to 20. Wg and Wi are initialized with a normal distri-
bution N(0, 0.01). Temperature parameter \ is initailized as
1. For Wy, it is initialized as an identity matrix to pick up
long term dependency as suggested in IRNN [21].

Following [45, 44, 35, 2, 43], we evaluate our perfor-
mance on the validation set and use mean average precision
(mAP) as the evaluation metric. All our experiments are
performed on two Nvidia GTX 1080 Ti.

Implementation Details. In Multi-head matching [34,
17]in Eq. (6), we set N = 8 head embeddings, and for each
Wk, Wy € R*¢, ¢ = 32. We set 7 = 0.9 for selecting
high quality object feature and o = 0.47 for object similar-
ity threshold based on empirical assumption. Specifically,
we assume that the attention distribution from an object in
memory to a detecting frame is a two-dimensional Gaus-
sian distribution, centering at a similar object’s box center
and let standard deviation o equal half of the box’s diag-
onal length. Based on the empirical one sigma rule, we
consider this two objects are similar if most of the atten-
tion is distributed within one ¢ range. For a fair comparison
with previous work [45, 44, 43, 8, 35, 2], ResNet-101 [15]
and R-FCN [5] are used as the feature network and back-
bone detector in the same way. All layers after “conv5” are
dropped. Feature map stride of the final output is reduced
from 32 to 16 by setting the stride of “conv5” from 2 to
1. A dilated 3x3 convolution is attached after “conv5” to re-
duce the feature dimension from 2048 to 1024. The reduced
1024-d feature map from feature network is used as pixel
level features, and it is sliced to two 512-d feature maps for
the RPN and the R-FCN sub-network respectively. In the
RPN sub-network, 9 anchors are predicted on each position
and it outputs 300 proposals per image for the detection.
7 x 7 position-sensitive roi-pooling is utilized in the R-FCN
sub-network. We limit the number of objects belonging to
the same class in pixel level memory to 10 for efficiency.

4.2. Visualization of external memory

In Figure 3, we illustrate some of our detection results
on the ImageNet VID validation set and inference pro-
cess of our external memory. These frames are chosen to
show typical cases in video object detection, such as motion
blur, out-of-focus, occlusion,and rare object appearance like
weird pose and small size, where general image detectors,
e.g., R-FCN [5], fail.

A reasoning process for a heavily occluded hamster is
shown in Figure 3(a). We can clearly see what memories
are stored, and how these memories lead to a correct detec-
tion on a deteriorated image. At time step 247, there are
features of detected hamster (#1 and #2) stored in the ex-
ternal memory M, from frame 135 and 211 respectively.
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Figure 3: Visualization of our method on ImageNet [28] VID dataset. Best viewed in color.

Given the feature map of frame 247, the attention of M,
(red lines) is concentrated on the area of a potential object
(red feature vector), although no particular information like
bounding box is given. This exemplifies that our design of
computation in Eq. (1) can amplify attention weights on
similar features and attenuate the attention on background.
Lead by attention, memories (#1 and #2) are propagated to
the potential object area, convincing the detector to recog-
nize this object as a hamster. We also report the GPU usage
and memory size per frame in this video (#131000). The
memory size (green line) varies. In most time, it is less than
the size of a feature map (dashed green line). We can ob-
serve that write operation consistently erases redundant fea-
tures to clear up memory. More hard examples are shown
in Figure 3(b). The importance of long term information is
also addressed in these examples, because in some exam-
ples the memories are extracted more than 100 time steps
before the current frame.

4.3. Ablation Study

Performance of different memory. Table 1 compares the
performance of methods incorporating different level mem-
ories, My, and M;,, on different object motion speeds.
The category of object motion speeds follows FGFA [45].
Given the intersection-over-union (IOU) of the same objects
in nearby frames (£10 frames), an object is considered in
fast motion when the IOU is larger than 0.9, in slow mo-
tion when the IOU is smaller than 0.7, and in medium mo-
tion when between 0.7 and 0.9. Four methods with/without
pixellinstance memory are compared.

Method (a) is the single frame baseline detector R-FCN.

Methods (a) (b) (c) (d)
With M, v v
With M, s v v

overall 73.8 78.8T5.0 74'8T1-0 79‘3T5'5

mAP slow 82.9 85.81@49 83'1T0~2 86.2¢3,3

(%) [ medium | 724 | 781157 | 734110 | 78.T16.3

fast 52.4 60~0T7.6 53‘3T0-9 61°1T8.7
Runtime(ms) | 72 | 99 | 77 | 112

Table 1: Performance with pixel and instance memory.

Method (b) incorporates only M,,;,.. The performance gain
shows that the object guided write operation design is effec-
tive. The features selected from detected bounding boxes
provide rich temporal information to boost the detection
performance. Besides the overall mAP, large improve-
ments can be observed in fast moving objects. Method
(c) incorporates only M;,s;. Memory is updated every 10
frames. It suggests that roi-pooled sensitive-score maps
{R;, -+, R, } are also able to propagate temporal informa-
tion and improve the performance of video object detection.
Method (d) incorporates both M, and M;,, ;. With differ-
ent memories, we have our highest performance. Compared
to method (a), instance features bring more performance
gain in mAP (slow) and map (fast) for method (b). This
shows that pixel and instance features are complementary
to each other in temporal propagation.

In all, our proposed method is capable of managing valu-
able temporal information and propagating them accurately
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Non-key size 1 % % %

With memory | X 4 v v
mAP (%) [ 73.8 [ 76.842.0 | 744106 | 71.5)2.3

Runtime (ms) \ 72 \ 67 \ 59 \ 52

Methods [ FGFA[45] [ MAN(35] | Ours
overall 76.3 78.1 79.3

mAP [ slow 835 86.9 86.2
(%) | medium 75.8 76.8 78.7
fast 57.6 56.7 61.1

Table 2: Speed-accuracy tradeoff using down-sample non-

key frames. Both M,,;,, and M, are used.

. Memory size mAP

Method With DCN [6] (4#feature map) | (%)
R-FCN [5] 0 73.8
FGFA [45] 20 76.3
LWDN [43] X 1 76.3
D&T [8] 1 75.8
MAN [35] 12 78.1
THP [44] 1 78.6
STSN [2] 26 78.9
Ours X ~ 0.9 79.3
Olll‘sdef v ~ 0.8 80.0

Table 3: Comparison with the state-of-the-art. All methods
use ResNet-101 [15] as the feature network, and methods
denoted with DCN use deformable units [6] to enhance the
ResNet-101. The memory size denotes the number of fea-
ture maps to be aggregated for one inference. For our meth-
ods, it is calculated as the average number of feature vectors
in M,;, and M;, divided by the number of locations in a
feature map.

to other frames, while pixel and instance level features are
complementary for the performance. Besides the large im-
provement in mAP, our framework has similar inference
time with the single frame baseline.

Efficient detection and speed-accuracy tradeoff. Table
2 reports the speed-accuracy tradeoff of our framework. A
key frame interval is set to 5 for the experiments shown in
Table 2, where full key frames are used to update mem-
ory and non-key frames are down-sampled to reduce infer-
ence time. Both pixel and instance level features are incor-
porated. The results shown in Table 2 suggest that object
guided external memory network is well adapted to differ-
ent scales of down-sampled inputs. High quality features
stored in the external memory can propagate useful infor-
mation to down-sampled frames and achieve good speed-
accuracy tradeoff. When non-key frames are down-sampled
to 1/2 and 1/3 of the original size, the mAP is better than
the baseline R-FCN with full size inputs (3.0% 1, 0.6% 1)
and with less inference time (5 ms] and 13 ms]). Specifi-
cally, our method on half sized inputs has better mAP than
FGFA [45] on full size input images (0.5% 1) with signifi-
cantly less inference time (67 ms and 246 ms on our testing
machine).

Table 4: Performance comparison on different motion
speeds with flow-based methods.

4.4. Comparison with state-of-the-art results
Overall performance. We compare the overall perfor-
mance with the state-of-the-art feature level methods. We
report results on the ImageNet VID validation set, as in
[45, 44, 8, 35, 2, 39, 43]. Tabel 3 presents the results. To
show the generalization ability of our method and for fair
comparison, following [44, 2], we also train our framework
by adding deformable units (DCN) [6] in R-FCN [5], de-
noted as Ourger. STMN [39] only reports the result after
post-process (80.5%). For fair comparison, we also apply
Seq-NMS [12] to our method without and with DCN. The
results are 80.8% and 81.6% in mAP, respectively. Among
all methods in Table 3, our proposed framework has the best
performance even without adding DCN as a stronger feature
network, and without using extra information from future
frames. Meanwhile, on average, our framework has less
memory size compared with the other methods that directly
store multiple feature maps. See details in Table 3.
Comparison on different motion speeds. We also com-
pare on different motion speeds with the two flow-based
methods, FGFA [45] and MAN [35], as shown in Table 4.
Clear improvements of mAP are observed in fast motion
(3.5% 1, 4.4% 1) and medium motion (2.9% %, 1.9% 7).
The improvements show the advantage of read operation
in feature alignment over large object displacement. Flow
estimation given by FlowNet [7] may fail when feature
displacement between two frame is large, leading to error
alignment of nearby frames. While by our attentional read
operation, spatial position of features is no barrier for the
alignment, leading to accurate feature propagation across
large frame content displacement.

5. Conclusions

We propose a novel object guided external memory net-
work to target the drawbacks of methods that use inter-
nal memory in video object detection. Storage-efficiency
is handled by object guided hard attention and long-term
dependency is protected in addressable external memory.
Novel read/write operations guided by soft/hard attention
are designed to access multi-level external memory. More-
over, we visualize the external memory to show the detailed
temporal inference process. We evaluate our method on the
ImageNet VID dataset and achieve state-of-the-art perfor-
mance and good speed-accuracy tradeoff.
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