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Abstract

Video object detection is more challenging than image

object detection because of the deteriorated frame qual-

ity. To enhance the feature representation, state-of-the-art

methods propagate temporal information into the deterio-

rated frame by aligning and aggregating entire feature maps

from multiple nearby frames. However, restricted by fea-

ture map’s low storage-efficiency and vulnerable content-

address allocation, long-term temporal information is not

fully stressed by these methods. In this work, we propose

the first object guided external memory network for online

video object detection. Storage-efficiency is handled by ob-

ject guided hard-attention to selectively store valuable fea-

tures, and long-term information is protected when stored in

an addressable external data matrix. A set of read/write op-

erations are designed to accurately propagate/allocate and

delete multi-level memory feature under object guidance.

We evaluate our method on the ImageNet VID dataset and

achieve state-of-the-art performance as well as good speed-

accuracy tradeoff. Furthermore, by visualizing the external

memory, we show the detailed object-level reasoning pro-

cess across frames.

1. Introduction

State-of-the-art image-based object detectors [13, 9, 27,

5, 23, 26, 22] provide effective detection frameworks for

general object detection. However, their performance de-

cays when they are directly applied to videos due to the low

quality of video frames, such as motion blur, out-of-focus
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61525204, 61732010, 61872234) and Shanghai Key Laboratory of Scal-

able Computing and Systems.

(a) Densely aggregated meth-

ods [46, 2, 35]. In order to pro-

vide sufficient temporal infor-

mation for detecting one frame,

multiple feature maps have to

be stored and aligned.

(b) Recurrently aggregated

methods [44, 39, 43]. All past

information is compressed into

one temporal feature map. This

temporal feature map has to be

aligned at each time step.

(c) Our method using an object guided external memory. Only features

within bounding boxes can be stored for storage-efficiency, and each

feature is deleted only when redundant to protect long-term information.

Figure 1: Comparison between our method and others. Af-

ter alignment & aggregation, the aggregated feature map is

used for detection on current frame. Best viewed in color.

and occlusion.

In order to improve the detection performance in a prin-

cipled way, state-of-the-art video object detectors [45, 44,

2, 35, 39, 43] exploit rich temporal information in videos

to enhance the feature representation on these deteriorated

frames. Feature maps of different frames are first aligned

due to frame content displacement and then aggregated with

the current frame. These temporal feature maps, referred

to as various names like spatial-temporal memory [39] or

memory buffer [45], are taken directly as memory to prop-
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agate temporal information. Here, we put these methods

under a unified view in terms of how memory is read from

and written to.

In densely aggregated methods (Figure 1(a)), memory

is composed of multiple nearby feature maps. Reading in-

volves aligning and aggregating all memory feature maps

into the current frame. The aggregated feature map is used

for detection on the current frame. Writing happens after

each detection, where nearby feature maps of the next frame

are written to replace the current memory. These meth-

ods aim at providing sufficient temporal information for the

current frame. In recurrently aggregated methods (Figure

1(b)), memory consists of only one feature map. Reading

and writing happen simultaneously. When the memory fea-

ture map is aligned and aggregated into the current frame,

the aggregated feature map is used for detection on the cur-

rent frame and becomes the new memory. These methods

are faster in computation and are capable of online causal

inference. In both densely aggregated and recurrently ag-

gregated methods, the memory is composed of complete-

sized feature maps within the detection network, whose size

and content address are dependent on the behaviour of the

detection network and input frame, thus we refer to this

memory as “internal”.

The internal memory has drawbacks in temporal prop-

agation. In dense methods, usually more than 20 nearby

feature maps [45, 2] are stored to provide sufficient informa-

tion. Because of the complete-sized feature maps in internal

memory, the redundant information irrelevant to the detect-

ing objects is also stored and propagated, leading to low

storage-efficiency. In recurrent methods, all past informa-

tion is compressed into one feature map, in which the spatial

location of information is solely dependent on the location

of the current frame content. As a result, long-term informa-

tion is easily interrupted when the current frame content is

deteriorated, drastically changing in appearance or out-of-

sight, since the current aggregated feature map will become

new internal memory.

To better exploit temporal information, in this work, we

propose an object guided external memory network for on-

line video object detection, as shown in Figure 1(c). By ex-

ternal memory [11], hereinafter, we mean the kind of mem-

ory whose size and content address are independent of the

detection network and the input frame. Our method targets

at the drawbacks of internal memory. First, object infor-

mation produced in detection offers a natural hard atten-

tion [25] to improve storage-efficiency. By selectively stor-

ing features within detected bounding boxes instead of en-

tire feature maps, more temporal information across longer

time steps can be stored into the same amount of storage.

Second, as motivated by Neural Turing Machine (NTM)

[10, 11] and Memory Network [37, 31], long term depen-

dency and reasoning power can be tackled by storing pre-

vious pieces of temporal information into an addressable

data matrix for essential period of time and deleting only

redundant ones. Important information from the past can

be accurately recalled without the risk of being accidentally

forgotten. The size of our external memory varies with the

number of features stored. Novel read and write operations

are designed to access this dynamic external memory, where

attention-based [34, 17, 10] read focuses on propagating

variable sized memory accurately to the current frame while

balancing present/memory feature signal strength in the ag-

gregated feature map, and write selectively stores new fea-

tures and deletes redundant memory under object guided

hard attention.

To our best knowledge, this is the first work on explor-

ing external memory in video object detection. Meanwhile,

we test with different levels of visual features in exter-

nal memory, including pixel level features from convolu-

tional feature maps with finer details and instance level fea-

tures produced by roi-pooling with higher semantic infor-

mation, and achieve complementary detection performance.

To show the reasoning power and importance of long-term

dependency, we further visualize our external memory and

read operation, in which the reasoning process for hard ex-

amples reveals how high quality objects in memory lead

to a correct prediction on the current deteriorated frame

across large temporal distance. In addition, based on the

property of external memory, we can propagate memory

to feature maps of different sizes, which inspires us to ex-

plore speed-accuracy tradeoff by reducing computation on

sparsely down-scaled frames.

To sum up, our contributions are listed as follows:

• We propose to use object guided hard attention to im-

prove storage-efficiency and propagate temporal infor-

mation through external memory to address long-term

dependency in video object detection.

• We design an object guided external memory network

and novel write and read operations to efficiently store

and accurately propagate multi-level features.

• Extensive experiment studies on the ImageNet VID

dataset show our network can achieve state-of-the-art

performance as well as good speed-accuracy tradeoff,

meanwhile we visualize the external memory to show

the reasoning details and importance of long-term de-

pendency.

2. Related Work

Single Image Object Detection. The state-of-the-art

image-based object detectors [13, 9, 27, 5, 23, 26, 22] are

built upon deep convolutional neural networks (CNNs). A

feature network, consisting of deep CNNs [14, 33, 30],

takes an image as input, and the output feature map is sent

to a detection-specific sub-network to produce detection re-

sults in the form of bounding box coordinates and object
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class. Roi-pooling [13, 27] performs max pooling within

proposal regions on the feature map and resizes it to a fixed

size. Region Proposal Network is introduced in Faster-

RCNN [27] to generate region proposals and can be end-

to-end trained. In R-FCN [5], position-sensitive score maps

and position-sensitive roi-pooling (psroi-pooling) are pro-

posed to address translation-variance for accurate and effi-

cient detection. We use R-FCN as our single frame baseline.

Video Object Detection. The task of video object de-

tection aims to detect every frame of a video. Box level

methods [19, 20, 12, 8, 3, 24] optimize the bounding box

linkage across multiple frames. T-CNN [19, 20] leverages

optical flow to propagate the bounding box across frames

and links the bounding box into tubelets with tracking algo-

rithms. Seq-NMS [12] considers all bounding boxes within

a video and re-scores them for optimal bounding box link-

age. DTTD [8] simultaneously achieves detections and

trackings. The frame level detections are linked by across-

frame tracklets to provide the final prediction. STL [3] de-

tects on sparse key frames, and propagates the predicted

bounding box to non-key frames through motion and scales.

DorT [24] combines detection and tracking for efficient de-

tection.

Feature level methods [45, 44, 2, 35, 39, 43] aggregate

feature maps from nearby frames to improve feature repre-

sentation and recognition ability in a principled way. Fea-

ture maps to be aggregated are usually aligned before aggre-

gation due to frame content displacement. Some methods

[46, 45, 36] use FlowNet [7, 18] to provide flow information

for feature map alignment, and the aligned feature maps are

densely [46, 36] or recurrently aggregated [44]. STSN [2]

applies deformable convolution [6] across multiple nearby

frames for temporal inference. LWDN [43] uses locally

weighted deformable units to align different levels of fea-

ture maps from nearby frames. STMN [39] uses Match-

Trans module to align feature maps and recurrently aggre-

gates temporal information from nearby frames. However,

temporal information is still stored and propagated through

entire feature maps. Our method also belongs to feature

level. All the feature level methods above are our baselines.

External Memory. External memory for long term de-

pendency and inference in neural networks has been studied

on various tasks, such as learning simple algorithms [10],

question answering [37, 31, 11], language modeling [31],

dialog system [38] and meta learning [29]. Recurrent neu-

ral networks are known to suffer from the vanishing gradi-

ent problem. Some variations like Long Short Term Mem-

ory [16] and Gated Recurrent Units [4] address this problem

but their memory (hidden states) size is usually small with

limited capacity to remember the past and is not fully ca-

pable of carrying complex tasks that demand a search from

the past during inference. To tackle this, in recent work on

different tasks [10, 37, 31, 11, 31, 38, 29], external memory

is used to enhance the sequential inference ability of neural

networks. The external memory is usually an addressable

external data matrix. It is maintained by an individual net-

work, usually with attentional read and write process. In-

formation can be retrieved from the external memory by an

attention-based global search and aggregation. New infor-

mation is written to the external memory on specific loca-

tion, thus memory information can be explicitly reserved

for a long period. Besides the attention or content-based

addressing mechanism, in NTM [10], a location-based ad-

dressing is proposed for algorithmic tasks like sort and copy.

Attention for Memory Addressing. Attention is used

as a “soft” addressing mechanism on external memory

[10, 11, 37, 31]. In order to retrieve information from the

memory, an attention weight is computed on the similarity

between all memory locations and the input features that

query the memory, then all memory is aggregated based

on these attention weights. Besides external memory, such

addressing mechanism has also been used in self-attention

[1, 34, 17, 42], non-local neural networks [36] and convolu-

tional feature extraction [40] for aligning features, and mod-

eling long-term dependency of different locations within a

sentence or an image. One advantage of this attention mech-

anism is that the modeling of dependency is irrelevant of

feature locations and their distance in a sentence or an im-

age. Based on this property, we are able to accurately prop-

agate scattered memory through read without consideration

of spatial location.

Hard attention is also used in memory addressing [41]

and feature selection [40, 25]. Different from the soft at-

tention, hard attention is non-differentiable and is trained

with reinforcement learning [32] or predefined based on

human knowledge. It improves computation efficiency be-

cause only highly relevant information is selected and pro-

cessed. We leverage the box and class information produced

by detection to define hard attention for feature selection

and comparison. Soft and hard attentions are respectively

used in our read and write operations.

3. Detection with Object Guided External

Memory

3.1. Framework Overview and Detection Process

Our proposed framework is built upon the single im-

age detector, by incorporating a novel object guided exter-

nal memory network Nmem to accurately propagate/store

temporal information into/from the single image detector

at each frame’s detection. Nmem consists of two exter-

nal memory matrices Mpix and Minst, where pixel and in-

stance level features are stored respectively, and a set of

read and write operations to access them. Detailed struc-

ture of Nmem is described in the next section. For a fair

comparison with the previous work [45, 44, 35, 2, 43], we
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Figure 2: Our proposed framework using object guided external memory network. Best viewed in color.

use R-FCN [5] as the backbone detector.

The detection process of our proposed framework is

straight-forward, as shown in Figure 2. Given a video, our

framework detects each frame in an online order. Suppose

that frame t is the current detecting frame of a video. First,

the convolutional feature map F is produced by the fea-

ture network Nfeat. Through read operation, memory in

Mpix is propagated to F and they are aggregated as en-

hanced feature map F̃ . F̃ is used to produce both the

position-sensitive map S and the region proposals. Sec-

ond, S is position-sensitive roi-pooled (psroi-pooled) to

produce instance features R = {Ri, · · · , Rn} with each

Ri, i ∈ {1, · · · , n} being a psroi-pooled instance feature.

Through read operation again, memory in Minst is propa-

gated to R and they are aggregated as the enhanced instance

features R̃ = {R̃i, · · · , R̃n}. Each R̃i, i ∈ {1, · · · , n}
is pooled to produce one detection result. Third, Non-

Maximum Suppression (NMS) is applied to remove dupli-

cates. After detection of frame t, guided by information of

detected objects, Nmem can select valuable features from

F̃ and R̃, and store them into the external memory through

write operation. Meanwhile, redundant features in the ex-

ternal memory are deleted. We define feature vectors from

F̃ as pixel level features, and R̃ as instance level features.

These are the two levels of features stored into the external

memory matrices Mpix and Minst respectively.

3.2. Object Guided External Memory Network

The proposed object guided external memory network

Nmem contains two external memory matrices Mpix and

Minst, and novel read, write operations, which are de-

scribed later in this section. Note that the external memory

only stores features from the same video.

External memory matrices store pixel and instance fea-

tures, with each row of Mpix being a feature vector from

some locations in a convolutional feature map F̃ , and

each row of Minst being one psroi-pooled instance feature

R̃i, i ∈ {1 · · · , n} that is reshaped into a vector. The size

of the external data matrix grows when new features are

written into the memory, and decreases when features are

deleted from the memory. Unless a video ends or write

operation explicitly deletes a feature, features in external

memory matrices are permanently stored.

Read operation propagates the memory matrices Mpix

and Minst into feature map F and instance features R re-

spectively. It involves three steps, similar to the attention

mechanism used in [34, 17, 42], compute attention weight

(Eq. (1)), align memory (Eq. (2)) and aggregate memory

with input feature map (Eq. (3)), as shown in the green

boxes in Figure 2. The challenge is that the external mem-

ory size varies, leading to big difference of signal strength

in the aligned memory. To address this, we introduce scale

parameters θ and β to ensure that the features in aligned

memory are in proper magnitude and signal strength of

present/memory features in the output aggregated feature

maps is balanced.

Let m ∈ R
l×c be the memory matrix, either Mpix or

Minst, with the ith row denoted as mi. Let x ∈ R
n×c be

the corresponding input feature matrix reshaped from F or

R, with the jth row denoted as xj . First, we compute the

attention weights w = {wi,j} between m and x:
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wi,j =
exp(S(mi,xj))

Σn
j=1

exp(S(mi,xj))
, (1)

where S ∈ R evaluates the similarity between mi and xj .

Second, with the attention weights, external memory ma-

trix m is aligned into m̃ ∈ R
n×c with the jth row denoted

as m̃j being:

m̃j = θjΣ
l
i=1

wi,jmi, (2)

where θ = {θj} ∈ R
n is a set of scale parameters to ensure

m̃ is in a similar magnitude to x.

Third, the aligned memory m̃ is added into the input

features x, producing the output of read, y ∈ R
n×c with

the jth row denoted as yj being:

yj = βjxj + (1− βj)m̃j , (3)

where β = {βj} ∈ R
n is another set of scale parameters to

balance x and m̃. Finally, y is reshaped into the same shape

as input feature map F , becoming the enhanced feature map

F̃ , or split into n instance features {R̃i, · · · , R̃n}.

The similarity measure S is given by:

S(mi,xj) =
λ(WKmi)

T (WQxj)

‖WKmi‖‖WQxj‖
, (4)

where WK ,WQ ∈ R
c̄×c are learnable embedding weights,

and they embed the original features into a sub-space for

similarity comparison. λ ∈ R is a learnable temperature pa-

rameter to control the concentration of attention, as in NTM

[10]. The scale parameters θ and β are given by:

θj =
1

max(Σl
i=1

wi,j , 1)
,

βj =
1

min(Σl
i=1

wi,j , 1) + 1
.

(5)

Note that Σl
i=1

wi,j 6= 1, given how wi,j is computed in Eq.

(1). This is a key difference from the other work [10, 34,

17], in which the denominator in Eq. (1) integrals along

i axis. We do this to ensure that newly appeared features

or background features are less affected by memory, and

its effect can be observed in the attention visualization in

Figure 3(a). θ attenuates the signal strength of m̃ when

too much memory information is concentrated on a same

location of the input feature map. β ensures that m̃ will not

dominate x in the output y.

In practice we use multi-head attention [34, 17]. N sets

of embedding weights {W 1

K , ...,WN
K }, {W 1

Q, ...,W
N
Q } are

applied, thus N sets of attention weights {w1, ...wN} are

computed by Eq. (1). Meanwhile, m is embedded to N
sub-spaces by {W 1

V , ...,W
N
V }, where W k

V ∈ R
c
N

×c, k =
1, · · · , N and Eq. (2) is changed to

m̃
k
j = θjΣ

l
i=1

wk
i,j(W

k
V mi). (6)

All {m̃1

j , ..., m̃
N
j } are concatenated into one vector m̃j =

[m̃1

j , ..., m̃
N
j ] to compute the output y. For computing θ

and β, we have wi,j =
1

N
ΣN

k=1
wk

i,j .

Write operation selects and stores pixel and instance

level features into the external memory, meanwhile it re-

moves redundant features from the external memory, as

shown in the blue box in Figure 2. The methods are dif-

ferent for the two levels of features. For pixel level features,

write is guided by detected objects. It first selects high qual-

ity feature vectors belonging to detected objects in current

enhanced feature map F̃ , and then it stores the selected fea-

tures at new rows in external memory matrix Mpix. Re-

dundant features in Mpix are deleted after new features are

stored. We define the features belonging to an object b as all

vectors {x̃ki
} whose locations in feature map F̃ are within

the bounding box of object b:

Ob = (x̃k1
, ..., x̃knb

)T , (7)

where nb is the total number of vectors belonging to Ob. We

also define the quality of Ob as the classification score s of

object b.
To select Ob into the external memory, first, the feature

quality of Ob needs to be larger than a threshold τ . Second,

Ob should either be dissimilar to any Op that is already in

the external memory and shares the same class with b or

be similar to some Op in the external memory but Ob has

higher quality. Once Ob is stored in the external memory,

any Op that is similar to Ob is considered redundant and is

removed out of Mpix.

Similarity between two objects is calculated with off-

the-shelf w = {wi,j} calculated by Eq. (1). Let î ∈
{k1, ..., knb

} denotes the indices of the feature vectors that

belong to Ob, and ĵ ∈ {k1, ..., knp
} denotes those of Op,

then the similarity between Ob and Op is computed as:

D(Ob, Op) =
1

nb

ΣîΣĵwî,ĵ . (8)

D ∈ R measures how much the attention of memory ob-

ject Op is concentrated on the area of Ob in feature map

F . Since attention calculated by Eq. (1) is based on feature

similarity, focused attention between two objects suggests

that they are similar. For objects b and p of the same class,

they are similar if D(Ob, Op) > max(
np

n
, α) with n being

the total number of locations in feature map F and α being

a constant.

In practice, in case that no object is detected, we also

include object-irrelevant features into the external memory.

We select these features by hard attention using L2-norms

of feature vectors [25]. For a feature map with shape n×c, a

feature vector xj is selected if exp(fj)/Σ
n
i=1

exp(fi) >
1

n
,

where fj =
‖xj‖√

c
. Unlike features belonging to detected

objects, when storing these object-irrelevant features into
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the external memory, they replace all older features that are

also picked based on L2-norms.

For instance level features, psroi-pooling is a natural

hard attention on R̃ = {R̃i, · · · , R̃n}. Since they are al-

ready selected when Non-Maximum Suppression (NMS) is

adopted on proposals before psroi-pooling, write operation

chooses R̃ of a frame, and stores them into the memory data

matrix Minst to replace all older instance memory. Each

R̃i, i = 1, · · · , n is reshaped into a vector, and all the re-

shaped {R̃i} are packed into a matrix to be stored in Minst.

3.3. Efficient Detection with External Memory

As observed in previous work [46], some adjacent

frames have similar content. Meanwhile, our proposed

memory network enables us to propagate memory to fea-

ture maps of different sizes. For time efficiency, we set a

key frame schedule, and down-sample all non-key frames

to reduce their computation time in Nfeat, which is the

bottle neck in detection inference time. We update exter-

nal memory only on full size key frames, and propagate

the high quality features to down-sampled non-key frames

to compensate for deterioration caused by down-sampling.

The attention-based read operation is irrelevant to spatial

location, as well as image size, thus features from differ-

ent size inputs can be seamlessly aggregated. As a result,

apart from high performance with our full model, we also

seek for speed-accuracy tradeoff with this method in online

video object detection.

4. Experiments

4.1. Experiment Setup and Implementation Details

Dataset. We evaluate our method on the ImageNet [28]

VID dataset. The ImageNet VID is introduced in 2015 as a

large scale benchmark for video object detection. There are

3862 videos in the training set and 555 videos in the valida-

tion set. It contains 30 object categories. These categories

are a subset of the categories of ImageNet DET set.

Training and testing. As a common practice in [45, 46,

44, 35, 2], we train on both the ImageNet VID and the

DET datasets. For the DET dataset, we select the same

30 categories from the DET dataset as in the VID dataset.

We train R-FCN for 200K iteration, with a learning rate

0.0005 for the first 120K epochs and 0.00005 for the last

80K epochs. Each batch contains 1 randomly sampled im-

age. The images are resized to have a shorter side of 600

pixels. The feature network is initialized with weights pre-

trained on the ImageNet dataset. Then we add embedding

weights from read to train them end-to-end. The read oper-

ation is added between feature maps and position-sensitive

roi-pooled position-sensitive score maps from consecutive

training samples respectively. We first only train embedding

weights for 60K iterations with a learning rate 0.0001 and

then train the whole network for 10K iterations with a learn-

ing rate 0.00005. Each batch contains 4 images randomly

sampled from a same video. A maximum frame interval is

set to 20. WQ and WK are initialized with a normal distri-

bution N(0, 0.01). Temperature parameter λ is initailized as

1. For WV , it is initialized as an identity matrix to pick up

long term dependency as suggested in IRNN [21].

Following [45, 44, 35, 2, 43], we evaluate our perfor-

mance on the validation set and use mean average precision

(mAP) as the evaluation metric. All our experiments are

performed on two Nvidia GTX 1080 Ti.

Implementation Details. In Multi-head matching [34,

17] in Eq. (6), we set N = 8 head embeddings, and for each

WK ,WQ ∈ R
c̄×c, c̄ = 32. We set τ = 0.9 for selecting

high quality object feature and α = 0.47 for object similar-

ity threshold based on empirical assumption. Specifically,

we assume that the attention distribution from an object in

memory to a detecting frame is a two-dimensional Gaus-

sian distribution, centering at a similar object’s box center

and let standard deviation σ equal half of the box’s diag-

onal length. Based on the empirical one sigma rule, we

consider this two objects are similar if most of the atten-

tion is distributed within one σ range. For a fair comparison

with previous work [45, 44, 43, 8, 35, 2], ResNet-101 [15]

and R-FCN [5] are used as the feature network and back-

bone detector in the same way. All layers after “conv5” are

dropped. Feature map stride of the final output is reduced

from 32 to 16 by setting the stride of “conv5” from 2 to

1. A dilated 3x3 convolution is attached after “conv5” to re-

duce the feature dimension from 2048 to 1024. The reduced

1024-d feature map from feature network is used as pixel

level features, and it is sliced to two 512-d feature maps for

the RPN and the R-FCN sub-network respectively. In the

RPN sub-network, 9 anchors are predicted on each position

and it outputs 300 proposals per image for the detection.

7×7 position-sensitive roi-pooling is utilized in the R-FCN

sub-network. We limit the number of objects belonging to

the same class in pixel level memory to 10 for efficiency.

4.2. Visualization of external memory

In Figure 3, we illustrate some of our detection results

on the ImageNet VID validation set and inference pro-

cess of our external memory. These frames are chosen to

show typical cases in video object detection, such as motion

blur, out-of-focus, occlusion,and rare object appearance like

weird pose and small size, where general image detectors,

e.g., R-FCN [5], fail.

A reasoning process for a heavily occluded hamster is

shown in Figure 3(a). We can clearly see what memories

are stored, and how these memories lead to a correct detec-

tion on a deteriorated image. At time step 247, there are

features of detected hamster (#1 and #2) stored in the ex-

ternal memory Mpix from frame 135 and 211 respectively.
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(a) Cross-frame inference with external memory on heavily occluded example/GPU usage and mem-

ory size during test. For visualization, we pool every 60 feature vectors into one row.

(b) More examples. Memory from most recent two

steps (colored number) is illustrated.

Figure 3: Visualization of our method on ImageNet [28] VID dataset. Best viewed in color.

Given the feature map of frame 247, the attention of Mpix

(red lines) is concentrated on the area of a potential object

(red feature vector), although no particular information like

bounding box is given. This exemplifies that our design of

computation in Eq. (1) can amplify attention weights on

similar features and attenuate the attention on background.

Lead by attention, memories (#1 and #2) are propagated to

the potential object area, convincing the detector to recog-

nize this object as a hamster. We also report the GPU usage

and memory size per frame in this video (#131000). The

memory size (green line) varies. In most time, it is less than

the size of a feature map (dashed green line). We can ob-

serve that write operation consistently erases redundant fea-

tures to clear up memory. More hard examples are shown

in Figure 3(b). The importance of long term information is

also addressed in these examples, because in some exam-

ples the memories are extracted more than 100 time steps

before the current frame.

4.3. Ablation Study

Performance of different memory. Table 1 compares the

performance of methods incorporating different level mem-

ories, Mpix and Minst, on different object motion speeds.

The category of object motion speeds follows FGFA [45].

Given the intersection-over-union (IOU) of the same objects

in nearby frames (±10 frames), an object is considered in

fast motion when the IOU is larger than 0.9, in slow mo-

tion when the IOU is smaller than 0.7, and in medium mo-

tion when between 0.7 and 0.9. Four methods with/without

pixel/instance memory are compared.

Method (a) is the single frame baseline detector R-FCN.

Methods (a) (b) (c) (d)

With Mpix ✓ ✓

With Minst ✓ ✓

mAP
(%)

overall 73.8 78.8↑5.0 74.8↑1.0 79.3↑5.5
slow 82.9 85.8↑2.9 83.1↑0.2 86.2↑3.3

medium 72.4 78.1↑5.7 73.4↑1.0 78.7↑6.3
fast 52.4 60.0↑7.6 53.3↑0.9 61.1↑8.7

Runtime (ms) 72 99 77 112

Table 1: Performance with pixel and instance memory.

Method (b) incorporates only Mpix. The performance gain

shows that the object guided write operation design is effec-

tive. The features selected from detected bounding boxes

provide rich temporal information to boost the detection

performance. Besides the overall mAP, large improve-

ments can be observed in fast moving objects. Method

(c) incorporates only Minst. Memory is updated every 10

frames. It suggests that roi-pooled sensitive-score maps

{Ri, · · · , Rn} are also able to propagate temporal informa-

tion and improve the performance of video object detection.

Method (d) incorporates both Mpix and Minst. With differ-

ent memories, we have our highest performance. Compared

to method (a), instance features bring more performance

gain in mAP (slow) and map (fast) for method (b). This

shows that pixel and instance features are complementary

to each other in temporal propagation.

In all, our proposed method is capable of managing valu-

able temporal information and propagating them accurately
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Non-key size 1 1

2

1

3

1

4

With memory ✗ ✓ ✓ ✓

mAP (%) 73.8 76.8↑2.0 74.4↑0.6 71.5↓2.3
Runtime (ms) 72 67 59 52

Table 2: Speed-accuracy tradeoff using down-sample non-

key frames. Both Mpix and Minst are used.

Method With DCN [6]
Memory size mAP

(#feature map) (%)

R-FCN [5]

✗

0 73.8
FGFA [45] 20 76.3
LWDN [43] 1 76.3

D&T [8] 1 75.8
MAN [35] 12 78.1
THP [44]

✓
1 78.6

STSN [2] 26 78.9
Ours ✗ ∼ 0.9 79.3

Oursdef ✓ ∼ 0.8 80.0

Table 3: Comparison with the state-of-the-art. All methods

use ResNet-101 [15] as the feature network, and methods

denoted with DCN use deformable units [6] to enhance the

ResNet-101. The memory size denotes the number of fea-

ture maps to be aggregated for one inference. For our meth-

ods, it is calculated as the average number of feature vectors

in Mpix and Minst divided by the number of locations in a

feature map.

to other frames, while pixel and instance level features are

complementary for the performance. Besides the large im-

provement in mAP, our framework has similar inference

time with the single frame baseline.

Efficient detection and speed-accuracy tradeoff. Table

2 reports the speed-accuracy tradeoff of our framework. A

key frame interval is set to 5 for the experiments shown in

Table 2, where full key frames are used to update mem-

ory and non-key frames are down-sampled to reduce infer-

ence time. Both pixel and instance level features are incor-

porated. The results shown in Table 2 suggest that object

guided external memory network is well adapted to differ-

ent scales of down-sampled inputs. High quality features

stored in the external memory can propagate useful infor-

mation to down-sampled frames and achieve good speed-

accuracy tradeoff. When non-key frames are down-sampled

to 1/2 and 1/3 of the original size, the mAP is better than

the baseline R-FCN with full size inputs (3.0% ↑, 0.6% ↑)

and with less inference time (5 ms↓ and 13 ms↓). Specifi-

cally, our method on half sized inputs has better mAP than

FGFA [45] on full size input images (0.5% ↑) with signifi-

cantly less inference time (67 ms and 246 ms on our testing

machine).

Methods FGFA[45] MAN[35] Ours

mAP
(%)

overall 76.3 78.1 79.3

slow 83.5 86.9 86.2
medium 75.8 76.8 78.7

fast 57.6 56.7 61.1

Table 4: Performance comparison on different motion

speeds with flow-based methods.

4.4. Comparison with stateoftheart results

Overall performance. We compare the overall perfor-

mance with the state-of-the-art feature level methods. We

report results on the ImageNet VID validation set, as in

[45, 44, 8, 35, 2, 39, 43]. Tabel 3 presents the results. To

show the generalization ability of our method and for fair

comparison, following [44, 2], we also train our framework

by adding deformable units (DCN) [6] in R-FCN [5], de-

noted as Ourdef . STMN [39] only reports the result after

post-process (80.5%). For fair comparison, we also apply

Seq-NMS [12] to our method without and with DCN. The

results are 80.8% and 81.6% in mAP, respectively. Among

all methods in Table 3, our proposed framework has the best

performance even without adding DCN as a stronger feature

network, and without using extra information from future

frames. Meanwhile, on average, our framework has less

memory size compared with the other methods that directly

store multiple feature maps. See details in Table 3.
Comparison on different motion speeds. We also com-

pare on different motion speeds with the two flow-based

methods, FGFA [45] and MAN [35], as shown in Table 4.

Clear improvements of mAP are observed in fast motion

(3.5% ↑, 4.4% ↑) and medium motion (2.9% ↑, 1.9% ↑).

The improvements show the advantage of read operation

in feature alignment over large object displacement. Flow

estimation given by FlowNet [7] may fail when feature

displacement between two frame is large, leading to error

alignment of nearby frames. While by our attentional read

operation, spatial position of features is no barrier for the

alignment, leading to accurate feature propagation across

large frame content displacement.

5. Conclusions

We propose a novel object guided external memory net-

work to target the drawbacks of methods that use inter-

nal memory in video object detection. Storage-efficiency

is handled by object guided hard attention and long-term

dependency is protected in addressable external memory.

Novel read/write operations guided by soft/hard attention

are designed to access multi-level external memory. More-

over, we visualize the external memory to show the detailed

temporal inference process. We evaluate our method on the

ImageNet VID dataset and achieve state-of-the-art perfor-

mance and good speed-accuracy tradeoff.
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