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Abstract

It has been well recognized that modeling object-to-

object relations would be helpful for object detection. Nev-

ertheless, the problem is not trivial especially when explor-

ing the interactions between objects to boost video object

detectors. The difficulty originates from the aspect that re-

liable object relations in a video should depend on not only

the objects in the present frame but also all the supportive

objects extracted over a long range span of the video. In this

paper, we introduce a new design to capture the interactions

across the objects in spatio-temporal context. Specifically,

we present Relation Distillation Networks (RDN) — a new

architecture that novelly aggregates and propagates object

relation to augment object features for detection. Techni-

cally, object proposals are first generated via Region Pro-

posal Networks (RPN). RDN then, on one hand, models ob-

ject relation via multi-stage reasoning, and on the other,

progressively distills relation through refining supportive

object proposals with high objectness scores in a cascaded

manner. The learnt relation verifies the efficacy on both

improving object detection in each frame and box linking

across frames. Extensive experiments are conducted on Im-

ageNet VID dataset, and superior results are reported when

comparing to state-of-the-art methods. More remarkably,

our RDN achieves 81.8% and 83.2% mAP with ResNet-101

and ResNeXt-101, respectively. When further equipped with

linking and rescoring, we obtain to-date the best reported

mAP of 83.8% and 84.7%.

1. Introduction

The advances in Convolutional Neural Networks (CNN)

have successfully pushed the limits and improved the state-

of-the-art technologies of image and video understanding

[16, 18, 19, 22, 24, 25, 35, 34, 37, 42, 43, 44]. As one of the

most fundamental tasks, object detection in still images has

attracted a surge of research interests and the recent meth-

∗This work was performed at JD AI Research.
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Figure 1. Modeling object relations by employing (a) stacked re-

lation within an image and (b) distillation in an cascade manner

across video frames.

ods [3, 5, 10, 14, 39] mostly proceed along the region-based

detection paradigm which is derived from the work of R-

CNN [11]. In a further step to localize and recognize objects

in videos, video object detection explores spatio-temporal

coherence to boost detectors generally through two direc-

tions of box-level association [8, 13, 20, 21] and feature ag-

gregation [46, 49, 53, 54]. The former delves into the asso-

ciation across bounding boxes from consecutive frames to

generate tubelets. The latter improves per-frame features by

aggregation of nearby features. Regardless of these differ-

ent recipes for enhancing video object detection, a common

issue not fully studied is the exploitation of object relation,

which is well believed to be helpful for detection.

Object relations characterize the interactions or geomet-

ric positions between objects. In the literature, there has

been strong evidences on the use of object relation to sup-

port various vision tasks, e.g., recognition [48], object de-

tection [17], cross-domain detection [2], and image caption-

ing [52]. One representative work that employs object rela-

tion is [17] for object detection in images. The basic idea

is to measure relation features of one object as the weighted

sum of appearance features from other objects in the im-

age and the weights reflect object dependency in terms of

both appearance and geometry information. A stacked re-

lation module as shown in Figure 1(a) aggregates relation

features and augments the object features in a multi-step

fashion. The method verifies the merit on modeling object
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relation to eventually enhance image object detection. Nev-

ertheless, the extension of mining object relation in an im-

age to in a video is very challenging due to the complex

spatio-temporal context. Both the objects in the reference

frame and all the supportive objects extracted from nearby

frames should be taken into account. This distinction leads

to a huge rise in computational cost and memory demand

if directly capitalizing on the measure of object relation in

[17], not to mention that the increase of supportive object

proposals results in more invalid proposals, which may af-

fect the overall stability of relation learning. To alleviate

these issues, we propose a new multi-stage module as il-

lustrated in Figure 1(b). Our unique design is to progres-

sively schedule relation distillation. We select object pro-

posals with high objectness scores from all support frames

and only augment the features of these proposals with object

relation to further distill the relation with respect to propos-

als in reference frame. Such cascaded means, on one hand,

could reduce computation and filter out invalid proposals,

and on the other, refine object relation better.

By consolidating the idea of modeling object relation in

spatio-temporal context, we novelly present Relation Distil-

lation Networks (RDN) for boosting video object detection.

Specifically, Region Proposal Network (RPN) is exploited

to produce object proposals from the reference frame and

all the support frames. The object proposals extracted from

support frames are packed into supportive pool. The goal

of our RDN is to augment the feature of each object pro-

posal in the reference frame by aggregating its relation fea-

tures over the proposals in the supportive pool. RDN em-

ploys multi-stage reasoning structure, which includes basic

stage and advanced stage. In the basic stage, RDN capital-

izes on all the proposals in the supportive pool to measure

relation features measured on both appearance and geome-

try information. The interactions are explored holistically

across all the supportive proposals in this stage irrespective

of the validity of proposals. Instead, RDN in the advanced

stage nicely selects supportive proposals with high object-

ness scores and first endows the features of these propos-

als with relation against all the supportive proposals. Such

aggregated features then in turn strengthen the relation dis-

tillation with respect to proposals in the reference frame.

The upgraded feature of each proposal with object relation

is finally exploited for proposal classification and regres-

sion. Moreover, the learnt relation also benefit the post-

processing of box linking. Note that our RDN is applicable

in any region-based vision tasks.

2. Related Work

Object Detection. The recent advances in deep convo-

lutional neural networks [16, 22, 43, 44] and well-annotated

datasets [28, 40] have inspired the remarkable improve-

ments of image object detection [5, 10, 11, 14, 15, 23, 26,

27, 30, 38, 39, 41]. There are generally two directions for

object detection. One is proposal-based two-stage detec-

tors (e.g., R-CNN [11], Fast R-CNN [10], and Faster R-

CNN [39]), and the other is proposal-free one-stage de-

tectors (e.g., SSD [30], YOLO [38], and RetinaNet [27]).

Recently, motivated by the success of attention model in

NLP field [9, 45], [17, 47] extend attention mechanisms

to support computer vision tasks by exploiting the atten-

tion/relations among regions/CNN features. In particular,

[17] presents an object relation module that models the re-

lations of region proposals through the interaction between

their appearance features and coordinates information. [47]

plugs non-local operation into conventional CNN to enable

the relational interactions within CNN feature maps, aiming

to capture contextual information and eventually boost both

object detection and video classification tasks.

The Relation Distillation Networks in our work is also a

type of relation modeling among objects. Unlike [17] that is

developed for object detection in images, ours goes beyond

the mining of object relation within one image and aims to

explore the object interactions across multiple frames in the

complex spatio-temporal context of video object detection.

Moreover, a progressive schedule of relation distillation is

devised to refine object relations and meanwhile reduce the

computational cost on measuring object relations between

reference frame and all nearby support frames.

Video Object Detection. Generalizing still image de-

tectors to video domain is not trivial due to the spatial

and temporal complex variations existed in videos, not to

mention that the object appearances in some frames may

be deteriorated by motion blur or occlusion. One com-

mon solution to amend this problem is feature aggrega-

tion [1, 29, 49, 53, 54, 55] that enhances per-frame fea-

tures by aggregating the features of nearby frames. Specif-

ically, FGFA [54] utilizes the optical flow from FlowNet

[7] to guide the pixel-level motion compensation on feature

maps of adjacent frames for feature aggregation. [49] de-

vises a spatio-temporal memory module to perform frame-

by-frame spatial alignment for aggregation. Another di-

rection of video object detection is box-level association

[8, 13, 20, 21, 46] which associates bounding boxes from

consecutive frames to generate tubelets via independent

processes of linking/tracking. Seq-NMS [13] builds tem-

poral graph according to jaccard overlap between bounding

boxes of consecutive frames and searches the optimal path

with highest confidence as tubelets. D&T [8] integrates

a tracking formulation into R-FCN [5] to simultaneously

perform object detection and across-frame track regression.

[46] further extends FGFA [54] by calibrating the object

features on box level to boost video object detection.

Despite both feature-level and box-level methods have

generally enhanced video object detection with higher

quantitative scores, the object relations are not fully ex-
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Figure 2. An overview of Relation Distillation Networks (RDN) for video object detection. Given the input reference frame It and all

support frames {Iτ}
t+T
τ=t−T , Region Proposal Networks (RPN) is first employed to produce object proposals (i.e., Region of Interests

(RoI)) from reference frame and all support frames. We select the top-K object proposals from reference frame as the reference object set

Rr and pack all the top-K object proposals from support frames into the supportive pool Rs. After that, RDN is devised to augment the

feature of each reference proposal in Rr by aggregating its relation features over the supportive proposals in Rs, enabling the modeling of

object relations in spatio-temporal context. Specifically, RDN is a multi-stage module which contains basic stage and advanced stage to

support multi-stage reasoning and relation distillation. In basic stage, all supportive proposals in Rs are leveraged to measure the relation

feature of each reference proposal in Rr via exploring the interactions across all the supportive proposals, outputting a set of refined

reference proposals Rr1. In the advanced stage, we first select r% supportive proposals in Rs with high objectness scores to form the

advanced supportive pool Rsa, where the feature of each supportive proposal is endowed with relation against all the supportive proposals.

Such aggregated features then in turn strengthen the relation distillation with respect to proposals in Rr1 from basic stage. Finally, the

upgraded features of all reference proposals (Rr2) output from advanced stage is exploited for proposal classification and regression.

ploited across frames for object detection in videos. In con-

trast, we exploit the modeling of object relations in spatio-

temporal context to facilitate video object detection. To this

end, we design a novel Relation Distillation Networks to ag-

gregate and propagate object relation across frames to aug-

ment object features in a cascaded manner for detection.

3. RDN for Video Object Detection

In this paper, we devise Relation Distillation Networks

(RDN) to facilitate object detection in videos by capturing

the interactions across objects in spatio-temporal context.

Specifically, Region Proposal Networks (RPN) is first ex-

ploited to obtain the object proposals from the reference

frame and all the support frames. RDN then aggregates and

propagates object relation over the supportive proposals to

augment the feature of each reference object proposal for

detection. A multi-stage module is employed in RDN to si-

multaneously model object relation via multi-stage reason-

ing and progressively distill relation through refining sup-

portive object proposals with high objectness scores in a

cascaded manner. The learnt relation can be further ex-

ploited in both classification & regression for detection and

the detection box linking in post-processing. An overview

of our RDN architecture is depicted in Figure 2.

3.1. Overview

Notation. In the standard task of video object detec-

tion, we are given a sequence of adjacent frames {Iτ}
t+T
τ=t−T

where the central frame It is set as the reference frame.

The whole sequence of adjacent frames {Iτ}
t+T
τ=t−T is taken

as support frames and T represents the temporal spanning

range of support frames. As such, the goal of video object

detection is to detect objects in reference frame It by ad-

ditionally exploiting the spatio-temporal correlations in the

support frames. Since the ultimate goal is to model object

relation in spatio-temporal context to boost video object de-

tection, RPN is first leveraged to generate object proposals

of reference frame and all support frames. The set of se-

lected top-K object proposals from reference frame is de-

noted as Rr = {Rr
i }. All the top-K object proposals from

support frames are grouped as the supportive pool, denoted

as Rs = {Rs
i }. In addition, we further refine the supportive

pool Rs by sampling r% supportive object proposals with

high objectness scores, leading to the advanced supportive

pool Rsa = {Rsa
i }. Both of the supportive pool Rs and

advanced supportive pool Rsa will be utilized in our de-

vised Relation Distillation Networks to enable the progres-

sive scheduling of relation distillation.

Problem Formulation. Inspired by the recent success

of exploring object relations in various vision tasks (e.g.,

recognition [48] and object detection [17]), we formulate

our video object detection method by modeling interactions

between objects in spatio-temporal context to boost video

object detectors. Given the set of reference proposals R
r,

the supportive pool Rs and the advanced supportive pool

R
sa, we are interested to progressively augment the fea-
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ture of each reference proposal in R
r with distilled relations

against supportive proposals in R
s and R

sa. To do this, a

novel Relation Distillation Networks is built based on the

seminal detector Faster R-CNN [39]. A multi-stage rea-

soning structure consisting of basic and advanced stages is

adopted in RDN for progressively scheduling relation dis-

tillation in a cascaded manner. Such design of cascaded

means not only reduces computation and filters out invalid

proposals, but also progressively refines object relations of

reference proposals against supportive ones to boost detec-

tion. Most specifically, in the basic stage, all supportive

proposals in R
s are utilized to measure relation features of

reference proposals in R
r on both appearance and geome-

try information. As such, the output set of refined reference

proposals R
r1 = {Rr1

i } from basic stage is obtained via

a stacked relation module which explores the interactions

between reference proposals and all supportive proposals

irrespective of the validity of proposals. In the advanced

stage, we first enhance the feature of each selected support-

ive proposal in the advanced supportive pool Rsa with re-

lation against all the supportive proposals in R
s. Such ag-

gregated features of distilled supportive proposals then in

turn strengthen the relation distillation with respect to ref-

erence proposals in R
r1 output from basic stage. Once the

upgraded reference proposals Rr2 = {Rr2
i } from advance

stage are obtained, we directly exploit them to improve ob-

ject detection in reference frame. More details about the

multi-stage reasoning structure of our RDN will be elabo-

rated in Section 3.3. Moreover, by characterizing the natural

interactions between objects across frames, the learnt rela-

tions can be further leveraged to guide detection box linking

in post-processing, which will be presented in Section 3.4.

3.2. Object Relation Module

We begin by briefly reviewing object relation mod-

ule [17] for object detection in images. Motivated from

Multi-Head Attention in [45], given the input of proposals

R = {Ri}, object relation module is devised to enhance

each proposal Ri by measuring M relation features as the

weighted sum of appearance features from other proposals.

Note that we represent each object proposal with its geomet-

ric feature gi (i.e., the 4-dimensional coordinates of object

proposal) and appearance feature fi (i.e., the RoI pooled

feature of object proposal). Formally, the m-th relation fea-

ture of proposal Ri is calculated conditioning on R:

f
m
rela(Ri,R) =

∑

j
ω

m
ij · (Wm

L · fj), m = 1, · · ·,M, (1)

where Wm
L denotes the transformation matrix. ωij is an

element in relation weight matrix ω and represents the pair-

wise relation between proposals Ri and Rj which is mea-

sured based on their appearance and geometric features. By

concatenating all the M relation features of each proposal

Ri and its appearance feature, we finally obtain the relation-

augmented feature output from object relation module:

frm(Ri,R) = fi + concat[{fm
rela(Ri,R)}Mm=1]. (2)

3.3. Relation Distillation Networks

Unlike [17] that explores object relations within an im-

age for object detection, we facilitate the modeling of ob-

ject relations in video object detection by exploiting the

object interactions across multiple frames under the com-

plex spatio-temporal context. One natural way to extend

the relation-augmented detector in image to video is to cap-

italize on the object relation module in [17] to measure the

interactions between the objects in reference frame and all

supportive objects from nearby frames. Nevertheless, such

way will lead to a huge rise in computational cost, not to

mention that the increase of supportive proposals results in

more invalid proposals and the overall stability of relation

learning will be inevitably affected. To alleviate this issue,

we devise Relation Distillation Networks to progressively

schedule relation distillation for enhancing detection via a

multi-stage reasoning structure, which contains basic stage

and advanced stage. The spirit behind follows the philoso-

phy that basic stage explores relations holistically across all

the supportive proposals with respect to reference propos-

als, and advanced stage progressively distills relations via

refining supportive proposals, which are augmented with re-

lations to further strengthen reference proposals.

Basic Stage. Formally, given the set of reference pro-

posals Rr and the supportive pool Rs, the basic stage pre-

dicts the relation features of each reference proposal as the

weighted sum of features from all supportive proposals via

a stacked relation module:

R
r1 = Nbasic(R

r
,R

s), (3)

where Nbasic (·) represents the function of the stacked re-

lation module in basic stage and R
r1 denotes the output

enhanced reference proposals from basic stage. Please note

that in the complex spatio-temporal context of video object

detection, a single relation module is insufficient to model

the interactions between objects among multiple frames.

Therefore, we iterate the relation reasoning in a stacked

manner equipped with Nb object relation modules to bet-

ter characterize the relations across all the supportive pro-

posals with regard to reference proposals. Specifically, for

the k-th object relation module in basic stage, the i-th refer-

ence proposal is augmented with the relation features over

all proposals in supportive pool Rs:

R
r1,k
i =

{

frm(Rr
i ,R

s), k = 1,

frm(h(Rr1,k−1
i ),Rs), k > 1,

(4)

where h (·) denotes the feature transformation function im-

plemented with a fully-connected layer plus ReLU. Each
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Algorithm 1 Inference Algorithm of our RDN

1: Input: video frames {It}, temporal spanning range T .

2: for t = 1 to T + 1 do ⊲ initialize proposal feature buffer

3: Rt = NRoI(It) ⊲ region proposal and feature extraction

4: Rs

t = Sampletop-K(Rt) ⊲ sample top-K proposals

5: end for

6: for t = 1 to ∞ do

7: Rr = Rt ⊲ reference proposal set

8: Rs = Rs

max(1,t-T ) ∪ · · · ∪Rs

t+T ⊲ supportive pool

9: Rr1 = Nbasic(R
r,Rs) ⊲ basic stage

10: Rsa = Sampletop-r%(Rs) ⊲ sample top-r% proposals

11: Rr2 = Nadv(R
r1,Rs,Rsa) ⊲ advanced stage

12: Dt = Ndet(R
r2) ⊲ classification and regression

13: Rt+T+1 = NRoI(It+T+1)
14: Rs

t+T+1 = Sampletop-K(Rt+T+1)
15: update proposal feature buffer

16: end for

17: Output: detection results {Dt}

relation module takes the transformed features of reference

proposals from previous relation module as the reference

inputs. We stack Nb relation modules in basic stage and all

the enhanced reference proposals from the Nb-th relation

module are taken as the output Rr1 of basic stage.

Advanced Stage. The relation reasoning in basic stage

only explores the modeling of interactions between refer-

ence proposal and all the supportive proposals, while leav-

ing the relations among supportive proposals in R
s unex-

ploited. Furthermore, we present a novel advanced stage

to explore the interactions between supportive proposals by

enhancing the distilled supportive proposals with relations

against all supportive proposals. Next, the enhanced dis-

tilled supportive proposals are utilized to further strengthen

the reference proposals from basic stage via relation rea-

soning in between. Such design of progressively distilling

supportive proposals in advanced stage not only reduces the

computation cost of measuring relations among supportive

proposals, but also filters out invalid supportive proposals

for relation reasoning and eventually improves detection.

Technically, given the output reference proposals R
r1

from basic stage, the supportive pool Rs, and the advanced

supportive pool Rsa, the advanced stage further strengthens

all reference proposals Rr1 through progressively schedul-

ing relation distillation:

R
r2 = Nadv(R

r1
,R

s
,R

sa), (5)

where Nadv (·) denotes the operation in advanced stage

and R
r2 represents the output relation-augmented reference

proposals from advanced stage. Most specifically, we first

refine the distilled supportive proposals in R
sa with relation

reasoning against all supportive proposals in R
s:

R
a
i = frm(Rsa

i ,R
s), (6)

where Ra
i denotes the i-th refined supportive proposal. Af-

ter that, the refined supportive proposals R
a = {Ra

i } are

utilized to further distill the relation with respect to refer-

ence proposals Rr1 from basic stage:

R
r2
i = frm(Rr1

i ,R
a), (7)

where Rr2
i denotes the i-th upgraded reference proposal.

Finally, all the upgraded reference proposals Rr2 = {Rr2
i }

are exploited for proposal classification and regression.

Training and Inference. At training stage, we adopt the

strategy of temporal dropout [54] to randomly select two

support frames It+τ1 and It+τ2 (τ1, τ2 ∈ [−T, T ]) from the

adjacent frames {Iτ}
t+T
τ=t−T . Accordingly, the whole RDN

is optimized with both classification and regression losses

over the relation-augmented reference proposals Rr2 from

advanced stage in an end-to-end manner.

During inference, we follow [54] and sequentially pro-

cess each frame with a sliding proposal feature buffer of

adjacent frames {Iτ}
t+T
τ=t−T . The capacity of this proposal

feature buffer is set as the length of adjacent frames (i.e.,

2T +1), except for the beginning and ending T frames. The

detailed inference process of RDN is given in Algorithm 1.

3.4. Box Linking with Relations

To further boost video object detection results by

re-scoring individual detection boxes among consecutive

frames, we adopt the post-processing of linking detection

boxes across frames as in [12, 13, 21]. Despite the box-level

post-processing methods have generally enhanced video ob-

ject detection with higher quantitative scores, the object re-

lations between detection boxes are not fully studied for box

linking. In contrast, we integrate the learnt object-to-object

relations into post-processing of box linking to further prop-

agate the confidence scores among high-related detection

boxes and thus improve the detection.

Specifically, we formulate the post-processing of box

linking as an optimal path finding problem. Note that since

the box linking is independently applied for each class, we

omit the notation of class here for simplicity. Given two de-

tection boxes dti and dt+1

j from consecutive frames It and

It+1, the linking score between them is calculated as:

S(dti, d
t+1
j ) = {sti + s

t+1
j + iou(dti, d

t+1
j )} · eω̄ij , (8)

where sti and st+1

j are confidence scores of the two boxes,

and iou(·) indicates jaccard overlap. ω̄ij represents the pair-

wise relation weight between the two boxes dti and dt+1

j ,

which is measured as the average of all the M relation

weights obtained in the last relation module at basic stage:

ω̄ij = 1

M

∑M

m=1
ωm
ij . Accordingly, for each class, we seek

the optimal path as:

P̄
∗ = argmax

P̄

1

L

L−1
∑

t=1

S(Dt,Dt+1), (9)
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where Dt = {dti} denotes the set of detection boxes in

frame It and L is the duration of video. This problem can

be solved by Viterbi algorithm [12]. Once the optimal path

for linking boxes is obtained, we follow [8] and re-score

detection boxes in each tube by adding the average value of

the top-50% classification score of boxes in this path.

4. Network Architecture

Backbone. We exploit two kinds of backbones, i.e.,

ResNet-101 [16] and ResNeXt-101-64×4d [50], for our

RDN. Specifically, to enlarge the resolution of feature maps,

we modify the stride of first conv block in last stage of con-

volutional layers from 2 to 1. As such, the effective stride

in this stage is changed from 32 to 16 pixels. Besides, all

the 3×3 conv layers in this stage are modified by the “hole

algorithm” [4, 32] (i.e., “atrous convolution” [31]) to com-

pensate for the receptive fields.

Region Feature Extraction. We utilize RPN [39]

on the top of conv4 stage for region feature extrac-

tion. In particular, we leverage 12 anchors with 4 scales

{642, 1282, 2562, 5122} and 3 aspect ratios {1:2,1:1,2:1}
for classification and regression. During training and in-

ference, we first pick up 6,000 proposals with highest ob-

jectness scores and then adopt Non Maximum Suppression

(NMS) with threshold of 0.7 Intersection-over-Union (IoU)

to obtain N = 300 proposals for each frame. After gener-

ating region proposals, we apply RoI pooling followed by a

1,024-d fully-connected layer on the top of conv5 stage to

extract RoI feature of each proposal.

Relation Distillation Networks. For each relation mod-

ule in RDN, the number of relation features is set as M =
16. The dimension of each relation feature is 64. As such,

by concatenating all the M = 16 relation features as in

Equation 2, the dimension of relation-augmented feature

output from relation module is 1,024. In basic stage, we

stack Nb = 2 relation modules. In advanced stage, one

relation module is first employed to enhance proposals in

advanced supportive pool Rsa. Next we apply another re-

lation module to strengthen the reference proposals output

from basic stage. Finally, we utilize two parallel branches

(i.e., classification and regression) to obtain detection boxes

based on the refined RoI features from advanced stage.

5. Experiments

5.1. Dataset and Evaluation

We empirically verify the merit of our RDN by conduct-

ing experiments on ImageNet object detection from video

(VID) dataset [40]. The ImageNet VID dataset is a large-

scale benchmark for video object detection task, consisting

of 3,862 training videos and 555 validation videos from 30

classes. Given the fact that the ground truth of the official

testing set are not publicly available, we follow the widely

Table 1. Performance comparison with state-of-the-art end-to-end

video object detection models on ImageNet VID validation set.

Methods Backbone Base Detector mAP (%)

FGFA [54]
ResNet-101 R-FCN 76.3

ResNet-101 Faster R-CNN 77.5

MANet [46] ResNet-101 R-FCN 78.1

THP [53] ResNet-101 + DCN [6] R-FCN 78.6

STSN [1] ResNet-101 + DCN [6] R-FCN 78.9

RDN
ResNet-101 Faster R-CNN 81.8

ResNeXt-101-64×4d Faster R-CNN 83.2

adopted setting as in [8, 20, 46, 49, 54, 53] to report mean

Average Precision (mAP) on validation set.

Following the common protocols in [8, 46, 49, 54], we

utilize both ImageNet VID and ImageNet object detection

(DET) dataset to train our RDN. Since the 30 classes in Im-

ageNet VID are a subset of 200 classes in ImageNet DET

dataset, we adopt the images from overlapped 30 classes in

ImageNet DET for training. Specifically, due to the redun-

dancy among adjacent frames, we sample 15 frames from

each video in ImageNet VID for training. For ImageNet

DET, we select at most 2,000 images from each class to

make the class distribution more balanced.

5.2. Implementation Details

At training and inference stages, the temporal spanning

range is set as T = 18. We select the top K = 75 propos-

als with highest objectness scores from each support frame

and pack them into the supportive pool Rs. We obtain the

advanced supportive pool Rsa by sampling 20% supportive

proposals with highest objectness scores from R
s.

We implement RDN mainly on Pytorch 1.0 [36]. The

input images are first resized so that the shorter side is 600

pixels. The whole architecture is trained on four Tesla V100

GPUs with synchronized SGD (momentum: 0.9, weight de-

cay: 0.0001). There is one mini-batch in each GPU and

each mini-batch contains one image/frame. For reference

frame, we sample 128 RoIs with a ratio of 1:3 for posi-

tive:negatives. We adopt a two-phase strategy for training

our RDN. In the first phase, we train the basic stage together

with backbone & RPN over the combined training set of

ImageNet VID and ImageNet DET for 120k iterations. The

learning rate is set as 0.001 in the first 80k iterations and

0.0001 in the next 40k iterations. In the second phase, the

whole RDN architecture is trained on the combined training

set with another 60k iterations. The learning rate is set as

0.001 in the first 40k iterations and 0.0001 in the last 20k

iterations. The whole procedure of training takes about 15

hours in the first phase and 8 hours in the second phase. At

inference, we adopt NMS with a threshold of 0.5 IoU to

suppress reduplicate detection boxes.

5.3. Performance Comparison

End-to-End models. The performances of different

end-to-end video object detection models on ImageNet VID
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Table 2. Performance comparison with state-of-the-art video ob-

ject detection methods plus post-processing on ImageNet VID val-

idation set. BLR: Box Linking with Relations in Section 3.4.

Methods Backbone Base Detector mAP (%)

T-CNN [21] DeepID [33] + Craft [51] R-CNN 73.8

FGFA [54] + [13]
ResNet-101 R-FCN 78.4

Aligned Inception-ResNet R-FCN 80.1

D&T [8]

ResNet-101 R-FCN 79.8

ResNet-101 Faster R-CNN 80.2

Inception-v4 R-FCN 82.0

STMN [49] ResNet-101 R-FCN 80.5

RDN + [13]
ResNet-101 Faster R-CNN 82.6

ResNeXt-101-64×4d Faster R-CNN 83.9

RDN + [12]
ResNet-101 Faster R-CNN 83.4

ResNeXt-101-64×4d Faster R-CNN 84.5

RDN + BLR
ResNet-101 Faster R-CNN 83.8

ResNeXt-101-64×4d Faster R-CNN 84.7

validation set are shown in Table 1. Note that for fair com-

parison, here we only include the state-of-the-art end-to-end

techniques which purely learn video object detector by en-

hancing per-frame feature in an end-to-end fashion without

any post-processing. Overall, the results under the same

backbone demonstrate that our proposed RDN achieves bet-

ter performance against state-of-the-art end-to-end models.

In particular, the mAP of RDN can achieve 81.8% with

ResNet-101, which makes 2.9% absolute improvement over

the best competitor STSN. As expected, when equipped

with a stronger backbone (ResNeXt-101-64×4d), the mAP

of our RDN is further boosted up to 83.2%. By addi-

tionally capturing global motion clues to exploit instance-

level calibration, MANet exhibits better performance than

FGFA that performs pixel-level calibration with the guid-

ance from optical flow. Different from the flow-guided

methods (FGFA, MANet, and THP) which estimate the mo-

tion across frames for warping the feature map, STSN spa-

tially samples features from adjacent frames for feature ag-

gregation and achieves better performance. Nevertheless,

the performance of STSN is still lower than that of our

RDN which models object relation in spatio-temporal con-

text. The results highlight the advantage of aggregating and

propagating object relation to augment object features for

video object detection.

Add Post-Processing. In this section, we compare our

RDN with other state-of-the-art methods by further apply-

ing post-processing of box linking. Table 2 summarizes

the results on ImageNet VID validation set. In general,

when equipped with existing post-processing techniques

(Seq-NMS and Tube Linking), our RDN exhibits better per-

formances than other state-of-the-art post-processing based

approaches. In addition, by leveraging our Box Linking

with Relations (BLR) that integrates the learnt object rela-

tions into Tube Linking, the performances of RDNs are fur-

ther boosted up to 83.8% and 84.7% with ResNet-101 and

ResNeXt-101-64×4d, respectively. This confirms the effec-

tiveness of propagating confidence scores among detection

boxes with high relations via box linking in our BLR.

Table 3. Performance comparisons across different ways on the

measure of object relation, i.e., Faster R-CNN on single frame ir-

respective of relation, stacked relation within frame in [17], RDN

with relation only in basic stage (BASIC), full version of RDN

with advanced stage (ADV)). The backbone is ResNet-101.

Methods BASIC ADV mAP (%)

Faster R-CNN 75.4

+ Relation [17] 78.5↑3.1

Faster R-CNN

+ BASIC X 80.9↑5.5

RDN X X 81.8↑6.4
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Figure 3. Examples of video object detection results by different

ways of relation modeling in our RDN.

5.4. Experimental Analysis

Ablation Study. Here we study how each design in our

RDN influences the overall performance. Faster R-CNN

[39] simply executes object detection on single frame irre-

spective of object relation. [17] models relation in an im-

age via stacked relation modules. We extend this idea to

learn the interactions between objects in a video frame and

re-implement [17] in our experiments. The run of Faster

R-CNN + BASIC only exploits the basic stage for relation

reasoning and RDN further integrates the advanced stage.

Table 3 details the performances across different ways on

the measure of object relation. Directly performing Faster

R-CNN on single frame achieves 75.4% of mAP. The min-

ing of relation in [17] leads to a boost of 3.1%. The results

verify the idea of exploring object relation to improve video

object detection, even in case when the relation is measured

within each frame. By capturing object interactions across

frames in the basic stage, Faster R-CNN + BASIC boosts up

the mAP from 75.4% to 80.9%. The improvements indicate

learning relation in spatio-temporal context is superior to

spatial dimension only. RDN is benefited from the mecha-

nism of cascaded relation distillation in advanced stage and

the mAP of RDN finally reaches 81.8%. Figure 3 show-

cases one example of video object detection results with dif-

ferent ways of relation modeling in our RDN. As illustrated

in the figure, the detection results become increasingly ro-

bust as more designs of relation modeling are included.

Effect of Temporal Spanning Range T . To explore the

effect of temporal spanning range T in our RDN, we show
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Table 4. Performance and run time comparisons by using different

temporal spanning range T in our RDN.

# T 3 6 9 12 15 18 21 24

mAP (%) 80.3 80.7 80.9 81.3 81.6 81.8 81.7 81.7

runtime (ms) 90.1 90.3 91.5 93.0 93.5 94.2 97.3 103.1

Table 5. Performance comparisons by using different number of

relation module in basic stage.

# Nb 0 1 2 3 4

mAP (%) 75.4 79.4 80.9 80.8 80.4

the performance and run time by varying this number from

3 to 24 within an interval of 3 in Table 4. The best perfor-

mance is attained when the temporal spanning range is set

to T = 18. In particular, once the temporal spanning range

is larger than 12, the performances are less affected with

the change of the temporal spanning range, which eases the

selection of the temporal spanning range in our RDN prac-

tically. Meanwhile, enlarging the temporal spanning range

generally increases run time at inference. Thus, the tempo-

ral spanning range is empirically set to 18, which is a good

tradeoff between performance and run time.

Effect of Relation Module Number Nb in Basic Stage.

Table 5 shows the performances of employing different

number of relation module in basic stage. In the extreme

case of Nb = 0, no relation module is utilized and the model

degenerates to Faster R-CNN on single frame. With the

use of only one relation module, the mAP is increased from

75.4% to 79.4%. That basically validates the effectiveness

of modeling relation for object detection. The mAP is fur-

ther boosted up to 80.9% with the design of two modules

but the performance slightly decreases when stacking more

modules. We speculate that this may be the result of unnec-

essary information repeat from support frames and that dou-

ble proves the motivation of designing the advanced stage

in RDN. In practice, the number Nb is generally set to 2.

Effect of Sampling Number K in Basic Stage and

Sampling Ratio r% in Advanced Stage. We firstly vary

K from 25 to 300 in basic stage to explore the relation-

ship between the performance/run time and the sampling

number K. As shown in Table 6, the performances are

very slightly affected with the change of sampling number

K. Specifically, the best performance is attained when the

sampling number K is 75. Meanwhile, the run time at in-

ference is gradually increased when enlarging the sampling

number. Therefore, we set the sampling number K to 75

practically. Next, to investigate the effect of sampling ra-

tio r% in advanced stage, we further compare the results

of performance and run time by varying the sampling ratio

from 10% to 100% in Table 7. The best performance is ob-

tained when the sampling ratio is set as 20%. Meanwhile,

the performances are relatively smooth when the sampling

ratio varies. That practically eases the selection of of the

sampling ratio r% in advanced stage. In addition, when

the sampling ratio increases, the run time is significantly in-

Table 6. Performance and run time comparisons by using different

sampling number K in basic stage of our RDN.

# K 25 50 75 100 150 200 250 300

mAP (%) 80.2 80.5 80.9 80.7 80.4 80.4 80.2 80.1

runtime (ms) 80.0 81.7 84.9 86.3 94.9 107.2 125.3 152.7

Table 7. Performance and run time comparisons by using different

sampling ratio r% in advanced stage of our RDN.

# r (%) 10 20 30 40 50 60 80 100

mAP (%) 81.3 81.8 81.7 81.6 81.5 81.5 81.3 81.3

runtime (ms) 92.8 94.2 96.9 100.2 104.0 108.9 114.8 125.6

creased. Accordingly, the sampling ratio is empirically set

as r = 20%, which seeks a better tradeoff between perfor-

mance and run time.

Complementarity of Two Stages. In RDN, basic stage

augments reference proposals with relation features of sup-

portive proposals, which enhances reference proposals with

first-order relation from supportive proposals on a star-

graph. Then advanced stage progressively samples support-

ive proposals with high objectness scores and first enhances

sampled/advanced proposals with relation against all sup-

portive proposals. In this way, the advanced supportive pro-

posals is endowed with first-order relation from supportive

proposals on a full-connected graph. Next, advanced stage

strengthens reference proposals with advanced supportive

proposals. As such, the reference proposals are further en-

dowed with higher-order relation from supportive propos-

als, which are naturally complementary to basic stage.

6. Conclusions

We have presented Relation Distillation Networks archi-

tecture, which models object relation across frames to boost

video object detection. Particularly, we study the problem

from the viewpoint of employing multi-stage reasoning and

scheduling relation distillation progressively. To verify this,

we utilize RPN to generate object proposals in the reference

and support frames. The supportive pool is comprised of all

the proposals extracted from support frames. In the basic

stage, RDN measures the relation of each object proposal

in reference frame over all the proposals in the supportive

pool and augments the features with relation. In the ad-

vanced stage, RDN self adjusts the selected supportive pro-

posals with the relation against all the supportive ones firstly

and then capitalizes on such selected proposals to distill the

relation of each proposal in reference frame. Extensive ex-

periments conducted on ImageNet VID dataset validate our

proposal and analysis. More remarkably, we achieve to-

date the best reported mAP of 84.7%, after post-processing

of linking and rescoring.
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