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Abstract

Camera re-localization is an important but challeng-

ing task in applications like robotics and autonomous driv-

ing. Recently, retrieval-based methods have been consid-

ered as a promising direction as they can be easily general-

ized to novel scenes. Despite significant progress has been

made, we observe that the performance bottleneck of pre-

vious methods actually lies in the retrieval module. These

methods use the same features for both retrieval and rel-

ative pose regression tasks which have potential conflicts

in learning. To this end, here we present a coarse-to-fine

retrieval-based deep learning framework, which includes

three steps, i.e., image-based coarse retrieval, pose-based

fine retrieval and precise relative pose regression. With our

carefully designed retrieval module, the relative pose re-

gression task can be surprisingly simpler. We design novel

retrieval losses with batch hard sampling criterion and two-

stage retrieval to locate samples that adapt to the relative

pose regression task. Extensive experiments show that our

model (CamNet) outperforms the state-of-the-art methods

by a large margin on both indoor and outdoor datasets.

1. Introduction

The task of camera re-localization has long been stud-

ied in various visual SLAM systems [25] or structure from

motion (SfM) systems. These approaches are built on the

elegant multi-view geometry theory by optimizing the ge-

ometric constraints from low-level key points. Hand-craft

image descriptors (e.g., SIFT, ORB [28, 4]) are widely used

to find the correspondences between the local features ex-

tracted from images. The 6-DoF camera pose is then recov-

ered from such correspondences. However, these methods

have difficulty in dealing with texture-less scenes, or places

with drastic changes in illumination, occlusions and repet-

itive structures. Also, the computational expense is high.

Recently, a variety of machine learning algorithms have

been applied to this problem. Some methods based on Ran-

dom Forest [9, 23, 35, 40] establish 2D-3D matches to re-
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Figure 1: Our CamNet outperforms the state-of-the-art

image-based method MapNet++ [7] by a large margin. As a

retrieval-based model, the CamNet shows more accurate re-

trieval results than NN-Net [18]. The top 3 retrieval results

are displayed.

cover 6-DoF camera pose by applying RANSAC to achieve

impressing results. Combining the differentiable counter-

part of RANSAC and fully convolutional neural network

(FCN), [5, 6] are proposed for more robust 2D-3D matches.

While this approach achieves state-of-the-art results, it re-

quires additional depth maps associated with input images

at training time.

Inspired by the success of deep learning models, a series

of approaches [17, 41, 15, 16, 7, 38, 39] have been proposed

to regress the absolute camera pose directly from RGB im-

ages. In essence, these models “remember” the scene by

leveraging the expressive power of deep models. However,

it means that they have to be retrained for unseen scenes,

which largely limits their generalization capabilities. The

other category of deep learning methods [18, 3] builds a

database with extracted features of images from the target

scene as well as the ground truth absolute poses. Then given

a query image, it first retrieve the most similar image in the

database with its absolute poses and then predict the relative
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Table 1: A comparison of the four categories of methods. ‘RGB’ (image),‘3D’ (3D model/Depth) and ‘Seg’ (Segmentation)

mean the data that the model needs. ‘Generalized’ means the generalization capabilities of the model, i.e., used in new

scenarios without the model retraining.

Category Method RGB 3D Seg Generalized Accuracy

2D-3D matching DSAC [5], Active Search [30], SCoRe Forest [35] X X High

Semantic-based SVL[34],VlocNet++ [26] X X High

Absolute pose PoseNet[17, 16], MapNet[7],VLocNet[38] X Medium

Relative pose NN-Net[18],RelocNet [3] X Yes Low

Relative pose Ours X Yes High

pose based on the query image and the retrieved one. How-

ever, in practice, it is difficult to directly retrieve the optimal

database entry, which then impairs the relative pose regres-

sion accuracy. Our method belongs to this category, while

we tackle this problem by a novel coarse-to-fine strategy to

gradually get close to the best database entry.

In this paper, we propose a coarse-to-fine retrieval-based

framework for camera localization. Our framework has

the merits of good generalization ability as retrieval-based

models, as well as good performance as 2d-3d matching

models. Previous retrieval-based methods [18, 3] use shared

features for image retrieval and pose regression. However,

we argue that it is unreasonable because image retrieval

model should be focusing on learning scene similarities and

ignore subtle camera view angle changes, while pose re-

gression model needs to identify the very differences of

view angle changes between the paired images. Therefore,

these two tasks have potential conflicts in learning and may

have a bad effect on each other if all the features are shared.

To deal with this problem, we design a siamese architec-

ture with three branches for image-based coarse retrieval,

pose-based fine retrieval and relative pose regression, re-

spectively. Only the encoder of the network is shared while

the three tasks all have their own branches, and all the three

tasks can be jointly learned in an end-to-end manner.

Our contributions are three-fold: (1) We propose

a coarse-to-fine framework CamNet for camera re-

localization which is highly scalable and accurate. (2) Tak-

ing advantage of relative pose regression, we propose novel

retrieval losses and two-stage retrieval to further improve

the accuracy of camera re-localization. (3) We demonstrate

the generalization ability of our model. Extensive experi-

ments show our CamNet yields the state-of-the-art results

on three benchmark data sets.

2. Related Work

Previous works on camera re-localization can be mainly

divided into three categories, including 2D-3D matching lo-

calization, metric localization, and image retrieval localiza-

tion. There are also several researches working on semantic

camera pose refinement. A brief comparison of these cate-

gories is shown in Figure 1.

2.1. 2D3D Matching Localization

Based on 3D scene models that are typically recon-

structed by using SfM, 2D-3D correspondences are estab-

lished by using descriptor matching. The structure-based

methods employed one or more feature descriptors such

as SIFT [21] or LIFT [43]. Instead of using hand-crafted

features, [44, 27] learned to find better feature correspon-

dences. The 2D-3D correspondences are used to estimate

the camera pose of the query image by applying an n-point-

pose solver such as [31, 32] within a RANSAC loop [11].

Moreover, Schmidt et al. [33] advocated a new approach

to learn visual descriptors by harnessing a 3D generative

model to automatically label correspondences.

Rather than directly learning the matching function to

obtain 2D-3D correspondences via explicit feature match-

ing, some previous works implicitly represented the 3D

scene structure by predicting 3D scene coordinate using ei-

ther CNNs [19, 5, 8, 6, 9, 20] or random forests [23, 35, 40,

24, 9]. Taira et al. [36] predicted the 6DoF pose of a query

image with respect to a large indoor 3D map and pose ver-

ification. However, these methods may fail when handling

large-scale outdoor scenes [34].

However, the above approaches relied on 3D models,

which are expensive and time-consuming to construct and

collect. Although DSAC++ [6] demonstrated that scene co-

ordinate regression can be learned without ground truth 3D

model by a 3-step training, the necessity to carefully initial-

ize the depth of the scene is non-scalable and degenerates

the localization accuracy. In addition, Sattler et al. [32] ex-

perimentally demonstrated that large-scale 3D models are

not strictly necessary for accurate visual camera localiza-

tion. Different from the above work, the proposed method

is highly scalable to handle large-scale outdoor scenes with-

out the need for a 3D model.

2.2. Metric Localization

The metric localization methods aim to regresses the

metric position and orientation of the camera. For exam-

ple, PoseNet [17] trained a CNN to regress the camera

pose. PoseNet has been extended in many ways such as us-

ing LSTM to extract temporal information [41], localizing

over video sequences by exploiting the constraint of tem-
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Figure 2: The overall pipeline of our framework. The blue line shows the training flow of our retrieval module, and the

orange line shows the training flow of our precise relative pose regression. Best viewed in color.

poral smoothness [10], leveraging the weighted geometric

loss function [16] and using a Bayesian convolutional neu-

ral network to estimate the re-localization uncertainty [15].

Furthermore, MapNet [7] brings geometric constraints

and other cues such as visual odometry (vo), GPS, and IMU

into learning to learn from both labeled data and unlabeled

data. VLocNet [38] presented a multi-task model trained

with the auxiliary Geometric Consistency Loss function to

leverage relative pose information. VLocNet++ [39] simul-

taneously embedded geometric and semantic knowledge of

the world into the pose regression network by employing a

multitask learning approach.

The above approaches is effective for featureless indoor

environments, where the SIFT-based structure from motion

(SfM) may fail. However, these methods require learning

for specific scenarios and lack of generalization capabilities,

while our method is scalable and flexible to be extend to

new scenarios without retraining the model.

2.3. Image Retrieval Localization

Visual camera localization is often treated as pose ap-

proximation of a query image , where the pose is estimated

by the most similar images retrieved from the database.

Germain et al. [12] introduced condition-specific sub-

networks, which enables the computation of global image

descriptors. Based on the Bag of Words (BoW) paradigm

and the storage of image feature, Disloc [29, 2] leads to

large memory consumptions for large-scale scenes. Differ-

ent from the DenseVLAD [37] which relies on the hand-

crafted RootSIFT descriptors, the NetVLAD [1] is pre-

sented to learn the descriptors by CNN. However, these

methods only predict an approximate location of the query,

not an exact 6DoF pose.

Moreover, NN-Net [18] learned relative poses from pairs

of RGB images to improve generalization capability with-

out training of scene-specific deep networks. Balntas et al.

[3] proposed to learn suitable convolutional representations

for camera pose retrieval based on nearest neighbour match-

ing and continuous metric learning-based feature descrip-

tors. However, due to the difficulty in both retrieval and rel-

ative pose regression, the direct combination of these two

components severely degrades their localization accuracy.

Here, our method attempt to refine each component in a

coarse-to-fine scheme and improve the final results with a

considerable margin.

3. Methodology

Overview. We propose a retrieval-based coarse-to-fine

framework CamNet for camera pose re-localization. The

proposed model is based on a Siamese architecture, where

the input to our model is a set of paired images with camera

frustum overlapped. Our model consists of three modules

including an image-based coarse retrieval module (ICR), a

pose-based fine retrieval module (PFR), and a precise rela-
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tive pose regression module (PRP). All these three modules

share the same encoder network.

We design a two-stage retrieval in our framework. In

general, given a query image, we first perform a nearest

neighbour search by the ICR module from a database to

find an image, which is most similar with the query im-

age. Then, we perform coarse relative pose regression by

our PFR module and obtain an coarse camera pose estima-

tion. With this coarse camera pose estimation, we retrieve

the closest pose and perform relative pose regression by our

PRP module to obtain an accurate pose estimation.

The pipeline of our approach is illustrated in Figure 2.

We construct a set of image pairs to train the Siamese net-

work. Each image has its ground truth camera pose, which

is a 4 × 4 matrix M in homogeneous coordinates. Specif-

ically, M =

(

R t

0 1

)

where R is a 3-by-3 rotation ma-

trix and t is a 3-by-1 translation vector. The loss function

through our entire framework is as follows:

L = Lfrustum + Langle + Ltriplet + LPFR + LPRP, (1)

In the following, we will introduce each module and loss

function of our model in detail.

3.1. Imagebased Coarse Retrieval Module (ICR)

As shown at the top of Fig 2, we learn a ICR module

before applying the PFR module. The image retrieval pro-

cess is to find the image, which is most likely to produce an

accurate relative pose estimation from an image database.

The key question is what kind of data is essential to pose

regression. The intuitive idea is that the larger the overlap-

ping area between images, the better the pose regression.

Thus, the overlap of camera frustum is suitable for learning

pose-specific feature descriptors as [3] did.

However, different from [3] that only considered the one-

way frustum overlap, we consider the bilateral camera frus-

tum overlap in our model, which can better handle large

translation. Nevertheless, we find that a pair of images with

large camera frustum overlap is sometimes taken from the

opposite direction. This leads to a huge relative rotation,

which is difficult to predict by using a deep model. To

solve this problem, we introduce a batch hard-sample min-

ing strategy by combining a hard triplet loss and an angle-

based auxiliary loss.

3.1.1 Bilateral Frustum Loss

We use the bilateral camera frustum distance d to devise

our coarse retrieval loss function. In training, for RGB-D

based indoor datasets, we utilize the depth and camera in-

trinsics K to calculate camera frustum overlap. For out-

door datasets, we propose an alternative that does not re-

quire depth information. Note that our model predicts cam-

era pose by using only a RGB image in the inference phase,

without using depth information and 3D models.

Given a pair of images with its ground truth poses

denoted by R1, t1,R2, t2 and depth maps denoted by

D1,D2, we can project pixels of the first image to the world

coordinate system, and then project back to the pixel co-

ordinate system of the second image. Formally, given the

principal point coordinate (px, py) and the focal length f of

the camera, we have

K =

(

f px
f py

1

)

and X1 =

(

x
y
1

)

,

where X1 is the pixel coordinate of the first image. Then

the corresponding coordinate X
′

2 of the second image can

be obtained by the following

X
′

2 = K(R2
⊤
R1K

−1
X1D1(py, px) + t1 − t2), (2)

where D1(py, px) is the depth value of X1. We sample

a uniform grid of pixels with size 10 × 10 from the first

image, and treat the ratio of the projected coordinates inside

area of the second image as the camera frustum overlap θ1.

Similarly, the reverse camera frustum overlap is denoted as

θ2.

For outdoor datasets without depth information, we use

the ORB (ORiented Brief) similarity instead of the cam-

era frustum overlap. Specifically, we extract the ORB

key points S1, S2 of the two images, and perform a brute-

force matching to get a set of matching pairs, denoted

as BFMatcher(S1, S2), which is explained in Appendix.

Then, the ORB similarity denoted by θ′1 is defined as

θ′1 =
num

(

BFMatcher(S1, S2) > ξ
)

num
(

BFMatcher(S1, S2)
) , (3)

where len(·) represents the number of corresponding key

points, ξ is a threshold of the feature distance used to control

the matching, and the reverse ORB similarity is denoted as

θ′2. We set ξ to 50 in all experiments for outdoor datasets.

By combining the above definitions, our camera frustum

loss is defined by

Lfrustum = ‖d̂1 − d1‖2 + ‖d̂2 − d2‖2. (4)

For example, d1 = 1 − θ1 denotes the camera frustum dis-

tance and d̂1 denotes the prediction of the frustum distance.

Similarly, we predict the ORB similarity d1 = 1 − θ′1 for

outdoor datasets.

3.1.2 Angle-based Loss

Since the camera frustum overlap is insensitive to orienta-

tion between the pairs of images, we introduce another loss
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Figure 3: The training data distribution on 7-Scenes dataset

of our two modules. The PFR module and the PRP module

are displayed in red and green.

function, the angle-based auxiliary loss, for more accurate

image retrieval. The camera rotation angle denoted as α
corresponding to two rotation matrices can be defined by

α = arccos(
trace(R⊤

1 R2 − 1)

2
)/π. (5)

Then we define our angle-based auxiliary loss by

Langle = ‖α̂− α‖2, (6)

where α̂ is the prediction of the camera rotation angle.

3.1.3 Hard Triplet Loss

By learning the rotation angle, the weakness of the cam-

era frustum overlap can be alleviated. To further improve

the accuracy of image retrieval, we introduce a batch hard

sampling with a hard-triplet loss by following [42].

In particular, for each anchor image in the training set,

we randomly combine it with some other images to form

image pairs. Then, we divide all image pairs into three

categories including easy, moderate, and hard, according to

their camera frustum overlap as well as their relative rota-

tions and translations. For each anchor image of a training

mini-batch with batch size N , we randomly sample one im-

age from each of the above three categories to construct a

hard sampling pool.

Our goal is to make an image pair from the easy category

has smaller distance than that from the moderate category in

the feature space. The same goal applies between the mod-

erate and the hard category. Formally, let f i
a, f

i
e, f

i
m, f i

h de-

note the feature of the ith anchor image, easy image, mod-

erate image, and hard image respectively, our hard-triplet

loss is defined by

Ltriplet =
(

max
i

(‖f i
a, f

i
e‖2)−min

j
(‖f j

a , f
j
m‖2) + β

)

+

+
(

max
k

(‖fk
a , f

k
m‖2)−min

l
(‖f l

a, f
l
h‖2) + β

)

+
, (7)

where (z)+ = max(z, 0) is a maximum function and β is

the value of the margin set to be 0.1, allowing the network

Algorithm 1 The pose refinement algorithm

Input: Anchor image Ia

Target images Ie, Im, Ih
Parameter λ = 0.5, α = 0.04, ǫ = 0.02

for each batch do

1. Obtain the relative pose ∆e
M ,∆m

M ,∆h
M by the PFR mod-

ule;

2. Calculate estimated camera pose of the anchor image as

M̂e,M̂m,M̂h, where M̂ = {t̂, q̂}.

3. ζ(M̂ ,M) = norm(‖t̂, t‖2) + 2 arccos(abs(q̂ · q))/π.

for each M̂ do

4. Find the closest image I
′ with argminI′ ζ(M̂ ,M

I
′);

5. Construct pairs (Ia, I
′);

end for

6. Train the PRP module with {(Ia, I
′

e), (Ia, I
′

m), (Ia, I
′

h)};

end for

to distinguish the positive samples from the negative ones.

The maximum function of each line shortens the distances

of positive pairs, while the minimum function enlarges the

distances of negative pairs.

3.2. Posebased Fine Retrieval Module (PFR)

Now we introduce the PFR module as shown in the mid-

dle of Fig.2. It is known that it is difficult to accurately

estimate the camera position and orientation by using RGB

images [17, 7, 18]. However, we find that with a precise re-

trieval system, the relative pose regression task can be sur-

prisingly simpler.

Formally, the ground-truth relative orientation denoted

as ∆R = R
⊤

1 R2 and translation denoted as t2 − t1 are

represented by the quaternion ∆q and ∆t following [7, 17,

18]. For each training batch, we obtain the relative pose

∆̂t and ∆̂R estimated by the regression part of our PFR

module. Then, the coarse camera position and orientation of

the anchor image can be estimated by computing R2∆̂
−1

R

and t2 − ∆̂t. With this coarse camera pose estimation, we

retrieve the image that is closest to the estimated anchor

pose from the database, and combine the retrieved image

with the anchor image into a pair. By using this image pairs

as input data, our precise PRP module learns learns in a

easier way to make the pose estimation better. The pose-

based retrieval algorithm is given in Algorithm 1.

We train our PFR module by using Euclidean loss with

the following objective loss function,

LPFR = ‖∆̂t −∆t‖1 + ‖
∆̂q

‖∆̂q‖
−∆q‖1, (8)

where ∆̂t and ∆̂q denote the predicted relative pose.

Note that [17, 18] used the l2 Euclidean norm. However,

we find that l1 Euclidean norm is much better to estimate

position and orientation. Here we simply set the weight of

2875



Table 2: Ablation study on the 7-Scenes dataset. Median translation error (◦) and rotation error (m) is reported.

Scene Br Br + Fl Br + Al Br + Bl Nr Nr + Pr NR + Pr + Rp Full

Chess 0.30m, 12.86
◦

0.25m, 12.93
◦

0.29m, 10.49
◦

0.23m, 11.22
◦

0.21m, 9.12
◦

0.08m, 4.40
◦

0.05m, 2.02
◦

0.04m, 1.73
◦

Fire 0.35m, 15.09
◦

0.32m, 15.19
◦

0.33m, 11.03
◦

0.37m, 14.88
◦

0.24m, 10.37
◦

0.07m, 4.08
◦

0.04m, 2.02
◦

0.03m, 1.74
◦

Heads 0.31m, 15.52
◦

0.19m, 17.94
◦

0.20m, 12.25
◦

0.21m, 14.46
◦

0.22m, 8.62
◦

0.09m, 4.97
◦

0.06m, 2.25
◦

0.05m, 1.98
◦

Office 0.42m, 18.38
◦

0.27m, 13.24
◦

0.27m, 9.56
◦

0.29m, 11.46
◦

0.24m, 9.78
◦

0.08m, 4.20
◦

0.05m, 1.86
◦

0.04m, 1.62
◦

Pumpkin 0.31m, 13.03
◦

0.29m, 13.22
◦

0.31m, 10.40
◦

0.30m, 11.25
◦

0.27m, 11.29
◦

0.07m, 3.85
◦

0.05m, 1.88
◦

0.04m, 1.64
◦

RedKitchen 0.30m, 10.44
◦

0.26m, 13.59
◦

0.41m, 10.86
◦

0.28m, 11.70
◦

0.28m, 10.31
◦

0.08m, 3.86
◦

0.05m, 1.91
◦

0.04m, 1.63
◦

Stairs 0.33m, 18.16
◦

0.22m, 16.41
◦

0.31m, 12.59
◦

0.32m, 10.63
◦

0.22m, 9.18
◦

0.08m, 3.91
◦

0.05m, 1.65
◦

0.04m, 1.51
◦

Average 0.33m, 14.78
◦

0.26m, 14.65
◦

0.31m, 11.03
◦

0.28m, 12.23
◦

0.25m, 9.96
◦

0.08m, 4.18
◦

0.05m, 1.94
◦

0.04m, 1.69
◦

the position and orientation to 1:1, resulting in nearly opti-

mal results.

3.3. Precise Relative Pose Regression Module (PRP)

Compared to the model that estimates the relative pose

directly such as [18, 3], our model improves the accuracy of

camera re-localization by the pose-based retrieval. Through

this module, the range of relative pose can be further re-

duced. Thus the relative pose regression task is surprisingly

simpler.

We introduce the precise PRP module for relative pose

regression. Although the PFR module and the PRP module

have the same structure, the data distributions they learned

are different, which make them used for two different tasks:

the fine image retrieval and the fine pose regression. With

the efficient data distribution, the relative pose regression

can be learned more easily by our PRP module. The ker-

nel density estimation distributions of the training data on

7-Scenes dataset for these two modules are shown in Fig-

ure 3. We train our PRP module with the same l1 norm as

the above PFR module,

LPRP = ‖∆̂′

t −∆
′

t‖1 + ‖
∆̂

′

q

‖∆̂′
q‖

−∆
′

q‖1, (9)

where ∆
′

t and ∆
′

q denote the relative pose.

3.4. Inference Stage

In this section, we discuss our inference framework. We

first create a database using the key-frame of the training

data. For each ground truth absolute camera pose M , we

store its corresponding retrieval descriptor fr through the

ICR module and two types of pose representations fc, ff
through our PFR and PRP module, respectively. Our infer-

ence process is as follows:

• Given a query image, with the feature descriptor fq
r

obtained by our ICR module, we perform top K Near-

est Neighbour search from the database, where K is 3

in all experiments.

• Coarse representation of query image fq
c obtained by

our PFR decoder and its top K ranked reference repre-

sentations {f1
c , ..., f

k
c } are concatenated and fed to our

PFR regressor to predict coarse estimated poses.

• For each estimated pose, we retrieve the closest pose

from the database as the new reference pose. Fine

representation of query image fq
f obtained by our

PRP decoder and its new reference representations

{f1
f , ..., f

k
f } are concatenated and fed to our PRP re-

gressor to predict accurate poses {M̂1
f , ...,M̂

k
f }.

• For the inference of sequence data, we leverage two

frames before the query frame and estimate the poses

of query frame M̂
seq1,M̂ seq2 by our PRP regressor.

• Finally, the poses {M̂1
f , ...,M̂

k
f ,M̂

seq1,M̂ seq2} are

filtered by a RANSAC-based algorithm, as in [18].

The final result is averaged from all inliers.

Note that our three modules share a same encoder thus

the encoder only need to be forwarded once. Compared to

the encoder, the time spent in our three modules is little.

4. Experiments

4.1. Datasets

We evaluate our framework for camera re-localization on

three benchmark datasets: the 7-Scenes [35], the RobotCar

[22] and the ApolloScape datasets [14].

7-Scenes is a collection of tracked RGB-D camera frames

of seven indoor environments. All scenes were recorded

from a handheld Kinect RGB-D camera at 640× 480 reso-

lution. Multiple sequences were captured for each environ-

ment, and each sequence is 500 or 1000 frames.

Oxford RobotCar is a large-scale countryside-view dataset

which contains over 100 repetitions of a consistent route

(about 10km) through central Oxford captured twice a week

over a period of over a year. Thus the dataset captures dif-

ferent combinations of weather, traffic, pedestrians, con-

struction and roadworks. Following [7, 10], we used the

LOOP subset of this dataset, with a total length of 1120m.

ApolloScape is a large-scale city-view dataset that consists

of RGB videos, corresponding GPS and dense 3D point
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Figure 4: Camera localization results on Fire-seq-04 and Redkitchen-seq-12 sequences of the 7-Sevenscenes dataset. The ground truth

camera trajectory is the green line and the red lines show the camera pose predictions.

Table 3: Median localization error on the 7-Scenes dataset. Note that [5, 30] are 3D-based methods.

Scene PoseNet2 [16] MapNet [7] NN-Net [18] RelocNet [3] VLocNet [38] DSAC [5] Active Search [30] Ours

Chess 0.13m, 4.48
◦

0.08m, 3.25
◦

0.13m, 6.46
◦

0.12m, 4.14
◦

0.04m, 1.71
◦

0.02m, 1.2
◦

0.04m, 1.96
◦

0.04m, 1.73
◦

Fire 0.27m, 11.3
◦

0.27m, 11.69
◦

0.26m, 12.72
◦

0.26m, 10.40
◦

0.04m, 5.34
◦

0.04m, 1.5
◦

0.03m, 1.53
◦

0.03m, 1.74
◦

Heads 0.17m, 13.0
◦

0.18m, 13.25
◦

0.14m, 12.34
◦

0.14m, 10.50
◦

0.05m, 6.64
◦

0.03m, 2.7
◦

0.02m, 1.45
◦

0.05m, 1.98
◦

Office 0.19m, 5.55
◦

0.17m, 5.15
◦

0.21m, 7.35
◦

0.18m, 5.32
◦

0.04m, 1.95
◦

0.04m, 1.6
◦

0.09m, 3.61
◦

0.04m, 1.62
◦

Pumpkin 0.26m, 4.75
◦

0.22m, 4.02
◦

0.24m, 6.35
◦

0.26m, 4.17
◦

0.04m, 2.28
◦

0.05m, 2.0
◦

0.08m, 3.10
◦

0.04m, 1.64
◦

RedKitchen 0.23m, 5.35
◦

0.23m, 4.93
◦

0.24m, 8.03
◦

0.23m, 5.08
◦

0.04m, 2.20
◦

0.05m, 2.0
◦

0.07m, 3.37
◦

0.04m, 1.63
◦

Stairs 0.35m, 12.4
◦

0.30m, 12.08
◦

0.27m, 11.82
◦

0.28m, 7.53
◦

0.10m, 6.48
◦

1.17m, 33.1
◦

0.03m, 2.22
◦

0.04m, 1.51
◦

Average 0.23m, 8.12
◦

0.21m, 7.77
◦

0.21m, 9.30
◦

0.21m, 6.73
◦

0.05m, 3.80
◦

0.20m, 6.3
◦

0.05m, 2.46
◦

0.04m, 1.69
◦

clouds. The dataset is recorded from six roads under dif-

ferent lighting conditions with stereo pair of images. Each

road of the dataset has multiple records.

4.2. Implementation Details

Specifically, the shared encoder contains layer 1-3 of

ResNet34 [13] and layer 4 is duplicated for three mod-

ules. The weights are initialized and fine-tuned from the

pre-trained model on ImageNet classification task. In each

branch, the 512D features of two images are concatenated

and then passed through the regressor which consists two

fully connected layers (FC), where the dimension of the first

FC layer is 512 and the second FC layer is task-specific.

The FC layers are initialized randomly.

The training images are resized to 224× 224 pixels. We

perform flip, random gaussian blur and color jittering with

a threshold 0.4 for data augmentation. The network is opti-

mized by SGD, where momentum and weight decay are set

to 0.9 and 0.0001 respectively. We take a mini-batch size N
of 128 on 8 TITAN Xp GPUs with synchronous Batch Nor-

malization. We use the ‘poly’ learning rate policy and set

base learning rate to 0.01 and power to 0.9. The maximum

number of epochs for training process is set to 300.

4.3. Ablation Study

Our coarse-to-fine framework has three stages: image-

based retrieval with novel losses, pose-based fine retrieval,

final pose estimation. To show the contribution of each part

of our full CamNet, we make comparison to its seven sim-

plified versions: (1) Br – the basic retrieval results used in

[18]. (2) Br + Fl – the retrieval results with bilateral frus-

tum loss. (3) Br + Al – the retrieval results with angle-based

loss. (4) Br + Bl – the retrieval results with batch hard sam-

pling loss. (5) Nr – our novel retrieval results with all losses.

(6) Nr + Pr – the estimated pose of our PFR module. (7) NR

+ Pr + Rp – the estimated pose of our PRP module. (8) Full

– the final pose of our framework averaged from all inliers.

The ablation study results are presented in Table 2. It can

be seen that: (1) The performance continuously increases

when more components are used for camera re-localization,

showing the contribution of each part. (2) The original re-

trieval is the bottleneck of localization accuracy. The re-

trieval performance has been greatly improved by our three

losses. (3) Separating retrieval and relative pose regression

into a multi-branch architecture with shared weights ben-

efits both tasks. (4) Our bilateral frustum loss focuses on

improving the retrieval performance of translation, while

our angle-based loss focuses on improving the retrieval per-

formance of orientation. The batch hard sampling greatly

improves the retrieval performance of the confusing scene,

such as Stairs. (5) The estimated pose of our PFR module

can be further improved by our PRP module, which shows

the effectiveness of our coarse-to-fine framework.
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Figure 5: Camera localization results on the LOOP scene of the Oxford RobotCar dataset. The ground truth camera trajectory is the green

line and the red lines show the camera pose predictions. The caption shows the mean translation error (m) and mean rotation error (◦).

4.4. Comparative results

4.4.1 Experiments on the Indoor Dataset

We compare our coarse-to-fine model to the state-of-the-art

alternatives [17, 16, 7, 18, 38, 5, 30, 35, 3] on the 7-Scenes

dataset. Since 7-Scenes is a indoor dataset with 3D mod-

els, both image-based methods and 3D model-based meth-

ods are included. Following same convention of prior work

[17, 7, 18], we use ResNet34 [13] as our base network and

compute the median error for camera translation and rota-

tion. Table 3 shows the quantitative comparisons. Since the

calculation of our frustum overlap requires depth informa-

tion, we provide a version that uses ORB similarity rather

than frustum overlap. The median localization error of our

RGB trained model for 7-Scenes is 0.05m, 1.83◦, which

is superior to the state-of-the-art image-based methods.

We observe that: our model not only outperforms the

state-of-the-art image-based methods by a large margin, but

also yields comparable results with 3d-based models. Fig-

ure 4 shows the camera trajectories for testing sequences in

the 3D plot. It can be seen that our model fits the camera

trajectory best and significantly outperforms other image-

based models.

4.4.2 Experiments on the Outdoor Dataset

Since 3D-based models, such as [6, 5, 35], fail to handle

large-scale outdoor scenes, we compare our coarse-to-fine

model to the image-based deep models [17, 7, 18, 38, 3] on

the RobotCar and ApolloSpace datasets. We train and test

our model using the same settings as on 7-Scenes dataset.

Table 4 shows quantitative comparisons on ApolloSpace

dataset. In experiments ‘road11’ and ‘road12’, we use dif-

ferent records of the same road for training and testing.

We also conduct generalized setting which is trained on

road11 but tested on road12 to show the generalization abil-

ity of our model. Note that this setting can only be used

on retrieval-based methods. It can be seen that our model

outperforms the state-of-the-art image-based methods and

shows excellent generalization ability.

Figure 5 shows the camera trajectories for testing se-

quences of RobotCar dataset. We observe that: (1) Al-

Table 4: Quantitative comparisons on AppoloSpace dataset.

‘generalized’ means the setting that the model is trained on

road11 but tested on road12.

Method road11 road12 generalized

PoseNet [17] 13.85m, 3.49◦ 11.24m, 3.55◦ –

MapNet [7] 8.30m, 2.77◦ 6.83m, 2.72◦ –

NN-Net [18] 6.90m, 3.28◦ 6.34m, 3.33◦ 16.60m, 3.49◦

Ours 5.24m, 2.57◦
5.19m, 2.70◦

8.63m, 2.97◦

though the retrieval-based approach [18] performs well on

the ApolloSpace dataset, it fails to process the RobotCar set.

This is because ApolloSpace is a city-view dataset that is

easier to retrieve, while RobotCar is countryside-view, that

all roads are similar and the retrieval is difficult. Compared

with [18], we show huge improvements through our care-

fully designed two-stage retrieval module. (2) Our model

outperforms the methods of learning absolute pose. Map-

Net++ [7] uses pose-graph optimization (PGO) to refine

the poses agree with the input visual odometries and obtain

smoother results. However, our model uses a combination

of relative poses between sequences and those of query im-

age and retrieved images and to get better results.

5. Conclusion

In summary, we present a coarse-to-fine retrieval-based

deep learning framework (CamNet) with our three modules:

the image-based coarse retrieval module, the pose-based

fine retrieval module and the precise relative pose regression

module. We show that the relate pose regression task can

be surprisingly simpler with our carefully designed mod-

ules. We also design novel retrieval losses and refinement

algorithm for our coarse-to-fine network. We show that dif-

ferent loss functions benefit the retrieval in different ways

and data distribution is critical to retrieval accuracy. Ex-

tensive experiments show that our model outperforms the

state-of-the-art methods by a large margin on both indoor

and outdoor datasets.
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