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Abstract

In Visual Question Answering (VQA), answers have a

great correlation with question meaning and visual con-

tents. Thus, to selectively utilize image, question and an-

swer information, we propose a novel trilinear interac-

tion model which simultaneously learns high level asso-

ciations between these three inputs. In addition, to over-

come the interaction complexity, we introduce a multimodal

tensor-based PARALIND decomposition which efficiently

parameterizes trilinear interaction between the three in-

puts. Moreover, knowledge distillation is first time ap-

plied in Free-form Opened-ended VQA. It is not only for

reducing the computational cost and required memory but

also for transferring knowledge from trilinear interaction

model to bilinear interaction model. The extensive exper-

iments on benchmarking datasets TDIUC, VQA-2.0, and

Visual7W show that the proposed compact trilinear inter-

action model achieves state-of-the-art results when using a

single model on all three datasets. The source code is avail-

able at https://github.com/aioz-ai/ICCV19_

VQA-CTI.

1. Introduction

The aim of VQA is to find out a correct answer for a

given question which is consistent with visual content of a

given image [25, 3, 10]. There are two main variants of

VQA which are Free-Form Opened-Ended (FFOE) VQA

and Multiple Choice (MC) VQA. In FFOE VQA, an answer

is a free-form response to a given image-question pair input,

while in MC VQA, an answer is chosen from an answer list

for a given image-question pair input.

Traditional approaches to both VQA tasks mainly aim to

learn joint representations between images and questions,

while the answers are treated in a “passive” form, i.e., the

answers are only considered as classification targets. How-

ever, an answer is expected to have high correlation with its

corresponding question-image input, hence a jointly and ex-

plicitly information extraction from these three inputs will

give a highly meaningful joint representation. In this paper,

† indicates equal contribution.

we propose a novel trilinear interaction model which simul-

taneously learns high level associations between all three

inputs, i.e., image, question, and answer.

The main difficulty in trilinear interaction is the dimen-

sionality issue which causes expensive computational cost

and huge memory requirement. To tackle this challenge, we

propose to use PARALIND decomposition [6] which fac-

torizes a large tensor into smaller tensors which reduces the

computational cost and the usage memory.

The proposed trilinear interaction takes images, ques-

tions and answers as inputs. However, answer information

in FFOE VQA [1, 40, 26, 39] is only available in the train-

ing phase but not in the testing phase. To apply the trilinear

interaction for FFOE VQA, we propose to use knowledge

distillation to transfer knowledge from trilinear model to

bilinear model. The distilled bilinear model only requires

pairs of image and question as inputs, hence it can be used

for the testing phase. For MC VQA [47, 19, 27, 15, 30, 44],

the answer information can be easily extracted, thanks to

the given answer list that contains few candidate answers

for each image-question pair and is available in both train-

ing and testing phases. Thus, the proposed trilinear inter-

action can be directly applied to MC VQA. To evalu-

ate the effectiveness of the proposed model, the extensive

experiments are conducted on the benchmarking datasets

TDIUC, VQA-2.0, and Visual7W. The results show that the

proposed model achieves state-of-the-art results on all three

datasets.

The main contributions of the paper are as follows. (i)

We propose a novel trilinear interaction model which si-

multaneously learns high level joint presentation between

image, question, and answer information in VQA task. (ii)

We utilize PARALIND decomposition to deal with the di-

mensionality issue in trilinear interaction. (iii) To make the

proposed trilinear interaction applicable for FFOE VQA,

we propose to use knowledge distillation for transferring

knowledge from trilinear interaction model to bilinear in-

teraction model. The remaining of this paper is organized

as follows. Section 2 presents the related work. Section 3

presents the proposed compact trilinear interaction (CTI).

Section 4 presents the proposed models when applying CTI

to FFOE VQA and MC VQA. Section 5 presents ablation

studies, experimental results and analysis.

1392



2. Related Work

Joint embedding in Visual Question Answering.

There are different approaches have been proposed for

VQA [18, 5, 8, 45, 20, 42, 24, 2, 28, 23, 38, 46, 29, 40].

Most of the successful methods focus on learning joint rep-

resentation between the input question and image [8, 5, 18,

45]. In the state-of-the-art VQA, the features of the input

image and question are usually represented under matrix

forms. E.g., each image is described by a number of in-

terested regions, and each region is represented by a feature

vector. Similar idea is applied for question, e.g., an question

contains a number of words and each word is represented by

a feature vector. A fully expressive interaction between an

image region and a word should be the outer product be-

tween their two corresponding vectors [8]. The outer prod-

uct allows a multiplicative interaction between all elements

of both vectors. However, a fully bilinear interaction using

outer product between every possible pairs of regions and

words will dramatically increase the output space. Hence

instead of directly computing the fully bilinear with outer

product, most of works try to compress or decompose the

fully bilinear interaction.

In [8], the authors proposed the Multimodal Compact

Bilinear pooling which is an efficient method to compress

the bilinear interaction. The method works by project-

ing the visual and linguistic features to a higher dimen-

sional space and then convolving both vectors efficiently

by using element-wise product in Fast Fourier Transform

space. In [5], the authors proposed Multimodal Tucker Fu-

sion which is a tensor-based Tucker decomposition to ef-

ficiently parameterize bilinear interaction between visual

and linguistic representations. In [45], the author proposed

Factorized Bilinear Pooling that uses two low rank matri-

ces to approximate the fully bilinear interaction. Recently,

in [18] the authors proposed Bilinear Attention Networks

(BAN) that finds bilinear attention distributions to utilize

given visual-linguistic information seamlessly. BAN also

uses low rank approximation to approximate the bilinear in-

teraction for each pair of vectors from image and question.

There are other works that consider answer information,

besides image and question information, to improve VQA

performance [16, 9, 36, 14, 41, 34]. Typically, in [14], the

authors learned two embedding functions to transform an

image-question pair and an answer into a joint embedding

space. The distance between the joint embedded image-

question and the embedded answer is then measured to de-

termine the output answer. In [41], the authors computed

joint representations between image and question, and be-

tween image and answer. They then learned a joint embed-

ding between the two computed representations. In [34],

the authors computed “ternary potentials” which capture the

dependencies between three inputs, i.e., image, question,

and answer. For every triplet of vectors, each from each

different input, to compute the interaction between three

vectors, instead of calculating the outer products, the au-

thor computed the sum of element-wise product of the three

vectors. This greatly reduces the computational cost but it

might not be expressive enough to fully capture the complex

associations between the three vectors.

Different from previous works that mainly aim to learn

the joint representations from pairs of modalities [8, 5, 18,

45, 14, 41] or greatly simplify the interaction between the

three modalities by using the element-wise operator [34], in

this paper, we propose a principle and direct approach – a

trilinear interaction model, which simultaneously learns a

joint representation between three modalities. In particular,

we firstly derive a fully trilinear interaction between three

modalities. We then rely on a decomposition approach to

develop a compact model for the interaction.

Knowledge Distillation. Knowledge Distillation is a

general approach for transferring knowledge from a cum-

bersome model (teacher model) to a lighten model (student

model) [13, 11, 33, 7, 4]. In FFOE VQA, the trilinear in-

teraction model, which takes image, question, and answer

as inputs, can only be applied for training phase but not for

testing phase due to the omission of answer in testing. To

overcome this challenge and also to reduce computational

cost, inspired from the Hinton’s seminar work [13], we pro-

pose to use knowledge distillation to transfer knowledge

from trilinear model to bilinear model.

3. Compact Trilinear Interaction (CTI)

3.1. Fully parameterized trilinear interaction

Let M = {M1,M2,M3} be the representations of three

inputs. Mt ∈ R
nt×dt , where nt is the number of chan-

nels of the input Mt and dt is the dimension of each chan-

nel. For example, if M1 is the region-based representation

for an image, then n1 is the number of regions and d1 is

the dimension of the feature representation for each region.

Let mte ∈ R
1×dt be the eth row of Mt, i.e., the feature

representation of eth channel in Mt, where t ∈ {1, 2, 3}.

The joint representation resulted from a fully parameter-

ized trilinear interaction over the three inputs is presented

by z ∈ Rdz which is computed as follows

zT = ((T ×1 vec(M1))×2 vec(M2))×3 vec(M3) (1)

where T ∈ RdM1
×dM2

×dM3
×dz is a learning tensor; dMt

=
nt × dt; vec(Mt) is a vectorization of Mt which outputs a

row vector; operator ×i denotes the i-mode tensor product.

The tensor T helps to learn the interaction between the

three input through i-mode product. However, learning

such a large tensor T is infeasible when the dimension dMt

of each input modality is high, which is the usual case in

VQA. Thus, it is necessary to reduce the size T to make the

learning feasible.

Inspired by [43], we rely on the idea of unitary atten-

tion mechanism. Specifically, let zp ∈ R
dz be the joint
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representation of pth triplet of channels where each chan-

nel in the triplet is from a different input. The represen-

tation of each channel in a triplet is m1i
,m2j

,m3k
, where

i ∈ [1, n1], j ∈ [1, n2], k ∈ [1, n3], respectively. There

are n1 × n2 × n3 possible triplets over the three inputs.

The joint representation zp resulted from a fully parameter-

ized trilinear interaction over three channel representations

m1i
,m2j

,m3k
of pth triplet is computed as

zTp =
(

(Tsc ×1 m1i
)×2 m2j

)

×3 m3k
(2)

where Tsc ∈ Rd1×d2×d3×dz is the learning tensor between

channels in the triplet.

Follow the idea of unitary attention [43], the joint rep-

resentation z is approximated by using joint representations

of all triplets described in (2) instead of using fully param-

eterized interaction over three inputs as in (1). Hence, we

compute

z =
∑

p

Mpzp (3)

Note that in (3), we compute a weighted sum over all possi-

ble triplets. The pth triplet is associated with a scalar weight

Mp. The set of Mp is called as the attention map M, where

M ∈ Rn1×n2×n3 . The attention map M resulted from a

reduced parameterized trilinear interaction over three inputs

M1,M2 and M3 is computed as follows

M = ((TM ×1 M1)×2 M2)×3 M3 (4)

where TM ∈ Rd1×d2×d3 is the learning tensor of attention

map M. Note that the learning tensor TM in (4) has a re-

duced size compared to the learning tensor T in (1).

By integrating (2) into (3), the joint representation z in

(3) can be rewritten as

zT =

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

Mijk

((

(Tsc ×1 m1i
)×2 m2j

)

×3 m3k

)

(5)

where Mijk in (5) is actually a scalar attention weight Mp

of the attention map M in (4).

It is also worth noting from (5) that to compute z, in-

stead of learning the large tensor T ∈ RdM1
×dM2

×dM3
×dz

in (1), we now only need to learn two smaller tensors

Tsc ∈ R
d1×d2×d3×dz in (2) and TM ∈ Rd1×d2×d3 in (4).

3.2. Parameter factorization

Although the large tensor T of trilinear interaction

model is replaced by two smaller tensors TM and Tsc, the

dimension of these two tensors still large which makes the

learning difficult. To further reduce the computational com-

plexity, the PARALIND decomposition [6] is applied for

TM and Tsc. The PARALIND decomposition for the learn-

ing tensor TM ∈ Rd1×d2×d3 can be calculated as

TM ≈

R
∑

r=1

((Gr ×1 W1r
)×2 W2r

)×3 W3r
(6)
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Figure 1. PARALIND decomposition for a tensor TM.

where R is a slicing parameter, establishing a trade-off be-

tween the decomposition rate (which is directly related to

the usage memory and the computational cost) and the per-

formance. Each Gr ∈ Rd1r×d2r×d3r is a smaller learnable

tensor called Tucker tensor. The number of these Tucker

tensors equals to R. The maximum value for R is usually

set to the greatest common divisor of d1, d2 and d3. In our

experiments, we found that R = 32 gives a good trade-

off between the decomposition rate and the performance.

Here, we have dimension d1r = d1/R, d2r = d2/R and

d3r = d3/R; W1r
∈ R

d1×d1r , W2r
∈ R

d2×d2r and

W3r
∈ R

d3×d3r are learnable factor matrices. Figure 1

shows the illustration of PARALIND decomposition for a

tensor TM. The shorten form of TM in (6) can be rewrit-

ten as

TM ≈

R
∑

r=1

JGr;W1r
,W2r

,W3r
K (7)

Integrating the learning tensor TM from (7) into (4), the

attention map M can be rewritten as

M =

R
∑

r=1

JGr;M1W1r
,M2W2r

,M3W3r
K (8)

Similar to TM, PARALIND decomposition is also applied

to the tensor Tsc in (5) to reduce the complexity. It is worth

noting that the size of Tsc directly effects to the dimension

of the joint representation z ∈ Rdz . Hence, to minimize the

loss of information, we set the slicing parameter R = 1 and

the projection dimension of factor matrices at dz , i.e., the

same dimension of the joint representation z. Therefore,

Tsc ∈ R
d1×d2×d3×dz in (5) can be calculated as

Tsc ≈ ((Gsc ×1 Wz1)×2 Wz2)×3 Wz3 (9)

where Wz1 ∈ R
d1×dz , Wz2 ∈ R

d2×dz , Wz3 ∈ R
d3×dz

are learnable factor matrices and Gsc ∈ Rdz×dz×dz×dz is a

smaller tensor (compared to Tsc).

Up to now, we already have M by (8) and Tsc by (9),

hence, we can compute z using (5). z from (5) can be rewrit-

ten as

zT =

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

Mijk

(

(Gsc ×1 m1i
Wz1)×2 m2j

Wz2

)

×3 m3k
Wz3

(10)
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Here, it is interesting to note that Gsc ∈ R
dz×dz×dz×dz

in (10) has rank 1. Thus, the result got from i-mode ten-

sor products in (10) can be approximated by the Hadamard

products without the presence of rank-1 tensor Gsc [21]. In

particular, z in (10) can be computed without using Gsc as

zT =

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

Mijk

(

m1i
Wz1 ◦m2j

Wz2 ◦m3k
Wz3

)

(11)

Note that dz , which is the joint embedding dimension, is

a user-defined parameter which makes a trade-off between

the capability of the representation and the computational

cost. In our experiments, we found that dz = 1, 024 gives a

good trade-off.

4. Compact Trilinear Interaction for VQA

The input for training VQA is set of (V,Q,A) in which

V is an image representation; V ∈ Rv×dv where v is the

number of interested regions (or bounding boxes) in the im-

age and dv is the dimension of the representation for a re-

gion; Q is a question representation; Q ∈ Rq×dq where q is

the number of hidden states and dq is the dimension for each

hidden state. A is an answer representation; A ∈ R
a×da

where a is the number of hidden states and da is the dimen-

sion for each hidden state.

By applying the Compact Trilinear Interaction (CTI) to

each (V,Q,A), we achieve the joint representation z ∈
R

dz . Specifically, we firstly compute the attention map M
by (8) as follows

M =

R
∑

r=1

JGr;VWvr
, QWqr , AWar

K (12)

Then the joint representation z is computed by (11) as

follows

zT =

v
∑

i=1

q
∑

j=1

a
∑

k=1

Mijk

(

ViWzv ◦QjWzq ◦AkWza

)

(13)

where Wvr ,Wqr ,War
in (12) and Wzv ,Wzq ,Wza in (13)

are learnable factor matrices; each Gr in (12) is a learnable

Tucker tensor.

4.1. Multiple Choice Visual Question Answering

To make a fair comparison to the state of the art in MC

VQA [14, 41], we follow the representations used in those

works. Specifically, each input question and each answer

are trimmed to a maximum of 12 words which will then

be zero-padded if shorter than 12 words. Each word is

then represented by a 300-D GloVe word embedding [32].

Each image is represented by a 14 × 14 × 2048 grid fea-

ture (i.e., 196 cells; each cell is with a 2, 048-D feature),

extracted from the second last layer of ResNet-152 which is

pre-trained on ImageNet [12].

Follow [41], input samples are divided into positive sam-

ples and negative samples. A positive sample, which is la-

belled as 1 in binary classification, contains image, question

and the right answer. A negative sample, which is labelled

as 0 in binary classification, contains image, question, and

the wrong answer. These samples are then passed through

our proposed CTI to get the joint representation z. The joint

representation is passed through a binary classifier to get the

prediction. The Binary Cross Entropy loss is used for train-

ing the proposed model. Figure 2 visualizes the proposed

model when applying CTI to MC VQA.

4.2. Free­Form Opened­Ended Visual Question An­
swering

Unlike MC VQA, FFOE VQA treats the answering as a

classification problem over the set of predefined answers.

Hence the set possible answers for each question-image

pair is much more than the case of MC VQA. Therefore

the model design proposed in Section 4.1, i.e. for each

question-image input, the model takes every possible an-

swers from its answer list to computed the joint represen-

tation, causes high computational cost. In addition, the

proposed CTI requires all three V,Q,A inputs to compute

the joint representation. However, during the testing, there

are no available answer information in FFOE VQA. To

overcome these challenges, we propose to use Knowledge

Distillation [13] to transfer the learned knowledge from a

teacher model to a student model. Figure 3 visualizes the

proposed design for FFOE VQA.

Our teacher model takes triplets of image-question-right

answer as inputs. Each triplet is passed through the pro-

posed CTI to get the joint representation z. The joint rep-

resentation z is then passed through a multiclass classifier

(over the set of predefined answers) to get the prediction

which is similar to [37]. The Cross Entropy loss is used for

training the teacher model. Regarding the student models,

any state-of-the-art VQA can be used. In our experiments,

we use BAN2 [18] or SAN [43] as student models. The stu-

dent models take pairs of image-question as inputs and treat

the prediction as a mutilclass classification problem. The

loss function for the student model is defined as

LKD = αT 2LCE(Q
τ
S , Q

τ
T ) + (1− α)LCE(QS , ytrue)

(14)

where LCE stands for Cross Entropy loss; QS is the stan-

dard softmax output of the student; ytrue is the ground-truth

answer labels; α is a hyper-parameter for controlling the im-

portance of each loss component; Qτ
S , Q

τ
T are the softened

outputs of the student and the teacher using the same tem-

perature parameter T [13], which are computed as follows

Qτ
i =

exp(li/T )
∑

i exp(li/T )
(15)

where for both teacher and the student models, the logit l is

the predictions outputted by the corresponding classifiers.
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Following by the current state of the art in FFOE

VQA [18], for image representation, we use object

detection-based features with FPN detector (ResNet152

backbone)[22], in which the number of maximum detected

bounding boxes is set to 50. For question and answer rep-

resentations, we trim question and answer to a maximum of

12 words which will then be zero-padded if shorter than 12

words. Each word is then represented by a 600-D vector that

is a concatenation of the 300-D GloVe word embedding [32]

and the augmenting embedding from training data as [18].

In the other words, a question is with a representation with

size 12× 600. It is similar for answer.
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QT Models
Evaluation metrics

Acc Ari Har Ari-N Har-N

with

Abs

BAN2-CTI 87.0 72.5 65.5 45.8 28.6

BAN2[18] 85.5 67.4 54.9 37.4 15.7

SAN-CTI 84.5 68.7 59.9 41.3 23.3

SAN[43] 82.3 65.0 53.7 35.4 14.7

w/o

Abs

BAN2-CTI 85.0 70.6 63.8 41.5 26.9

BAN2[18] 81.9 64.6 52.8 31.9 14.6

SAN-CTI 82.8 66.7 58.1 36.8 21.8

SAN[43] 79.1 62.4 51.7 30.2 13.7

Table 1. Overall performance of the proposal and the baselines

BAN2, SAN in different evaluation metrics on TDIUC validation

set. The performance is shown with and without considering Ab-

surd question category. BAN2-CTI and SAN-CTI are student

models trained under our proposed CTI teacher model.

5. Experiments

5.1. Dataset and evaluation protocol

Dataset. We conduct the experiments on three bench-

marking VQA datasets that are Visual7W [47] for the MC

VQA, VQA-2.0 [10] and TDIUC [17] for the FFOE VQA.

We use training set to train and validation set to evaluate in

all mentioned datasets when conducting ablation study.

Implementation details. Our CTI is implemented us-

ing PyTorch [31]. The experiments are conducted on a

NVIDIA Titan V GPUs with 12GB RAM. In all experi-

ments, the learning rate is set to 10−3. Batch size is set

to 128 for training MC VQA and 256 for training FFOE

VQA. When training both MC VQA model (Section 4.1)

and FFOE VQA model (Section 4.2), except the image rep-

resentation extraction, other components are trained end-to-

end. The temperature parameter T in (15) is set to 3. The

dimension of the joint representation z is set at 1, 024 for

both MC VQA and FFOE VQA.

Evaluation Metrics. We follow the literature [3, 17, 47]

in which the evaluation metrics for each VQA task are dif-

ferent. For FFOE VQA, the single accuracy, which is a stan-

dard VQA accuracy (Acc) [3], is applied for both TDIUC

and VQA-2.0 datasets. In addition, due to the imbalance in

the question types of TDIUC dataset, follow [17], we also

report four other metrics that compensate for the skewed

question-type distribution. They are Arithmetic MPT (Ari),

Arithmetic Norm-MPT (Ari-N), Harmonic MPT (Har), and

Harmonic Norm-MPT (Har-N). For MC VQA, we follow

the evaluation metric (Acc-MC) proposed by [47] in which

the performance is measured by the portion of correct an-

swers selected by the VQA model from the candidate an-

swer set.

5.2. Ablation study

The effectiveness of CTI on FFOE VQA. We com-

pare our distilled BAN2 (BAN2-CTI) and distilled SAN

(SAN-CTI) student models to the state-of-the-art baselines

Question-types BAN2-CTI
BAN2

[18]
SAN-CTI

SAN

[43]

Scene Rec 94.5 93.1 93.6 92.3

Sport Rec 96.3 95.7 95.5 95.5

Color Attr 74.3 67.5 70.9 60.9

Other Attr 60.5 53.2 56.4 46.2

Activity Rec 63.2 54.0 54.5 51.4

Positional Rec 40.5 27.9 34.3 27.9

Sub-Obj Rec 89.3 87.5 87.6 87.5

Absurd 93.9 98.2 90.6 93.4

Util & Aff 36.3 24.0 31.0 26.3

Obj Pres 96.1 95.1 94.9 92.4

Count 59.7 53.9 55.6 52.1

Sentiment 66.1 58.7 59.9 53.6

Table 2. Performance (Acc) of the proposal and the baselines

BAN2, SAN for each question-type on TDIUC validation set.

BAN2-CTI and SAN-CTI are student models trained under our

compact trilinear interaction teacher model.

BAN2 [18] and SAN [43]. Table 1 presents a comprehen-

sive evaluation on five different metrics on TDIUC. Among

all metrics, on overall, our BAN2-CTI and SAN-CTI out-

perform corresponding baselines by a noticeable margin.

These results confirm the effectiveness of our proposed CTI

for learning the joint representation. In addition, the pro-

posed teacher model (Figure 3) is also effective. It success-

fully transfers useful learned knowledge to the student mod-

els. Note that in Table 1, the “Absurd” question category

indicates the cases in which input questions are irrelevant

to the image contents. Thus, the answers are always “does

not apply”, i.e., “no answer”. Using these meaningless an-

swers when training the teacher causes negative effect when

learning the joint representation, hence, reducing the model

capacity. If the “Absurd” category is not taken into account,

the proposed model achieves more improvements over the

baselines.

Table 2 presents detail performances with Acc metric

over each question category of TDIUC when all categories,

including “Absurd”, are used for training. The results show

that we achieve the best results on all question categories

but “Absurd”. We note that in the real applications, the

“Absurd” question problem may be mitigated in some cases

by using a simple trick, i.e., asking a “presence question”

before asking the main question, e.g., we have an image

with no human but the main question is “Is the people wear-

ing hat?”, i.e., a “Absurd” question. By asking a “presence

question” as “Are there any people in the picture?”, we can

have a confirmation about the presence of human in the con-

sidered image, before asking the main question.

Table 3 presents comparative results between our dis-

tilled student models and two baselines BAN2, SAN on Acc

metric on VQA-2.0. Although our proposal outperforms the

baselines, the improvement gap is not much. This is under-

standable because the VQA-2.0 dataset has a large number
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Ref

models

Validation

Accuracy

Test-dev

Accuracy

Bottom-up [37] 63.2 65.4

SAN [43] 61.7 63.0

SAN-CTI 62.1 63.4

BAN2 [18] 65.6 66.5

BAN2-CTI 66.0 67.4

Table 3. Performance of the proposal and the baselines BAN2,

SAN in VQA-2.0 validation set and test-dev set. BAN2-CTI

and SAN-CTI are student models trained under proposed teacher

model.

Ref

models

Visual7W validation set

Acc-MC Number of parameters

BAN2 [18] 65.7 ∼ 86.5M

SAN [43] 59.3 ∼ 69.7M

CTI 67.0 ∼ 66.5M

Table 4. The performance (Acc-MC) and the number of parameters

of the proposed MC VQA model and the baselines BAN2, SAN

on Visual7W validation set.

of questions of which answers are “yes/no” or contain only

one word (i.e., answers for the “number” question types).

These answers have very little semantic meanings which

prevent our proposed trilinear interaction from promoting

its efficiency.

The effectiveness of CTI on MC VQA. We still use the

state-of-the-art BAN2 [18] and SAN [43] as baselines and

conduct experiments on Visual7W dataset. In MC VQA,

in both training and testing, each image-question pair has

a corresponding answer list that contains four answers. To

make a fair comparison, we try different pair combinations

over three modalities (image, question, and answer) for the

baselines BAN2 and SAN. Similar to [41], we find the fol-

lowing combination gives best results for the baselines. Us-

ing BAN2 (or SAN), we first compute the joint represen-

tation between image and question; and the joint represen-

tation between image and answer. Then, we concatenate

the two computed representations to get the joint “image-

question-answer” representation, and pass it through VQA

classifier with cross entropy loss for training the baseline.

Table 4 presents comparative results on Visual7W with

Acc-MC metric. The results show that our proposed model

outperforms the baselines by a noticeable margin. These re-

sults confirm that the joint representation learned by the pro-

posed trilinear interaction achieves better performance than

the combination of joint representations computed by BAN

(or SAN) of pairs of modalities. In addition, in Table 4 we

also provide the number of total parameters of our proposed

MC VQA model with CTI (Figure 2) and BAN2, SAN. The

results show that our model requires less memory than those

baselines. That means that the proposed MC VQA model

with CTI not only outperforms the baselines in term of ac-

curacy, but also more efficient than those baselines in term
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 (A
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Figure 4. The visualization of an attention map (b) computed from

Eq. (12) for an image-question-answer input (a). The attention

map indicates attention weights over triplets of “detected bound-

ing box - word in question - word in answer”. The higher weight

of a triplet is, the more contribution it makes to the joint represen-

tation. We can see that three triplets (V=4, Q=“tube”, A=“white”),

(V=4, Q=“tube”, A=“red”), (V=4, Q=“tube”, A=“blue”) have high

weight values. That means that these triplets give high contribu-

tion to the joint representation. The input sample (a) is from Vi-

sual7W validation set. Best view in color.

of the usage memory. Figure 4 visualizes the attention map

resulted by CTI for an example of image-question-answer.

The attention map is computed by (12).

5.3. Comparison with the state of the art

To further evaluate the effectiveness of CTI, we conduct

a detailed comparison with the current state of the art. For

FFOE VQA, we compare our proposal with the recent state-

of-the-art methods on TDIUC and VQA-2.0 datasets, in-

cluding SAN [43], QTA [35], BAN2 [18], Bottom-up [37],

MCB [8], and RAU [29]. For MC VQA, we compare with

the state-of-the-art methods on Visual7W dataset, includ-

ing BAN2 [18], SAN [43], MLP [16], MCB [8], STL [41],

and fPMC [14]). It is worth noting that depending on tasks

FFOE VQA or MC VQA, we use different representations

for images and questions as clearly mentioned in Section 4.

This ensures a fair comparison with compared methods.

Regarding FFOE VQA, Tables 3 and 5 show compara-

tive results on VQA-2.0 and TDIUC respectively. Specif-

caly, Table 5 shows that our distilled student BAN2-CTI

outperforms all compared methods over all metrics by a

large margin, i.e., our model outperforms the current state-

of-the-art QTA [35] on TDIUC by 3.4% and 5.4% on Ari

and Har metrics, respectively. The results confirm that the

proposed trilinear interaction has learned informative repre-

sentations from the three inputs and the learned information

is effectively transferred to student models by distillation.

Regarding MC VQA, Table 6 shows that the proposed

model (denoted as CTI in Table 6) outperforms compared

methods by a noticeable margin. Our model outperforms
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Models
Evaluation metrics

Acc Ari Har Ari-N Har-N

BAN2 [18] 85.5 67.4 54.9 37.4 15.7

SAN [43] 82.3 65.0 53.7 35.4 14.7

QTA [35] 85.0 69.1 60.1

MCB [8] 79.2 65.8 58.0 39.8 24.8

RAU [29] 84.3 67.8 59.0 41.0 24.0

SAN-CTI 84.5 68.7 59.9 41.3 23.3

BAN2-CTI 87.0 72.5 65.5 45.8 28.6

Table 5. Performance comparison between different approaches

with different evaluation metrics on TDIUC validation set. BAN2-

CTI and SAN-CTI are the student models trained under our com-

pact trilinear interaction teacher model.

Dataset
Ref

models
Acc-MC

Visual7W

test set

MLP [16] 67.1

MCB [8] 62.2

fPMC [14] 66.0

STL [41] 68.2

SAN [43] 61.5

BAN2 [18] 67.5

CTI 69.3

CTIwBoxes 72.3

Table 6. Performance comparison between different approaches

on Visual7W test set. Both training set and validation set are used

for training. All models but CTIwBoxes are trained with same

image and question representations. Both train set and validation

set are used for training. Note that CTIwBoxes is the proposed

CTI model using Bottom-up features [2] instead of grid features

for image representation.

the current state-of-the-art STL [41] 1.1%. Again, this val-

idates the effectiveness of the proposed joint presentation

learning, which precisely and simultaneously learns interac-

tions between the three inputs. We note that when compar-

ing with other methods on Visual7W, for image representa-

tions, we used the grid features extracted from ResNet-512

[12] for a fair comparison. Our proposed model can achieve

further improvements by using the object detection-based

features used in FFOE VQA. With new features, our model

denoted as CTIwBoxes in Table 6 achieve 72.3% accuracy

with Acc-MC metric which improves over the current state-

of-the-art STL [41] 4.1%.

5.4. Further analysis

The effectiveness of PARALIND decomposition. In

this section, we compute the decomposition rate of PAR-

ALIND. For a fully interaction between the three inputs, us-

ing (1), we would need to learn 2199.02 billions parameters

which is infeasible in practice. By using the PARALIND

decomposition presented in Section 3 with the provided set-

tings, i.e., the number of slicing R = 32 and the dimension

of the joint representation dz = 1024, the number of param-

eters that need to learn is only 33.69 millions. In the other

words, we achieve a decomposition rate ≈ 65, 280.

Compact Trilinear Interaction as the generalization

of BAN [18]. The proposed compact trilinear interaction

model can be seen as a generalization of the state-of-the-art

joint embedding BAN [18].

In BAN, each input contains an image representation V
∈ Rdv×v and a question representation Q ∈ Rdq×q . The

trilinear interaction model can be modified to adapt to these

two inputs. The joint representation z ∈ Rdz in (1) can be

adapted for two input as

zT = (Tvq ×1 vec(V ))×2 vec(Q) (16)

where Tvq ∈ RdV ×dQ×dz is a learnable tensor; vec(V ) is

the vectorization of V and vec(Q) is the vectorization of Q
which output row vectors; dV = dv × v; dQ = dq × q.

By applying “Parameter factorization” described in Sec-

tion 3.2, z in (16) can be approximated based on (13) as

zT =

v
∑

i=1

q
∑

j=1

Mij

(

V T
i Wzv ◦QT

j Wzq

)

(17)

where Wzv ∈ R
dv×dz and Wzq ∈ R

dq×dz are learnable

factor matrices; Mij is an attention weight of attention map

M ∈ Rv×q which can be computed from (12) as

M =

R
∑

r=1

JGr;V
TWvr , Q

TWqrK (18)

where Wvr
∈ Rdv×dvr and Wqr ∈ Rdq×dqr are learnable

factor matrices; dvr
= dv/R; dqr = dq/R; each Gr ∈

R
dvr×dqr is a learnable Tucker tensor.

Interestingly, (17) can be reorganized to have a form of

BAN [18] as

zk =

v
∑

i=1

q
∑

j=1

Mij

(

V T
i

(

Wzvk
WT

zqk

)

Qj

)

(19)

where zk is the kth element of the joint representation z;

Wzvk
and Wzqk

are kth column in factor matrices Wzv and

Wzq . Note that in (19), our attention map M is resulted

from the PARALIND decomposition, while in BAN [18],

their attention map is computed by bilinear pooling.

6. Conclusion

We propose a novel compact trilinear interaction which

simultaneously learns high level associations between im-

age, question, and answer in both MC VQA and FFOE

VQA. In addition, knowledge distillation is the first time

applied to FFOE VQA to overcome the computational com-

plexity and memory issue of the interaction. The extensive

experimental results show that the proposed models achieve

the state-of-the-art results on three benchmarking datasets.
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