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Abstract

A major challenge in place recognition for autonomous

driving is to be robust against appearance changes due

to short-term (e.g., weather, lighting) and long-term (sea-

sons, vegetation growth, etc.) environmental variations. A

promising solution is to continuously accumulate images

to maintain an adequate sample of the conditions and in-

corporate new changes into the place recognition decision.

However, this demands a place recognition technique that

is scalable on an ever growing dataset. To this end, we pro-

pose a novel place recognition technique that can be effi-

ciently retrained and compressed, such that the recognition

of new queries can exploit all available data (including re-

cent changes) without suffering from visible growth in com-

putational cost. Underpinning our method is a novel tem-

poral image matching technique based on Hidden Markov

Models. Our experiments show that, compared to state-of-

the-art techniques, our method has much greater potential

for large-scale place recognition for autonomous driving.

1. Introduction

Place recognition (PR) is the broad problem of recog-

nizing “places” based on visual inputs [26, 6]. Recently, it

has been pursued actively in autonomous driving research,

where PR forms a core component in localization (i.e., esti-

mating the vehicle pose) [34, 21, 4, 9, 35, 5, 7] and loop clo-

sure detection [10, 13]. Many existing methods for PR re-

quire to train on a large dataset of sample images, often with

ground truth positioning labels, and state-of-the-art results

are reported by methods that employ learning [21, 20, 7, 9].

To perform convincingly, a practical PR algorithm must

be robust against appearance changes in the operating envi-

ronment. These can occur due to higher frequency environ-

mental variability such as weather, time of day, and pedes-

trian density, as well as longer term changes such as seasons

and vegetation growth. A realistic PR system must also con-

tend with “less cyclical” changes, such as construction and

roadworks, updating of signage, façades and billboards, as

well as abrupt changes to traffic rules that affect traffic flow

(this can have a huge impact on PR if the database contains

images seen from only one particular flow [10, 13]). Such

appearance changes invariably occur in real life.

To meet the challenges posed by appearance variations,

one paradigm is to develop PR algorithms that are in-

herently robust against the changes. Methods under this

paradigm attempt to extract the “visual essence” of a place

that is independent of appearance changes [1]. However,

such methods have mostly been demonstrated on more “nat-

ural” variations such as time of day and seasons.

Another paradigm is to equip the PR algorithm with a

large image dataset that was acquired under different envi-

ronmental conditions [8]. To accommodate long-term evo-

lution in appearance, however, it is vital to continuously

accumulate data and update the PR algorithm. To achieve

continuous data collection cost-effectively over a large re-

gion, one could opportunistically acquire data using a fleet

of service vehicles (e.g., taxis, delivery vehicles) and ama-

teur mappers. Indeed, there are street imagery datasets that

grow continuously through crowdsourced videos [30, 14].

Under this approach, it is reasonable to assume that a de-

cent sampling of the appearance variations, including the

recent changes, is captured in the ever growing dataset.

Under continuous dataset growth, the key to consistently

accurate PR is to “assimilate” new data quickly. This de-

mands a PR algorithm that is scalable. Specifically, the

computational cost of testing (i.e., performing PR on a

query input) should not increase visibly with the increase

in dataset size. Equally crucially, updating or retraining the

PR algorithm on new data must also be highly efficient.

Arguably, PR algorithms based on deep learning [7, 9]

can accommodate new data by simply appending it to the

dataset and fine-tuning the network parameters. However,

as we will show later, this fine-tuning process is still too

costly to be practical, and the lack of accurate labels in the

testing sequence can be a major obstacle.

Contributions We propose a novel framework for PR on

large-scale datasets that continuously grow due to the incor-
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poration of new sequences in the dataset. To ensure scala-

bility, we develop a novel PR technique based on Hidden

Markov Models (HMMs) that is lightweight in both train-

ing and testing. Importantly, our method includes a topo-

logically sensitive compression procedure that can update

the system efficiently, without using GNSS positioning in-

formation or computing visual odometry. This leads to PR

that can not only improve accuracy by continuous adaption

to new data, but also maintain computational efficiency. We

demonstrate our technique on datasets harvested from Map-

illary [30], and also show that it compares favorably against

recent PR algorithms on benchmark datasets.

2. Problem setting

We first describe our adopted setting for PR for au-

tonomous driving. Let D =
{

V1, . . . ,VM

}

be a dataset

of M videos, where each video

Vi = {Ii,1, Ii,2, . . . , Ii,Ni
} = {Ii,j}

Ni

j=1
(1)

is a time-ordered sequence of Ni images. In the proposed

PR system, D is collected in a distributed manner using

a fleet of vehicles instrumented with cameras. Since the

vehicles could be from amateur mappers, accurately cali-

brated/synchronized GNSS positioning may not be avail-

able. However, we do assume that the camera on all the ve-

hicles face a similar direction, e.g., front facing. The query

video is represented as

Q = {Q1, Q2, . . . , QT } (2)

which is a temporally-ordered sequence of T query images.

The query video could be a new recording from one of the

contributing vehicles (recall that our database D is contin-

uously expanded), or it could be the input from a “user” of

the PR system, e.g., an autonomous vehicle.

Overall aims For each Qt ∈ Q, the goal of PR is to re-

trieve an image from D that was taken from a similar loca-

tion to Qt, i.e., the FOV of the retrieved image overlaps to a

large degree withQt. As mentioned above, what makes this

challenging is the possible variations in image appearance.

In the envisioned PR system, when we have finished pro-

cessing Q, it is appended to the dataset

D = D ∪ {Q}, (3)

thus the image database could grow unboundedly. This im-

poses great pressure on the PR algorithm to efficiently “in-

ternalise” new data and compress the dataset. As an indica-

tion of size, a video can have up to 35,000 images.

2.1. Related works

PR has been addressed extensively in literature [26]. Tra-

ditionally, it has been posed as an image retrieval prob-

lem using local features aggregated via a BoW represen-

tation [10, 13, 11]. Feature-based methods fail to match

correctly under appearance change. To address appearance

change, SeqSLAM [28] proposed to match statistics of the

current image sequence to a sequence of images seen in the

past, exploiting the temporal relationship. Recent methods

have also looked at appearance transfer [31][23] to explic-

itly deal with appearance change.

The method closest in spirit to ours is [8], who maintain

multiple visual “experiences” of a particular location based

on localization failures. In their work, successful localiza-

tion leads to discarding data, and they depend extensively

on visual odometry (VO), which can be a failure point. In

contrast to [8], our method does not rely on VO; only im-

age sequences are required. Also, we update appearance in

both successful and unsuccessful (new place) localization

episodes, thus gaining robustness against appearance varia-

tions of the same place. Our method also has a novel mech-

anism for map compression leading to scalable inference.

A related problem is that of visual localization (VL): in-

ferring the 6 DoF pose of the camera, given an image. Given

a model of the environment, PnP [24] based solutions com-

pute the pose using 2D-3D correspondences [34], which

becomes difficult both at large scale and under appearance

change [39]. Some methods address the issue with creating

a model locally using SfM against which query images are

localized [35]. Given the ground truth poses and the corre-

sponding images, VL can also be formulated as an image

to pose regression problem, solving simultaneously the re-

trieval and pose estimation. Recently, PoseNet [21] used

a Convolution Neural Network (CNN) to learn this map-

ping, with further improvements using LSTMs to address

overfitting [41], uncertainty prediction [19] and inclusion of

geometric constraints [20]. MapNet [7] showed that a rep-

resentation of the map can be learned as a network and then

used for VL. A downside of deep learning based methods is

their high-computational cost to train/update.

Hidden Markov Models (HMMs) [38, 33] have been

used extensively for robot localization in indoor spaces [22,

2, 37]. Hansen et al. [15] use HMM for outdoor scene,

but they must maintain a similarity matrix between database

and query sequences, which is unscalable when data is ac-

cumulated continuously. Therefore, we are one of the first

to apply HMMs to large urban-scale PR, which requires sig-

nificant innovation such as a novel efficient-to-evaluate ob-

servation model based on fast image retrieval (Sec. 4.2). In

addition, our method explicitly deals with temporal reason-

ing (Sec. 4.1), which could help to combat the confusion

from perceptual aliasing problem [36]. Note also that our

main contributions are in Sec. 5, which tackles PR on a con-

tinuously growing dataset D.

3. Map representation

When navigating on a road network, the motion of the

vehicle is restricted to the roads, and the heading of the ve-
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Figure 1: An overview of our idea using HMM for place recognition. Consider dataset D = {V1,V2} and query Q. Figure

1a: Because V1 and V2 are recorded in different environmental conditions, V2 cannot be matched against V1, thus there is

no connection between V1 and V2. Query Q visits the place covered by V1 and V2, and then an unknown place. Figure 1b:

Query Q is firstly localized against only V1. When it comes to the “Overlap region” at time t+1, it localizes against both V1

and V2. The image corresponding to MaxAP at every time step t is returned as the matching result. Figure 1c: A threshold

decides if the matching result should be accepted, thus when Q̧ visits an unseen place, the MaxAPs of V1 and V2 are small,

we are uncertain about the matching result. Once Q is finished, the new place discovered by Q is added to the map to expand

the coverage area. In addition, since Q̧ is matched against both V1 and V2, we can connect V1 and V2.

hicle is also constrained by the traffic direction. Hence, the

variation in pose of the camera is relatively low [35, 32].

The above motivates us to represent a road network as a

graph G = (N , E), which we also call the “map”. The set

of nodes N is simply the set of all images in D. To reduce

clutter, we “unroll” the image indices in D by converting an

(i, j) index to a single number k = N1+N2+· · ·+Ni� 1+j,
hence the set of nodes are

N = {1, . . . ,K}, (4)

where K =
∑M

i=1
Ni is the total number of images. We

call an index k ∈ N a “place” on the map.

We also maintain a corpus C that stores the images ob-

served at each place. For now, the corpus simply contains

C(k) = {Ik}, k = 1, . . . ,K, (5)

at each cell C(k). Later in Sec. 5, we will incrementally

append images to C as the video datatset D grows.

In G, the set of edges E connect images that overlap in

their FOVs, i.e., 〈k1, k2〉 is an edge in E if

∃I ∈ C(k1) and ∃I0∈ C(k2) such that I, I0 overlap. (6)

Note that two images can overlap even if they derive from

different videos and/or conditions. The edges are weighted

by probabilities of transitioning between places, i.e.,

w(〈k1, k2〉) = P (k2 | k1) = P (k1 | k2), (7)

for a vehicle that traverses the road network. Trivially,

〈k1, k2〉 /∈ E iff P (k2 | k1) = P (k1 | k2) = 0. (8)

It is also clear from (7) that G is undirected. Concrete def-

inition of the transition probability will be given in Sec. 5.

First, Sec. 4 discusses PR of Q given a fixed D and map.

4. Place recognition using HMM

To perform PR on Q = {Q1, . . . , QT } against a fixed

map G = (N , E) and corpus C, we model Q using a

HMM [33]. We regard each image Qt to be a noisy ob-

servation (image) of an latent place state st, where st ∈ N .

The main reason for using HMM for PR is to exploit the

temporal order of the images in Q, and the high correlation

between time and place due to the restricted motion (Sec. 3).

To assign a value to st, we estimate the belief

P (st | Q1:t), st ∈ N , (9)

where Q1:t is a shorthand for {Q1, . . . , Qt}. Note that the
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