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Abstract

In this work we propose a capsule-based approach for

semi-supervised video object segmentation. Current video

object segmentation methods are frame-based and often re-

quire optical flow to capture temporal consistency across

frames which can be difficult to compute. To this end,

we propose a video based capsule network, CapsuleVOS,

which can segment several frames at once conditioned on

a reference frame and segmentation mask. This condi-

tioning is performed through a novel routing algorithm for

attention-based efficient capsule selection. We address two

challenging issues in video object segmentation: 1) segmen-

tation of small objects and 2) occlusion of objects across

time. The issue of segmenting small objects is addressed

with a zooming module which allows the network to pro-

cess small spatial regions of the video. Apart from this,

the framework utilizes a novel memory module based on

recurrent networks which helps in tracking objects when

they move out of frame or are occluded. The network is

trained end-to-end and we demonstrate its effectiveness on

two benchmark video object segmentation datasets; it out-

performs current offline approaches on the Youtube-VOS

dataset while having a run-time that is almost twice as fast

as competing methods. The code is publicly available at

https://github.com/KevinDuarte/CapsuleVOS.

1. Introduction

Semi-supervised video object segmentation aims to seg-

ment objects in a video, given their segmentation masks for

the first frame. This is a challenging problem because of is-

sues like occlusion, changes in object appearance over time,

motion blur, fast motions, and scale variations of differ-

ent objects. Deep learning approaches have achieved im-

pressive results and the recent release of the Youtube-VOS

dataset [37] has allowed for the training and evaluation of

new methods on a wider variety of videos and objects.

The majority of current approaches can be divided into

two categories. The first are detection-based methods [2, 4,

14] that learn representations of the object segmented in the

first frame and attempt to perform the pixel-wise detection

of this object in future frames; the second is propagation-

based methods [7, 12, 28, 33, 36] that formulate the task

as a tracking problem and attempt to propagate the mask

to fit the object over time. The first set of methods tends

to segment single frames independently and rarely employ

temporal information, while the later set segments single

frames sequentially and makes use of temporal information,

usually in the form of optical flow or RNNs. There has been

some work on hybrid methods, that attempt to unify both

approaches [32, 19, 38].

We propose a hybrid method that makes use of a video

capsule network to segment a video conditioned on the seg-

mented object in the first frame. A capsule is a group of

neurons that represents an object, or part of an object. Lay-

ers in capsule networks undergo a routing-by-agreement al-

gorithm that finds similarities between these capsules, and

allow for the modeling of part-to-whole relationships. Cap-

sule networks have performed well in image classification

[26, 11], and have shown outstanding results in various seg-

mentation tasks [18, 8]. In this paper, we leverage the seg-

mentation ability of capsule networks and the ability of the

routing algorithm to find similarity between capsules for the

task of semi-supervised video object segmentation.

Our video capsule network, CapsuleVOS, contains two

branches: a video branch and a frame branch. The video

branch processes several frames at once and produces a set

of video capsules. This allows the network learn tempo-

ral/motion information without the reliance of optical flow.

The frame branch processes the first frame and object seg-

mentation and generates a set of frame capsules, which

model the object of interest. The frame branch makes use

of a recurrent memory module that allows the network to
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overcome issues like occlusion or objects exiting the scene.

Both sets of capsules are then passed through our novel

attention-routing procedure which allows the frame cap-

sules to condition the video capsules. Through this routing

algorithm, our network learns where the object of interest

is within the video clip, allowing the network to segment

multiple frames simultaneously.

Moreover, our method makes use of a parametrized

zooming module which allows the network to focus on re-

gions of the frame which are relevant to the object of in-

terest. This module allows for the segmentation of smaller

objects, which can easily be lost when resizing frames to

lower spatial dimensions.

We make the following contributions in this work,

• We present a novel capsule network for the task of

video object segmentation that achieves state-of-the-

art results on the largest video segmentation dataset.

• We propose a novel attention based EM routing algo-

rithm to condition capsules based on an input segmen-

tation.

• The proposed network contains integrated zooming

module and memory module, which we show through

experimental results to be effective for segmenting

small and occluded objects in the video.

2. Related Work

Semi-supervised video object segmentation: Earlier

works in video object segmentation used hand-crafted fea-

tures based on appearance, boundary and optical flow [1,

9, 15, 27, 23]. The availability of large-scale video object

segmentation datasets [25, 37] enabled us to explore deep

learning methods for this problem. Most of the early works

are mainly motivated by the image segmentation methods

[3, 35, 20]. These works [2, 6, 16, 24, 38] lack the integra-

tion of sequential modelling which is important from video

perspective. In some of these works, the temporal consis-

tency is achieved by taking a guidance from the predicted

mask of the previous frame [13, 24, 38]. The majority of

recent works also utilize online learning [2] in which the

segmentation networks are fine-tune on the first frame of

each test video - this greatly improves segmentation results

at the expense of inference speed.

Several recent works have utilized recurrent units to

learn the evolution of objects over time. The authors in [28]

use a ConvGRU to combine the outputs of pretrained ap-

pearance and a motion networks and generate a final seg-

mentation. Similarly, the authors in [36] propose a Con-

vLSTM sequence-to-sequence model that learns to generate

segmentations from sequences of frames. Ventura et al. [31]

also use a ConvLSTM for recurrence in both the temporal

domain (between frames) and the spatial domain (between

object instances within each frame). Our use of a recurrent

memory unit differs from these methods in that we do not

generate segmentations directly from the features generated

by the ConvLSTM, but rather condition a segmentation net-

work based on these features.

Segmentation of small objects is challenging and zoom-

ing in on regions of the frame has been explored to over-

come this problem. The authors in [7] demonstrated the

effectiveness of processing only a tight region around the

foreground object. Although this allows for improved seg-

mentations, it assumes the object moves smoothly within

the video - in cases of large motions, this may fail. Our ap-

proach can handle this issue, since our network learns the

extent to which it must zoom in on the object of interest, al-

lowing the network to learn these cases where large motions

occur. The work in [5] performs segmentation by tracking

parts - their network zooms in on and processes each part of

the object separately. This requires multiple passes through

their segmentation model, instead of having a single seg-

mentation of the whole object.

Capsule networks: The idea of capsules was first intro-

duced in [10], and they were popularized in [26], where dy-

namic routing for capsules was proposed. This was further

extended in [11], where a more effective EM routing al-

gorithm was introduced. Recently, capsule networks have

shown state-of-the-art results for human action localization

in video [8], object segmentation in medical images [18],

and text classification [39]. In this work, we propose a cap-

sule based network for video object segmentation where we

introduce a novel attention based EM routing which can be

used as a conditioning mechanism for capsules.

3. Our Approach

We propose an end-to-end trained network that segments

an object throughout an entire video clip when given the

object’s segmentation mask for the first frame. This net-

work contains two modules, depicted in Figures 1 and 2:

a frame-conditioned video capsule network, CapsuleVOS,

which segments a short video clip (8 frames) based on the

object segmentation in the first frame, and a zooming mod-

ule, which refines the spatial area processed by the capsule

network. Section 3.1 explains how we leverage capsules for

the task of video object segmentation, with our attention-

based routing algorithm. We then describe the CapsuleVOS

architecture and the zooming module in sections 3.2 and 3.3

respectively. This is followed by the objective function used

to train this network in section 3.4.

3.1. Conditioning with Capsules

Capsules are groups of neurons that represent different

entities or objects. In this work, we employ the version of
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Figure 1. CapsuleVOS Architecture. The network is given the low resolution video clip and the segmented object in the first frame, and

generates the foreground segmentations for all frames of the clip. The memory module consists of a ConvLSTM and allows the network

to overcome issues like occlusion and objects leaving the frame. The previous and new memory states are the hidden and cell states of the

ConvLSTM for time steps t and t− 1 respectively. The new memory state is passed to the memory module for the following video clip.

capsules described in [11], which have a logistic unit (an ac-

tivation denoted by a) representing the presence of the en-

tity and a 4×4 pose matrix (denoted by M ) which contains

the properties of the entity. Capsules in one layer vote for

the pose matrices of many capsules in the following layer

and an iterative EM routing algorithm finds the agreement

between the votes to create the set of capsules in the next

layer. For a more comprehensive understanding of capsules,

and the intuition behind them, we suggest reading [26, 11].

We view capsule networks’ ability to model entities and

find agreement between entities as an ideal mechanism to

accomplish the semi-supervised video object segmentation

task. A given video may contain several objects and the ref-

erence segmentation mask specifies the object which must

be segmented. If we extract a set of capsules from both the

video and the reference frame with a segmentation mask,

then the former set (video capsules) models all objects

within the video, while the latter set (frame capsules) rep-

resents the object of interest. Then, to obtain the object of

interest throughout the video, one only needs to filter out

all video capsules that are dissimilar to the frame capsules;

in other words, an agreement, or similarity, between the

video capsules and frame capsules would result in the set

of video capsules that represent the object that must be seg-

mented. Although the original EM routing algorithm works

well for finding agreement within a set of capsules, it can

not explicitly find agreement between two sets of capsules.

For this reason, we propose an attention-based routing algo-

rithm which finds the agreement between two sets of cap-

sules.

Here, we use the query, key, value terminology found in

[30], as our conditioning algorithm takes inspiration from

this attention mechanism. From a video clip we extract a

set of the video capsules MV
i , aVi , indexed by i; from a ref-

erence frame and segmentation mask, we extract a set of

frame capsules MF

k , aFk , indexed by k. The key-value pairs

are votes from the video capsules for the following layers’

capsules while the query is the set of votes from the frame

capsules. These votes are calculated as follows:

V k
ij = MV

i W k
ij

V v
ij = MV

i W v
ij

V
q
kj = MF

k W
q
kj

(1)

where W k
ij , W v

ij , and W
q
kj are learned weight matrices. The

superscripts k, v, and q correspond to the key, value, and

query respectively.

Once these votes are obtained, the EM routing opera-

tion is performed for the frame capsule (query) votes. This

results in a set of higher-level capsules M
q
j , a

q
j , which rep-

resents the object, or parts of the object, in the reference

segmentation mask. To find the similarity, or agreement,

between the video capsules and the frame capsules, we mea-

sure the Euclidean distance between the key votes (V k
ij ) and

their corresponding higher-level query capsule:

Dij =
∑

h

[

(

M
q
j − V k

ij

)2
]h

, (2)

where h denotes the dimensions of the vote and pose matri-

ces.

This distance is used to compute an assignment coeffi-

cient

Rv
ij =

e−Dij

∑

j e
−Dij

. (3)

The assignment coefficient, Rv
ij , determines the amount of

information the ith video capsule sends to the jth higher-
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Figure 2. Zooming Module. Given the high-resolution first frame

and segmentation mask, the zooming module outputs a bounding

box around the object of interest. This bounding box is used to

zoom in on the object in the video clip along with the first frame

and segmentation mask, which are resized and passed into the

CapsuleVOS network.

level capsule. If the distance, Dij , is large, then the ith video

capsule does not contain information pertaining the the ob-

ject represented by the jth higher-level capsule, so its corre-

sponding assignment coefficient is close to 0, and it sends

less information to that higher-level capsule; conversely, a

small distance leads to a large assignment coefficient, re-

sulting in more information being sent.

We obtain the conditioned set of video capsules by per-

forming the M-step of the EM routing algorithm using the

value votes (V v
ij) and the video capsules’ assignment coeffi-

cients. The result is a set of higher-level video capsules,

Mv
j , a

v
j , that receive information from lower-level video

capsules which agree with the frame capsules. This pro-

cedure of conditioning with capsules is described in Algo-

rithm 1.

Algorithm 1 This routing algorithm returns the activations

and pose matrices of the capsules in layer L+1 when given

the activations and poses of layer L (the video capsules

and frame capsules). The indices i and j refer to the cap-

sule types in layer L and L + 1 respectively. The index h

refers to the dimensions of the vote or pose matrices. The

EM ROUTING and M-STEP functions referenced are those

defined in [11].

1: procedure ATTROUTING(MV , aV , MF , aF )

2: V v ←MVW v

3: V k ←MVW k

4: V q ←MFW q

5: aq,Mq ← EM ROUTING(aF , V q)

6: Dij ←
∑

h

[

(

M
q
i − V k

ij

)2
]h

⊲ For each i and j

7: Rv
ij ←

e
−Dij

∑
j
e
−Dij

⊲ For each i

8: avj ,M
v
j ← M-STEP(aV , Rv, V v, j) ⊲ For each j

9: return av,Mv

3.2. CapsuleVOS Architecture

The CapsuleVOS network segments 8 frames based on

the segmentation mask of the first frame. It contains two

branches - the video branch and the frame branch - and each

creates sets of capsules. The video capsules are conditioned

on the frame capsules, to produce a new set of conditioned

capsules. These are followed by a convolutional capsule

layer and a series of transposed convolutions to generate a

segmentation map for all 8 frames.

The video branch passes the 8 RGB frames of size

128 × 224 through 6 (2+1)D convolutions [29] to obtain

feature maps of size 8× 32× 56× 512. The video capsules

are composed of 12 capsule types, which are obtained by

passing the feature maps to strided 3 × 3 × 3 convolution

operations.

The frame branch concatenates the first frame and the

segmentation mask (each of size 128 × 224) and passes

them through 4 2D convolutions. This is followed by the

memory module, which consists of a ConvLSTM [34] layer

that allows the frame branch to maintain information which

might be lost in cases of occlusion or objects leaving the

frame. The ConvLSTM produces a set of features of shape

32×56×128 which are transformed into the frame capsules

through a strided 3 × 3 convolution operation. The frame

capsules, which are composed of 8 capsule types, are then

tiled 8 times to match the temporal dimension of the video

capsules.

Once the video and frame capsules have been formed, we

perform capsule conditioning as described in Section 3.1,

which results in a set of 16 capsule types. This is followed

by a convolutional capsule layer that has 16 capsule types.

All routing operations make use of capsule pooling [8] to

reduce network’s memory consumption.

To obtain a foreground segmentation mask from this cap-

sule representations we flatten the capsules’ pose matrices

and pass them to a decoder composed of strided transposed

convolutions. Skip connections from the video capsules and

conditioned capsules are used to maintain spatiotemporal

information which is lost from striding. The result of this

decoder is 8 frames of binary segmentations corresponding

to the object of interest.

3.3. Zooming Module

The zooming module is given the high-resolution first

frame and the object of interest segmentation mask, and

it outputs the bounding box containing the spatial region

which our segmentation network will process. Since our

segmentation network processes 8 frames at a time, the pre-

dicted bounding box must be large enough to contain the

object of interest in all 8 frames, but not too large as to con-

tain extraneous information not necessary for segmentation.

The input for the zooming module is a high-resolution

frame (512 × 896) and the high-resolution binary object

segmentation mask. These are passed through a series of

strided 2D convolutional layers, a LSTM layer, and a fully-

connected layer which outputs two values, b̂h and b̂w, rep-
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resenting the height and the width of the bounding box cen-

tered on the object of interest. The LSTM layer allows

the network to learn from motion information from previ-

ous time steps, resulting in larger bounding boxes for ob-

jects with more motion, and tighter bounding boxes for ob-

jects with relatively little motion. Once the bounding box

is obtained, the network extracts this region from the high-

resolution segmentation mask and the next 8 frames of the

high-resolution video; these are then resized to 128 × 224
and passed to CapsuleVOS.

3.4. Objective Function

For each pixel i in the video, we have ground-truth seg-

mentations yi ∈ {0, 1} and our network predicts ŷi ∈ [0, 1].
We use both binary cross-entropy

Ls = −
1

N

N
∑

i=1

yi log (ŷi) + (1− yi) log (1− ŷi) , (4)

and the dice loss [21]

LD = 1−

∑N

i=1
ŷiyi + ǫ

∑N

i=1
ŷi + yi + ǫ

−

∑N

i=1
(1− ŷi) (1− yi) + ǫ

∑N

i=1
2− ŷi − yi + ǫ

,

(5)

to train the network for segmentation. The ǫ term is a small

value to ensure stability of the loss. We use this second seg-

mentation loss because video object segmentation methods

are evaluated using region similarity, or intersection-over-

union (IoU), and the dice loss directly maximizes this met-

ric.

We train the zooming module by computing the L2 loss

between the ground-truth bounding box height and width

(bh and bw) and the predicted height and width (b̂h and b̂w).

Lr =
(

bh − b̂h

)2

+
(

bw − b̂w

)2

. (6)

During training, we define the ground-truth height and

width as the bounding box centered at the object in the first

frame that contains the object in the following 7 frames (the

other frames in the clip to be processed). This ensures that

the object of interest will be present in all frames being pro-

cessed, even if there is a large amount of motion.

In and end-to-end fashion, we train our network with an

objective function which is the sum of these three losses:

L = Ls + LD + Lr. (7)

4. Experiments

Datasets We evaluate our method on two video object

segmentation datasets: Youtube-VOS [37] and DAVIS-

2017 [25]. Youtube-VOS contains 4,453 videos - 3,471

for training, 474 for validation, and 508 for testing. The

training and validation videos have pixel-level ground truth

annotations for every 5th frame (6 fps). The DAVIS-2017

dataset contains a total of 150 videos - 60 for training, 30

for validation, 60 for testing. These testing videos are split

into a test-dev and test-challenge set, each with 30 videos;

we evaluate our method on the test-dev set. The videos in

DAVIS-2017 have annotations for all frames. Both datasets

contain a wide variety of objects and both contain videos

with multiple object instances.

Training The network is trained using the objective func-

tion described in 3.4. Since our segmentation loss requires

segmentations for all 8 frames given to the network and

the Youtube-VOS training set contains segmentations every

5th frame, we use the method found in [22] to interpolate

the segmentation frames that are unavailable. Training is

done using the Adam optimizer [17], starting with a learn-

ing rate of 0.0001. When training on Youtube-VOS, the

method converges in about 400 epochs. For our experiments

on DAVIS-2017, we fine-tune the network for an extra 200

epochs on the DAVIS-2017 training videos.

Inference During inference, longer videos are processed

one clip (8 frames) at a time; the segmentation generated

from one clip is used as the input segmentation for the sub-

sequent clip. We find that having frame overlaps between

these clips results in improved segmentations at test time,

with only a minor decrease of inference speed. All re-

ported results (both accuracy and speed) use an overlap of 3

frames.

Evaluation Metrics For both datasets, we evaluate the

segmentation results using the region similarity J and the

contour accuracyF as described in [24]. For Youtube-VOS,

results are averaged over the “seen” categories - those ob-

jects found in training videos - and “unseen” categories -

the objects present in the validation and testing sets but not

present in the training set.

4.1. Comparison with State­of­the­art

Since our method does not use online learning, we com-

pare with only offline approaches. The exception to this is

OSVOS [2], which is a standard benchmark video object

segmentation approach.

Youtube-VOS The performance of our network on

Youtube-VOS are shown in Table 1. Overall, our model per-

forms at least 4% better than all offline methods and 3.5%
better than OSVOS. OSVOS slightly outperforms us on un-

seen categories, but our network has a substantial 8% im-

provement in both of the “seen” metrics. Some qualitative

results on Youtube-VOS videos are shown in Figure 3.
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Figure 3. Qualitative results showing object segmentations on videos from the Youtube-VOS validation set. The first three rows contain

examples in which multiple instances of objects are present within the video; the later two show how our network is able to finely segment

larger objects.

Figure 4. A qualitative comparison between networks with and without the memory module. Rows 1,3: with memory module. Rows 2,4:

without memory module. The first example contains a bear which is completely occluded for over 40 frames, but the memory module

allows the network to segment the bear when it reappears. The second video shows that the memory module can handle cases where an

object leaves and reenters the scene.

Method OL J seen J unseen F seen F unseen Overall Speed (frames/s)

OSVOS [2] ✓ 59.8 54.2 60.5 60.7 58.8 0.10

OSMN [38] ✗ 60.0 40.6 60.1 44.0 51.2 7.14

S2S (offline) [36] ✗ 66.7 48.2 65.5 50.3 57.6 6.25

Our Method ✗ 67.3 53.7 68.1 59.9 62.3 13.5
Table 1. Our results on the Youtube-VOS validation set. “OL” denotes online learning. We compare with OSVOS [2] and methods which

do not perform online learning.

DAVIS-2017 Our performance on the DAVIS-2017 test-

dev set are shown in Table 2. We find that our offline

network is unable to achieve better results than many con-

temporary methods because many of the objects found in

DAVIS-2017 do not appear in the Youtube-VOS training

set. DyeNet [19] is able to outperform our network by a

wide margin; we attribute this to the fact that the method

is image based, which allows their region-proposal network
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Figure 5. A qualitative comparison between networks with and without the zooming module. Rows 1,3,5: with zooming module. Rows

2,4,6: without zooming module. The first example demonstrates the network’s ability to generate fine-grained segmentations on small

objects when the zooming module is used. Very small objects that move rapidly, like those in examples 2 and 3, are lost rather quickly

when the zooming module is not present.

OSVOS [2] DyeNet [19] Ours

Online Learning ✓ ✗ ✗

J Mean ↑ 47.2 60.2 47.4

J Recall ↑ 50.8 - 54.1

F Mean ↑ 53.7 64.8 55.2

F Recall ↑ 57.8 - 64.6

Global Mean 50.5 62.5 51.3
Table 2. Our results on the DAVIS-2017 test-dev set. We compare

with OSVOS [2] and the offline version of DyeNet [19]

and feature extraction network to be pretrained on larger

image datasets.

Speed Analysis Running on a Titan X Pascal GPU, our

network segments an average of 13.5 frames per second.

We compare our network’s inference speed with other ap-

proaches in Figure 6. Our network is able to segment frames

at a much faster rate than previous methods, because we si-

multaneously segment 8 frames at once as opposed to one

frame at a time.

Figure 6. Comparison of quality and speed of previous video ob-

ject segmentation methods on the Youtube-VOS dataset. We graph

the overall performance percentage vs the frames-per-second. The

x-axis (fps) is in the log scale.

4.2. Ablation Study

All ablation experiments are performed on the Youtube-

VOS dataset. The quantitative results for the ablations are

shown in Table 3.
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Ablation J seen J unseen F seen F unseen Overall

No Zooming 62.1 45.8 61.3 48.1 54.3

HC Zooming 65.8 51.7 66.5 57.5 60.4

Concat Routing 65.2 51.0 65.6 56.9 59.7

Fully Conv 64.5 51.5 64.8 57.0 59.4

No Memory 64.9 49.6 65.3 53.9 58.4

Full Method 67.3 53.7 68.1 59.9 62.3
Table 3. Our ablation experiment results on the Youtube-VOS validation set. Each row corresponds to a different ablation. The final row

contains the results of our method without any changes.

Zooming Module To test the effectiveness of our zoom-

ing module, we first evaluate our method without any zoom-

ing. In this experiment, we resize all frames to 128 × 224
and segment them with CapsuleVOS. Without the zoom-

ing module, the network’s performance decreased by about

8%. The zooming module improves the segmentations in

two ways: (1) the network is able to keep track of smaller

objects, and (2) the network can generate finer segmenta-

tion masks for medium sized objects. Figure 5 shows ex-

amples of our method with and without the zooming mod-

ule; there is a noticeable decrease in segmentation accuracy

for smaller objects without the zooming module. We also

test if if a simple, hand-crafted zooming method would per-

form as well as our zooming module. In this experiment,

we use a hand-crafted bounding-box around the foreground

object in lieu of the zooming module. We find that the

hand-crafted bounding-box results in improved segmenta-

tions when compared to no zooming, but the zooming mod-

ule’s learned bounding-boxes perform best.

Attention Routing We run two ablations to test the ef-

fectiveness of our proposed capsule routing algorithm. The

first is performing conventional EM-routing by simply con-

catenating the video and frame capsules; the second is re-

moving capsules entirely, and having a fully convolutional

network with a similar number of parameters. We find that

our proposed routing algorithm does improve segmenta-

tions when compared to simple capsule concatenation; this

is because the proposed routing algorithm conditions the

video capsules based on their agreement with the frame cap-

sules, whereas concatenation does not differentiate between

frame and video capsules and attempts to find agreement

between all capsules. We also find that the network with-

out capsules performs similar to the network with capsule

concatenation; this suggests that the standard EM routing

algorithm cannot effectively perform the conditioning oper-

ation which this tasks requires and that our proposed routing

procedure successfully conditions the video capsules based

on the frame capsules.

Memory Module In this final ablation, we test the impor-

tance of the memory module in the frame network. We find

that this ConvLSTM improves results by 4%, because it al-

lows the network to handle issues like occlusion or when the

object of interest leaves the frame. Figure 4 contains some

qualitative results depicting the two issues that the mem-

ory module solves: occlusion and objects leaving the frame.

Once the occlusion ends or the object re-enters the frame,

the ConvLSTM allows the network to remember the object

which it must segment.

5. Conclusion

We have proposed a video capsule network, Cap-

suleVOS, for semi-supervised video object segmentation.

The use of capsules provides an effective modeling of en-

tities present in the video and the attention-based routing

helps in the tracking and segmentation of objects. The net-

work contains two additional novel components: a zoom-

ing module and a memory module. The zooming module

ensures the capture of small objects present in the video

and the memory module tracks objects in scenarios when

they are occluded or when they move out of the scene. The

experimental evaluation demonstrates the effectiveness of

our proposed network in video object segmentation and its

ability to segment small and occluded objects. Moreover,

our ablations show the effectiveness of our proposed rout-

ing procedure when compared to the exists EM routing al-

gorithm. The network segments multiple frames at once

which allows it to perform segmentation at a much faster

rate when compared with existing methods.
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