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Abstract

Our goal is to significantly speed up the runtime of cur-

rent state-of-the-art stereo algorithms to enable real-time

inference. Towards this goal, we developed a differentiable

PatchMatch module that allows us to discard most dispari-

ties without requiring full cost volume evaluation. We then

exploit this representation to learn which range to prune

for each pixel. By progressively reducing the search space

and effectively propagating such information, we are able

to efficiently compute the cost volume for high likelihood

hypotheses and achieve savings in both memory and com-

putation. Finally, an image guided refinement module is

exploited to further improve the performance. Since all

our components are differentiable, the full network can

be trained end-to-end. Our experiments show that our

method achieves competitive results on KITTI and Scene-

Flow datasets while running in real-time at 62ms.

1. Introduction

Stereo estimation is the process of estimating depth (or

disparity) from a pair of images with overlapping fields of

view. It is a fundamental building block for many applica-

tions such as robotics and computational photography. De-

spite many decades of research, stereo estimation of real-

world scenes remains an open problem. State-of-the-art ap-

proaches still have difficulties tackling repetitive structures,

texture-less regions, occlusions and thin objects. Further-

more, runtime is also a challenge. While real-time infer-

ence is required for many applications, it is hard to achieve

without a significant compromise on accuracy.

Classic stereo approaches typically start by computing

robust feature representations [38, 36, 31, 20, 41]. A cost

volume is then computed for each pixel, encoding the sim-

ilarity between its representation and the representation of

all pixels along the corresponding epipolar line on the other

image. Post-processing techniques [14, 30] are typically

exploited for smoothing and noise removal. The lowest-

cost disparity value is then picked for each pixel as the final

prediction. Yet this pipeline is usually computationally de-

manding, due to the size of the solution space and the use of

sophisticated post-processing procedures. A plethora of ac-

celeration approaches have been proposed toward achieving

real-time performance, such as solution space pruning [6],

coarse-to-fine cost volume computation [16] and efficient

variational optimization [10]. Among them, PatchMatch

[3] is one of the most popular techniques used to achieve

competitive performance with real-time inference [5, 6].

More recently, with the flourishing of deep learning,

networks inspired by traditional stereo matching pipelines

have been designed. They achieve state-of-the-art results

by learning deep representations [22, 23] and building deep

cost volumes [15, 8, 16]. While these approaches can be

accelerated with GPUs, memory consumption and compu-

tation requirement is still a concern for most architectures.

An alternative is to design a regression network that takes

a stereo pair as input and directly regresses disparity with-

out explicit matching or cost volume construction. Unfor-

tunately, there is typically a large performance gap between

real-time methods and best-performing algorithms.

Our goal is to significantly speed up the runtime of cur-

rent state-of-the-art deep stereo algorithms to enable real-

time inference. We build our model based on two key obser-

vations: first, the search space for stereo matching is large,

yet a lot of candidates can be confidently discarded without

requiring full evaluation; second, due to the coherent nature

of the world, adjacent pixels often possess similar dispari-

ties. This suggests that once we know the disparity of one

pixel, we can effectively propagate such information to its

neighbors.

With these intuitions in mind, we propose DeepPruner,

a real-time stereo matching model. Specifically, we first

leverage a novel differentiable PatchMatch algorithm to ob-

tain a sparse representation of the cost volume. We then

exploit this representation to learn which range to prune

for each pixel. Finally, an image guided refinement mod-

ule is exploited to further improve the performance. Since

all components are differentiable, the full network can be

trained in an end-to-end fashion. By progressively reducing

the search space and effectively propagating such informa-

tion, we are able to efficiently compute the cost volume for

high likelihood hypotheses and significantly reduces both

memory consumption and computational cost.
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Figure 1: Overview: Given a pair of stereo images, we first extract deep multi-scale features. Then we exploit differentiable

PatchMatch to estimate a small subset of disparities for each pixel and capitalize on confidence range predictor to further

prune out the solution space. Unlike other approaches [8, 15] which operate on the entire disparity search range, we only

aggregate the cost within the reduced search range. Finally, we leverage a light-weight network to refine the stereo output.

We demonstrate the efficiency and effectiveness of our

approach on the challenging SceneFlow [23] and KITTI

[11] datasets. Our model ranks second on SceneFlow while

being 8 times faster than the best method [9]. Comparing to

previous approaches on KITTI, DeepPruner achieves com-

petitive performance to state-of-the-art methods [8, 33] and

ranks first among all real-time models [23, 32]. To fur-

ther showcase the robustness and generalizability of Deep-

Pruner, we evaluate it on the Robust Vision Stereo Chal-

lenge [1]. Our model achieves state-of-the-art results on

multiple datasets [11, 28, 26] and obtain first place on the

overall ranking.

2. Related work

Classical Stereo Matching: Estimating disparities

(depth) from stereo images has been studied for decades

[2]. A stereo algorithm typically consists of the following

three steps [27]: compute a pixel-wise feature representa-

tion, construct the cost volume, and final post-processing.

As the pixel representation plays a critical role in the

process, researchers have exploited a variety of represen-

tations, from the simplest RGB values of the surrounding

pixels to more discriminative local descriptors such as

CENSUS [39], SIFT [19], and BRIEF [7]. Together with

the carefully designed post-processing techniques, e.g.

cost aggregation, semi-global matching [14], and Markov

random fields [30, 34], they are able to achieve good

performance on relatively simple scenarios.

Deep Stereo Matching: In order to further deal with

more complex real world scenes, especially texture-less re-

gions or reflective surfaces, modern approaches leverage

CNNs to extract robust features [22] and conduct matching

[40, 41]. While these techniques have demonstrated great

performance in benchmarks [11], time-consuming post-

processing is still required. With this in mind, researchers

propose to directly regress sub-pixel disparities from the

given stereo images [35, 9, 29]. By implementing the full

traditional stereo pipeline as neural network layers, these

models can be trained in an end-to-end fashion and are able

to conduct inference completely on GPU, which drastically

improves the efficiency. Unfortunately, due to the large size

of the cost volume and aggregation, the memory consump-

tion and the required computation are still very high, ren-

dering the models impractical [15, 8]. In this paper, we

build our work upon [15, 8]. Instead of searching for the

full disparity space, we exploit a novel differentiable ver-

sion of PatchMatch to learn to prune out unlikely matches

and reduce the complexity of the search space. Our model is

able to run in real-time while maintaining comparable per-

formance.

PatchMatch: The seminal work of PatchMatch (PM) was

proposed by Barnes et al. in 2009 [3]. It was originally in-

troduced as an efficient way to find dense correspondences

across images for structural editing. The key idea behind it

is that, a large number of random samples often lead to good

guesses. Additionally, neighboring pixels usually have co-

herent matches. Therefore, once a good match is found, we
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Figure 2: Illustration of the differentiable patch match

operations.

can efficiently propagate the information to the neighbors.

Due to its effectiveness in pruning out the search space,

PatchMatch has drawn wide attention across the community

[17, 12, 4, 5] and has been extended and applied in multiple

domains. For instance, Korman and Avidan [17] incorpo-

rate the idea of image coherence into Locality Sensitivity

Hashing and significantly improve the speed. He and Sun

[12] combine KD-trees with PatchMatch to perform more

efficient neighbor matching. PatchMatch has also been ap-

plied in the stereo setting for fast correspondence estimation

[21] and slanted plane fitting [6]. To improve sub-pixel ac-

curacy, Besse et al. [5] further combines PatchMatch with

particle belief propagation and extend it to a continuous

MRF inference algorithm. Specifically, [5] exploits Patch-

Match to overcome the infeasibility of searching over con-

tinuous output space. Note that if the MRF has only unary

terms, it reduces to a k-particle generalized PatchMatch [4].

Our pruning module is largely inspired by [5]. We first

implement the particle PatchMatch operations as neural net-

work layers and unroll them in a recurrent fashion. We then

predict the disparity confidence range as to approximate the

marginal distribution of each pixel. Through efficient sam-

pling and propagation, we are able to prune out the solution

space effectively and significantly speed up inference. Im-

portantly, all our operations are differentiable, and thus our

approach can be learned end-to-end.

Real-time Stereo: Besides our work, there has been

several concurrent efforts pushing towards real-time deep

learning based stereo estimation [16, 37]. Our work is dif-

ferent from theirs since we adaptively prune out the search

space for each region. In contrast, they employ a fixed,

coarse-to-fine procedure to iteratively find the match.

3. Learning to Prune for Stereo Matching

Our aim is to design an efficient stereo algorithm that

not only produces reliable and accurate estimations, but also

Figure 3: One hot filter banks within the propagation

layer.
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Figure 4: Qualitative results on SceneFlow dataset.

runs in real-time. Towards this goal, we present a simple yet

effective solution that combines deep learning with Patch-

Match to prune out the potentially large search space and

significantly speeds up inference.

We start our discussion by describing the feature extrac-

tion backbone. We then briefly review the PatchMatch al-

gorithm and show that it can be naturally incorporated into

neural networks to prune out the search space and speed up

cost volume construction. Finally, we describe how to ag-

gregate the cost, refine the estimation, and perform end-to-

end learning. We refer the reader to Fig. 1 for an illustration

of our approach.

3.1. Feature Extraction

The goal of the feature extraction network is to produce a

reliable pixel-wise feature representation from the input im-

age. More formally, given a pair of stereo images {x0,x1},

we seek to learn a set of deep features f0, f1 that is useful for

matching. Towards this goal, following [15, 8], we exploit

a 2D convolutional neural network with a spatial pyramid

pooling module [13, 42] as our backbone. Specifically, we

employ four residual blocks and use ×2 dilated convolution

for the last block to enlarge the receptive field. We then ap-

ply spatial pyramid pooling to build a 4-level pyramid fea-

ture. Through multi-scale information, the model is able to

capture large context while maintaining a high spatial reso-

lution. The size of the final feature map is 1/4 of the original

input image size. We share the parameters for the left and

right feature network. Now that we have a reliable feature
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representation for each pixel, the next step is to construct

the cost volume.

3.2. Pruning Through Differentiable PatchMatch

Modern stereo approaches typically generate a cost vol-

ume over the full disparity space [8, 15, 9, 29]. The large

search space not only increases memory consumption, but

also intensifies the computational burden. For example,

considering PSM-Net [8], 3D cost volume construction and

aggregation takes more than 250 ms. These two operations

themselves render the real-time applications infeasible. In

this paper, we tackle this issue by designing an efficient

PatchMatch-based pruner module that is able to predict a

confidence range for each pixel, and construct a sparse cost

volume that requires significantly less operations. This al-

lows the model to focus only on high likelihood regions

and save large amount of computation and memory. Unlike

standard PatchMatch, our module is differentiable, making

end-to-end learning possible. Importantly, as shown in our

experiments, such confidence range is also a promising in-

dicator of uncertainty and a foreseer of potential prediction

error. This is important when depth estimates are used in

downstream tasks.

PatchMatch revisited: Our pruner module is motivated

by the elegant and classic PatchMatch algorithm [3]. Patch-

Match methods [6, 5, 3, 4] typically consist of the following

three steps1:

1. Particle sampling: generate k random candidates;

2. Propagation: propagate particles to neighbors;

3. Evaluation: update best k solutions by evaluating cur-

rent and propagated particles;

Once the initialization is done (step 1,), the greedy approach

iterates between step 2 and step 3 until convergence or a fix

number of steps is reached. In practice, this often leads to

good results without enumerating a,ll possibilities. Origi-

nally, k was set to 1 [3]. But later on, generalized Patch-

Match [4] draw connections to particle sampling methods

and extend PatchMatch to utilize the top-k. This not only

increases the expressive power but also enables faster con-

vergence.

Differentiable PatchMatch: In this work, we unroll gen-

eralized PatchMatch as a recurrent neural network, where

each unrolling step is equivalent to each iteration of the al-

gorithm. This is important as it allow us to train our full

model end-to-end. Specifically, we design the following

layers:

1For simplicity, we omit the local random resampling applied to the

current particles.

1. Particle sampling layer: for each pixel i, we ran-

domly generate k disparity values from the uniform

distribution over predicted/pre-defined search space;

2. Propagation layer: particles from adjacent pixels are

propagated together through convolution with a pre-

defined one-hot filter pattern (see Fig. 3), which en-

codes the fact that we allow each pixel to propagate

particles to its 4-neighbours.

3. Evaluation layer: for each pixel i, matching scores

are computed by taking the inner product between the

left feature and the right feature: si,j = 〈f0(i), f1(i +
di,j)〉 for all candidates j. The best k disparity value

for each pixel is carried towards the next iteration.

Our architecture design has one particle sampling layer at

the bottom, and then iterates through propagation and eval-

uation layers recurrently. As the argmax operator during

evaluation is not differentiable, we replace it with a soft ver-

sion [15]:

d̂i =

∑

j si,j · di,j
∑

j si,j
. (1)

Fig. 2 depicts the computation graph of one recurrent step,

which combines propagation and evaluation. In practice,

rather than allowing each particle to reside in the full dis-

parity space, we divide the search space into k intervals,

and force the i−th particle to be in a i−th interval. This

guarantees the diversity of the particles and helps improve

accuracy for later computations, which we show in our ex-

periments. Since all operations are differentiable, we can

directly back-propagate through all unrolling steps and train

the model in an end-to-end fashion.

Confidence range prediction: The original search space

for all pixels is identical. However, in practice, for each

pixel, the highly probable disparities lie in a narrow re-

gion. Using the small subset of disparities estimated from

the PatchMatch stage, we have sufficient information to pre-

dict the range in which the true disparity lies. We thus ex-

ploit a confidence range prediction network to adjust the

search space for each pixel. The network has a convolu-

tional encoder-decoder structure. It takes the sparse dispar-

ity estimations from the differentiable PatchMatch, the left

image and the warped right image (warped according to the

sparse disparity estimations) as input and outputs a confi-

dence range Ri = [li, ui] for each pixel i.

The confidence range prunes out the space of unlikely

matches, allowing the expensive cost-volume construction

and aggregation to happen only at a few disparity values.

3.3. Cost Aggregation and Refinement

Cost aggregation: Based on the predicted range in the

pruning module, we build the 3D cost volume estimator and
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Figure 5: Visualization of confidence range predictor. At the bottom row, we show the predicted search range for pixels

along the horizontal green line on validation images shown at the top row. Blue and orange line represent the upper and lower

bound of the search range, respectively, and the grey shades depict the range size. For most pixels, DeepPruner predicts a

very small search range, thereby allowing efficient cost aggregation. Higher search ranges often happen at boundary pixels,

or pixels that are occluded in one view.

conduct spatial aggregation. Following common practice

[8, 15], we take the left image, the warped right image and

corresponding disparities as input and output the cost over

the disparity range at the size B × R × H × W , where R

is the number of disparities per pixel. Compared to prior

work [8, 15], our R is more than 10 times smaller, making

this module very efficient. Soft-argmax defined in Eq. 1

is again used to predict the disparity value ycost, so that our

approach is end-to-end trainable.

Refinement: We utilize a lightweight fully convolutional

refinement network to further boost the performance. The

network takes left image convolutional features from the

second residual block of the feature network and the cur-

rent disparity estimation ycost as input. It then outputs the

finetuned disparity prediction yrefine. The low-level feature

information serves as a guidance to reduce noise and im-

prove the quality of the final disparity map, especially on

sharp boundaries.

3.4. End­to­end Learning

Our network is end-to-end differentiable. We use back-

propagation to learn the parameters. Given the GT disparity

y, the total loss function is defined as follows:

ℓs(ycost − ygt) + ℓs(yrefine − ygt)

+γ{ℓlower(l− ygt) + ℓupper(u− ygt)}

where the standard smooth-ℓ1 loss is applied over the dis-

parity prediction in cost aggregation stage and final refine-

ment stage respectively. Thus we define:

ℓs(x) =

{

0.5x2 if |x| < 1
|x| − 0.5 otherwise

This loss has the advantage of being differentiable every-

where like the ℓ2 loss, but more robust to outlier like the ℓ1
loss. Moreover, the loss over upper and lower bound of the

range is defined as a boomerang shape unbalanced smooth-

ℓ1 loss:

ℓlower(x) =

{

(1− λ)ℓs(x) if x > 0
λℓs(x) otherwise

ℓupper(x) =

{

λℓs(x) if x > 0
(1− λ)ℓs(x) otherwise

with 0 < λ < 0.5. γ is the balancing scalar. Note that

ℓupper encourages the upper-bound prediction to be closer to

but preferably larger than GT disparity; whereas the ℓlower

pushes the lower-bound prediction to be closer to but prefer-

ably smaller than GT disparity.

4. Experiments

We compare our approach against the best performing al-

gorithms [41, 15, 9, 25, 29, 8] and the real-time models [32,

23]. Specifically, we evaluate two variants of our method,

namely DeepPruner-Best and DeepPruner-Fast.

DeepPruner-Best downsamples the cost volume by 4

times while DeepPruner-Fast downsamples it by 8.

The rest of the two models remain the same.
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GC-Net [15] SegStereo [35] CRL [25] PDS-Net [33] PSM-Net [8] CSPN [9] Our-Best DispNetC [23] Our-Fast

EPE 2.51 1.45 1.32 1.12 1.09 0.78 0.86 1.68 0.97

Runtime 900 ms 600 ms 470 ms 500 ms 410 ms 500 ms 182 ms 60 ms 62 ms

Table 1: Quantitative results on SceneFlow Dataset. Our approach ranks 2nd among all competing algorithms. Our fast

model is 8 times faster than prior art and improves the performance of previous real-time model by 40%.
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Figure 6: Qualitative Results on KITTI 2015 Test Set. Orange corresponds to erroneous prediction.

Inference Noc (%) All (%)

Methods Runtime bg fg all bg fg all

Content-CNN [22] 1000 ms 3.32 7.44 4.00 3.73 8.58 4.54

MC-CNN [41] 67000 ms 2.48 7.64 3.33 2.89 8.88 3.89

GC-Net [15] 900 ms 2.02 3.12 2.45 2.21 6.16 2.87

CRL [25] 470 ms 2.32 3.68 2.36 2.48 3.59 2.67

PDS-Net [33] 500 ms 2.09 3.68 2.36 2.29 4.05 2.58

PSM-Net [8] 410 ms 1.71 4.31 2.14 1.86 4.62 2.32

SegStereo [35] 600 ms 1.76 3.70 2.08 1.88 4.07 2.25

EdgeStereo [29] 700 ms 1.72 3.41 2.00 1.87 3.61 2.16

CSPN [9] 500 ms 1.40 2.67 1.61 1.51 2.88 1.74

DeepPruner-Best 182 ms 1.71 3.18 1.95 1.87 3.56 2.15

MAD-Net [32] 20 ms 3.45 8.41 4.27 3.75 9.2 4.66

DipsNetC [23] 60 ms 4.11 3.72 4.05 4.32 4.41 4.34

DeepPruner-Fast 61 ms 2.13 3.43 2.35 2.32 3.91 2.59

Table 2: Quantitative Results on KITTI 2015 Test Set.

Top: Our model acheives comparable performance to state-

of-the-art models while being significantly faster. Bottom:

Comparing to other real-time methods (e.g. DispNet), our

stereo estimation is much more precise.

In this section, we first describe our experimental setup.

Next we evaluate our approach on challenging public

benchmarks. Finally we comprehensively study the char-

acteristic of our model.

4.1. Dataset

SceneFlow: As proposed in [23], this is a synthetic

dataset consisting of dense ground truth disparity maps for

35454 training and 4370 testing stereo pairs with dimen-

sions as (H=540,W=960). We used End-Point-Error (EPE)

as the evaluation metric for SceneFlow dataset.

KITTI 2015: This is a real world dataset consisting of

200 training and 200 testing stereo pairs with dimensions

(H=376,W=1240). The ground truth disparities are ob-

tained from Lidar points collected using Velodyne HDL-

64E laserscanner. Unlike the prior version KITTI 2012,

dense ground disparities are present for the dynamic scenes.

The evaluation metrics used are same as that provided by

the benchmark i.e percentage of outliers.

4.2. Implementation Details

The model was trained end-to-end on randomly cropped

image patches of size (H=256,W=512) using Adam(β1=0.9,

β2=0.999) as the optimizer. Color normalization was done

on the input images using ImageNet statistics(mean and std)

as the sole pre-processing step. All models were trained on

4 Nvidia-TitanXp GPUs. For all datasets, we use the hyper-

parameter λ = 0.315, γ = 2.4 in our loss function. We

43264389



Module Feature Extraction PatchMatch-1 Confident Range PatchMatch-2 Cost Aggregation RefineNet

DeepPruner-Best 54 ms 20 ms 61 ms 13 ms 32 ms 3 ms

DeepPruner-Fast 28 ms 5 ms 16 ms 3 ms 8 ms 4 ms

Table 3: Runtime Breakdown: As PatchMatch and Confidence Range Predictor significantly reduce the search space, we

only conduct cost aggregation on a small subset of disparities, thereby being much faster.

Network Component Inference KITTI 2015 (%) SceneFlow

Feat. Extr. PM-1 CRP PM-2∗ CA RefineNet Runtime bg fg all EPE

X X X X 120 ms 2.05 3.57 2.28 0.982

X X X X X 172 ms 1.65 3.27 1.90 0.868

X X X X X 178 ms 2.04 3.86 2.32 1.283

X X X X X X 182 ms 1.61 2.90 1.8 0.858

Table 4: Contributions of each network component: Confidence range predictor (CRP) and PatchMatch (PM) signifi-

cantly prune out the solution space, thus enable better cost aggregation (CA). RefineNet further improves the estimation by

incoporating more visual guidance. (∗: PM-2 is only used during SceneFlow pre-training.)

only computed loss over pixels with ground truth disparities

between 0 and 192 during training. Evaluation is conducted

over the all pixels regardless of their disparity values.

For sceneflow dataset, we trained the model from scratch

with a batch size of 16 for 64 epochs. The initial learning

rate was set to 0.001 and was decayed by 0.0003 after every

20 epochs.

For KITTI dataset, we combined KITTI 2012 and KITTI

2015 image pairs, resulting in a total of 394 training im-

age pairs. We reserved out 40 images from the total 394

images for validation. We then used the pre-trained Scene-

flow model and finetuned it for another 1040 epochs. After

800 epochs, all batch norm layers were switched to eval

mode, i.e the running mean and std statistics were kept

fixed for further training. We used a batch size of 16 for

DeepPruner-Best model, while DeepPruner-Fast

model was trained with a batch size of 64. We used an ini-

tial lr of 0.0001 and reduced it once, after 500 epochs to

0.00005. For submission to the KITTI test benchmark, we

re-trained the model on all the 394 training images for 1040

epochs.

4.3. Experimental Results

SceneFlow: As shown in Tab. 1, our method outperforms

most approaches by a large margin and achieves the sec-

ond best results. Comparing to state of the art [9], our best

model is 2.5 times faster and our fast model is over 8 times

faster. Comparing against the real-time approach [23], our

method reduces the end-point-error by 40% with almost the

same runtime. Fig. 4 depicts the qualitative results. Deep-

Pruner captures both large disparities and small objects, and

is able to produce sharp estimation on image boundaries.

KITTI: Tab. 2 showcases the performance and run-

time of all competing algorithms on KITTI stereo bench-

mark. DeepPruner-Best achieves comparable per-

formance to state-of-the-art approaches while being sig-

nificantly faster. Comparing to real-time stereo models,

DeepPruner-Fast reduces the outlier ratio by more

than 40%. Fig. 6 visualize a few stereo results on test set.

DeepPruner produces competitive estimation among vari-

ous scenarios.

4.4. Analysis

Ablation study: To understand the effectiveness of each

component in DeepPruner, we evaluate our model with dif-

ferent configurations. As shown in Tab. 4, confidence range

predictor is of crucial importance to our model. With the

help of refinement network, we can further capture the sharp

edges as well as the fine-grained details, and improve the

overall stereo estimation.

Visualizing confidence range predictor: The goal of

confidence range predictor is to prune out the space of un-

likely matches and ensure the expensive cost volume op-

erations only happen at a few disparity values. To under-

stand the efficacy of the predictor, we visualize the pre-

dicted search range as well as the GT disparity for pixels

along a horizontal line. As shown in Fig. 5, our confident

range is quite small in most cases, which greatly reduce the

computation and memory burden of cost volume prediction.

Uncertainty: The range prediction can also be considered

as a measurement of confidence/uncertainty level — the

larger the range, the more uncertain the model is. To val-

idate this hypothesis, we compare the predicted confidence

range (i.e., max range minus min range) against the dispar-

ity error map over several validation images. As shown in

Fig. 7, the uncertainty (predicted range) map and the error
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RGB Disparity Error Uncertainty

Figure 7: Uncertainty vs Error. As can be seen, uncertainty correlates highly with the error, thereby being a good indicator

of the potential errors.

map are highly correlated, suggesting that it could be a good

indicator of the potential errors. To further verify this, we

track the change in the metric by gradually removing uncer-

tain pixels, starting from most uncertain ones. By removing

6% of uncertain pixels, we improve the outlier ratio by 38%.

This clearly indicates that our high confidence regions have

very low error whereas most of the error happens at low

confidence regions.

Method KITTI2015 MiddleburyV3 ETH3D ROB

Rank D1-all (3px) Rank 4x Rank 4x Overall-Rank

PSMNet ROB [8] 2 2.31 11 29.2 6 0.54 5

DN-CSS ROB [1] 8 2.94 3 19.6 2 0.38 3

iResNet ROB [18] 3 2.71 6 22.1 3 0.40 2

DeepPruner ROB 1 2.23 7 21.9 1 0.34 1

Table 5: Comparison against top 3 approaches on Ro-

bust Vision Challenge. Our proposed approach achieves

the highest overall rank.

Robustness and generalizability: To corroborate how

well our model generalizes across different scenarios, we

evalute our model on the Robust Vision Challenge [1].

Specifically, we fine-tune our sceneflow-pretrained model

on KITTI [24], ETH3D[28], and MiddleburyV3 [26] jointly

and report results on all three datasets. As shown in Tab. 5,

DeepPruner achieves the highest rank on two datasets and

ranks first on the overall ranking. It is also able to capture

the fine-grained geometry of various scenes (see Fig. 8).

Runtime and memory analysis: We benchmark the run-

time of each component in the model during inference in

Tab. 3. As PatchMatch and confidence range predictor

progressively reduce the possible solution space, we only

need to perform cost aggregation among a small subset of

disparities. The model is thus significantly faster. To fur-

ther demonstrate the efficiency of our model, we compare

our memory consumption against previous full cost vol-

ume approach [8]. For a pair of full-size KITTI stereo

images, PSM-Net [8] takes up to 4351 MB memory dur-

ing inference. In contrast, our DeepPruner-Best and

DeepPruner-Fast merely consume 1161 MB and 805

MB memory respectively. The storage requirements are less

than one fourth of [8], which shows the potential to be inte-

grated in mobile computing platform.
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Figure 8: Qualitative Results on ROB Challenge: Our

method captures the fine-grained geometry of the scenes.

See the stair armrest and the arms of the sculpture.

5. Conclusion

In this paper we show how to exploit the fact that we

can quickly prune parts of the cost volume for each pixel

without requiring to fully evaluate its matching score. To-

wards this goal, we developed an end-to-end trainable net-

work that exploits a novel differentiable PatchMatch as part

of its internal structure. Our experiments show that our

model achieves best performance among real-time methods

and comparable results with the best performing methods

while remaining several times faster. In the future we plan

to apply our approach to both optical flow and scene flow

tasks.
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