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Abstract

The dominant approach for learning local patch descrip-

tors relies on small image regions whose scale must be prop-

erly estimated a priori by a keypoint detector. In other

words, if two patches are not in correspondence, their de-

scriptors will not match. A strategy often used to alleviate

this problem is to “pool” the pixel-wise features over log-

polar regions, rather than regularly spaced ones.

By contrast, we propose to extract the “support re-

gion” directly with a log-polar sampling scheme. We show

that this provides us with a better representation by si-

multaneously oversampling the immediate neighbourhood

of the point and undersampling regions far away from

it. We demonstrate that this representation is particularly

amenable to learning descriptors with deep networks. Our

models can match descriptors across a much wider range

of scales than was possible before, and also leverage much

larger support regions without suffering from occlusions.

We report state-of-the-art results on three different datasets.

1. Introduction

Keypoint matching has played a pivotal role in computer

vision for well over a decade. This is clearly demonstrated

by the fact that SIFT [23] remains the most cited paper in

computer vision history. While many areas of computer vi-

sion are currently dominated by dense deep networks, that

is, methods that take entire images as input, some problems

remain best approached using sparse features. For exam-

ple, despite recent attempts at tackling 6DOF pose estima-

tion using dense networks, the top-performing models for

wide-baseline stereo and large-scale Structure-from-Motion

(SfM) still rely on sparse features [49, 51, 33].

As a result, the quest for ever-improving local feature de-

scriptors goes on [23, 5, 46, 42, 39, 12, 50, 38, 41, 28, 45,
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19, 25, 15, 24, 10, 31]. These methods all seek to achieve

invariance to small changes in location, orientation, scale,

perspective, and illumination, along with imaging artefacts

and partial occlusions. Most descriptors, however, whether

learned or hand-crafted, operate on SIFT-like keypoints and

thus rely on simple heuristics to estimate the scale. If the

scales for two keypoints do not correspond, neither will the

support regions used to extract their descriptors, which is

widely accepted as an unrecoverable situation. This is dam-

aging because scale detection is often unreliable.

In this paper we demonstrate that this does not need to

be the case. To this end, we go beyond the current paradigm

for local descriptors, which we call the cartesian approach.

This paradigm confines local descriptors to small, regularly

sampled regions and relies on accurate scale estimates. By

contrast, we posit that extracting the support region with a

log-polar sampling scheme allows us to generate a better

local representation by oversampling the immediate neigh-

borhood of the point. We show that this approach is con-

ducive to learning scale-invariant descriptors with off-the-

shelf deep networks, enabling us to match keypoints across

mismatched scales; see Fig. 4. Furthermore, we demon-

strate that this representation is far less sensitive to occlu-

sions or background motion than its cartesian counterpart,

which allows us to exploit much larger image regions than

was possible before to further boost performance.

Note that while log-polar representations have been used

extensively by local features, this has typically involved log-

polar aggregation of local statistics that are still computed

on the cartesian image grid. By contrast, we propose to

warp the patch using a log-polar sampling scheme and learn

an optimal descriptor on this data. Fig. 1 illustrates the dif-

ference between these two approaches.

In short, we propose a new approach to represent local

patches and show how to leverage it to achieve scale invari-

ance. In the remainder of the paper, we first briefly review

how scale has been handled in the vast body of literature

pertaining to matching descriptors, whether learned or de-

signed. We then describe our method and show that it out-

performs the state of the art on several challenging datasets.
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2. Related works

In this section we first review techniques representative

of the many that have been proposed to achieve scale invari-

ance for local feature matching, with and without explicit

scale detection. Next, we discuss approaches to learning

models for patch descriptors. Finally, we study the use of

log-polar representations in local features. For a thorough,

up-to-date survey on local features please refer to [8].

Scale Invariance via Scale Detection. The vast majority

of work in the literature assumes that scale estimation is

handled by the keypoint detector and that keypoints can be

put in correspondence only if their scales match. This in-

cludes classical hand-crafted pipelines such as SIFT [23] or

SURF [5]. Image measurements are then aggregated over a

correspondingly-sized support region to extract the descrip-

tor. As a result, errors in this a priori scale estimation can-

not be recovered from, and the affected keypoints are sim-

ply written off as potential correspondences.

Two-stage pipelines. Special strategies can be used for

rigid matching under large zoom. Zhou et al. [52] propose

a two-stage approach to first coarsely register the image

in scale-space and then narrow down the search scope to

matches of commensurate scale. Shan et al. [36] assume

that dense SfM models are available, along with an approx-

imate pose, and synthesize ground views from aerial view-

points using the 3D model, for aerial-to-ground matching.

Both methods rely on SIFT features and would directly ben-

efit from improved, scale-invariant descriptors such as ours.

Scale Invariance without Scale Detection. A simple

way to achieve scale invariance is to concatenate multi-scale

descriptors and find the best match among them. This was

done in [47] to improve robustness against scale changes

with ORB features [32]. Scale-Less SIFT (SLS) [14] goes

beyond that and exploits the observation that SIFT de-

scriptors do not change drastically over close, contiguous

scales, which suggests that they are embedded in a low-

dimensional space. This observation can be used to find a

representation more compact than their concatenation. The

resulting feature vectors are still high-dimensional (8k) but

can be reduced by PCA to a 512-dimensional vector. How-

ever, this requires a singular value decomposition for each

keypoint to find its subspace, which is very costly.

The Scale and rotation-Invariant Descriptor (SID) [20]

samples axis-aligned derivatives over a log-polar grid, along

with incremental smoothing over image regions further

away from the keypoint. Thus, scale changes and rota-

tions result in translations on the measurement matrix. Us-

ing the Fourier Transform Modulus of this signal, which

is translation-invariant, makes the descriptors scale- and

rotation-invariant. However, SID requires fine sampling

over large support regions, which fails in real-world scenar-

ios with viewpoint changes and occlusions. Seg-SID [43]

addresses this shortcoming by leveraging segmentation cues

to suppress image measurements from image regions not as-

sociated to the keypoint, but this requires image-level seg-

mentation and is failure-prone. SID also suffers from high

dimensionality (∼3k).

More importantly, both SID and SLS were designed for

dense matching with SIFT Flow [22] as a back-end and are

not suitable for large-scale reconstruction due to their com-

putational cost. Finally, they both rely on hand-crafted fea-

tures and cannot compete with the machine learning models

that currently dominate the field. We now turn to these.

Learned Descriptors. Early works applied PCA to

SIFT [18], learned comparison metrics [40], or learned de-

scriptors with convex optimization [39]. Current research

on patch descriptors is dominated by convolutional neu-

ral networks. MatchNet [12] and DeepCompare [50] train

descriptor extraction and distance metric networks using a

Siamese architecture. DeepDesc [38] uses hard positive and

negative mining to learn discriminative features. A triplet-

based loss is introduced in [4]. L2-Net [41] improves the

loss function by enforcing similarity in the intermediate fea-

ture maps and penalizing highly correlated descriptor bins.

HardNet [28] extends the formulation of [38] to mine over

all the samples in the batch. In [15], mining heuristics are

replaced by a differentiable approximation of the average

precision metric that is then used for optimization. Spectral

pooling is introduced in [45] to deal with geometric trans-

formations. An alternative to siamese- and triplet-based loss

functions is proposed in [19] to address their shortcomings.

GeoDesc [25] uses geometry constraints for optimization.

ContextDesc [24] incorporates global context, and geomet-

ric context from the keypoint distribution.

All of the deep methods, except [25, 24], are trained on

the same dataset [7], which consists of patches pre-extracted

on keypoints using Difference of Gaussians (DoG) [23] or

multi-scale Harris corners [13]. Only keypoints that survive

a 3D reconstruction by Structure from Motion (SfM) are

considered, and similarly to the traditional approach, the

learned models are simply expected to fail if the detector

fails first. To the best of our knowledge there is no learning-

based method that explicitly addresses scale invariance.

Another line of works comprises those that use deep

architectures to learn keypoints and descriptors jointly.

LIFT [48] is trained on patches extracted around SIFT key-

points with corresponding scales, similarly to the previous

methods. LF-Net [29] learns to detect the scale with self-

supervision, but in practice seems to perform best over a

very narrow set of scales. SuperPoint [9] learns scale invari-

ance at the descriptor level, which works for visual odom-

etry but breaks in more generalized problems. D2-Net [10]

focuses on difficult imaging conditions and relies on a sin-

gle network for detection and description. R2D2 [31] ap-
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(a) Cartesian (b) Log-Polar (c) Log-Polar (d) Log-Polar
Pooling (SIFT) Pooling Sampling Patch

Figure 1: Pooling vs Sampling. (a,b) The red patterns depict the

regions that most descriptors use to pool features computed on a

cartesian pixel-grid. The size of the pattern depends on the lo-

cal scale, and we show three versions. Under large scale changes,

many regions of the cartesian and log-polar grids, such as the ones

highlighted by the yellow dots, can no longer be put in correspon-

dence. (c) By contrast, we first resample the patch according to the

patterns shown in blue (32 × 32). Their size also depends on the

scale. (d) Even though the scales vary from 1 to 4, the resulting

log-polar patches are all fairly similar, notably near the center of

the feature location, depicted by the left side of the patch.

plies L2-Net convolutionally while penalizing repeatable

but non-discriminative patches.

Leveraging Polar representations. Polar and log-polar

representations have been extensively used in computer vi-

sion to aggregate local information, because they are robust

to small changes in scale and rotation. Traditional hand-

crafted patch descriptors typically consist of two stages:

feature extraction and feature pooling. First, image mea-

surements such as gradients are computed for every pixel.

Then, they are aggregated over small regions around the

point given its location, orientation, and scale. SIFT, for

instance, aggregates features (histograms of gradient orien-

tations) over 4×4 cells around the keypoint; see Fig. 1.

Several descriptors aggregate features over polar or log-

polar regions. GLOH [26] computes SIFT over a log-

polar grid and then reduces the dimensionality by PCA.

Daisy [42] aggregates oriented image gradients over a po-

lar grid using a Gaussian kernel with a size proportional to

the distance between the keypoint and the grid point, to by-

pass aliasing effects. The seminal Shape Contexts paper [6]

introduces a descriptor for object recognition by picking

points on the contour of a shape and histogramming the lo-

cation of each point relative to every other point over log-

polar bins. Local Self-Similarities (LSS) [37] proposes a

technique to match different image modalities by measur-

ing internal self-similarities over the regions determined by

a log-polar grid. Winder and Brown [46] study many pool-

ing configurations within a framework similar to Daisy and

find log-polar to be optimal among their choices. Several

binary descriptors, such as BRISK [21] or FREAK [2], rely

on sampling patterns over similarly-defined grids to com-

pute intensity differences and extract the features.

Note that all of these methods define polar or log-polar

regions for feature pooling, that is, the pixel-wise features

are always computed in cartesian space, and it is only their

aggregation that takes place in log-polar space. As shown

in Fig. 1, this is drastically different to our approach, which

consists in warping the raw pixel data and use that represen-

tation to learn scale-invariant models.

3. Method

First, we describe our sampling scheme in Section 3.1

and, then, our network architecture and training strategy in

Section 3.2. For the purposes of this section, we assume that

the training data consists of pairs of keypoints across two

images that are in correspondence in terms of location and

orientation, but not necessarily scale. The actual procedure

used to generate the training data is described in Section 4.1.

3.1. Log­Polar Sampling

As in most papers about learning descriptors [12, 50, 38,

4, 41, 28], we use SIFT keypoints [23]. Given an image I

of size H ×W , a keypoint pi on I is fully described by its

center coordinates (xi, yi), its scale σi ∈ R+, and its ori-

entation θi ∈ [0, 2π). We use a Polar Transformer Network

(PTN) [11] to extract a L×L patch around keypoint pi. To

this end, we rely on the following coordinate transform:

xs
i = xi + elog(ri)x

t
i/W cos (ϕi) , (1)

ysi = yi + elog(ri)x
t
i/W sin (ϕi) .

Variables (xs
i , y

s
i ) denote source coordinates and (xt

i, y
t
i)

target coordinates, after the transform. The coordinate ori-

gin is centered on (xi, yi), the angle is ϕi =
θi+2πyt

i

H , and

the radius ri is given by λ
2σi, where λ is a factor that con-

verts the SIFT scale to image pixels1. Finally, we construct

the warped patches by looking up the intensity values in im-

age I at coordinates (xt
i, y

t
i) with bilinear interpolation, as

done in [11]. This process is illustrated in Fig. 1.

We denote patches extracted in this way as LogPol.

For comparison purposes, we also consider the standard

cartesian approach, using Spatial Transformer Networks

(STN) [17] on a regularly spaced sampling grid, defined by

xt
i = xi + xs

i cos (θi)σi/W − ysi sin (θi)σi/H , (2)

yti = yi + xs
i sin (θi)σi/W + ysi sin (θi)σi/H .

1Given the convention followed by OpenCV, λ = 12 denotes the scale

multiplier of SIFT. One can extract larger image regions setting λ > 12.
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(a) (b) (c) (d)

Figure 2: Cartesian vs Log-Polar. (a,c) Two images taken from different viewpoints with four pairs of corresponding keypoints, denoted

by their color. (b,d) Patches around these keypoints extracted with their estimated scale and orientation, with λ=16, similarly color-coded.

On each column, we show cartesian patches on the left and log-polar patches on the right. While cartesian patches can look very different,

log-polar ones remain similar. This is particularly visible for the red keypoint, whose scale estimates are very different in the two images.

We denote these patches as Cart. Note that STN and PTN

were designed to facilitate whole-image classification by al-

lowing deep networks to manipulate data spatially, thus re-

moving the burden of learning spatial invariance from the

classifier. This is not applicable here: we only use their

respective samplers, which allow us to efficiently sample

the images with in-line data augmentation at a negligible

computational cost by applying small perturbations when

extracting the patches.

The following properties of log-polar patches distinguish

them from cartesian ones:

• Rotations in cartesian space correspond to shifts on the

polar axis in log-polar space (rotation equivariance).

• Points close to the origin of the log-polar represen-

tation are oversampled, which helps discriminate be-

tween neighbouring keypoints.

• Peripheral regions are undersampled, which means

that paired patches look similar to the eye even under

drastic scale changes (scale equivariance).

This phenomena is illustrated in Fig. 2. Note how the log-

polar representation facilitates visual matching even when

scales are mismatched. Our approach is predicated on lever-

aging this information effectively with the deep networks

and training framework introduced in the next section.

3.2. Network Architecture and Training

To extract patch descriptors, we use a HardNet [28] ar-

chitecture. As shown in Fig. 3, our network has seven con-

volutional layers and takes as input grayscale patches of

size 32×32. Input patches are pre-processed with Instance

Normalization [44]. Feature maps are zero-padded after

each convolutional layer, and we use strided convolutions

instead of pooling layers. Each convolution is followed by

a ReLU and Batch Normalization, but the last convolution

layer omits the ReLU. We apply dropout regularization with

a rate of 0.1 after the last ReLU. The final convolutional

layer is followed by Batch Normalization and l2 normaliza-

tion. The output of the network is a descriptor of unit length

and size 128. We found this to be a good compromise be-

tween descriptor size and performance.

The standard way to train such networks is in a siamese

configuration, with two copies of the network, sharing

weights. Among the many loss formulations that have have

been proposed [38, 4, 19, 15], we use the triplet loss of [4],

as in [28]. To build the required triplets, we consider a col-

lection of patch pairs {Pa
k,P

b
k} which contain two different

views of a 3D point, where k = 1 . . .K, with K denoting

the batch size. We systematically check that the 3D points

in a given batch are unique, so that Pa
i and Pb

j only corre-

spond if i = j. We denote their respective descriptors as

{fak , f
b
k}. We then mine negative samples with the ‘hardest-

in-batch’ procedure of [28]. Specifically, we build a pair-

wise distance matrix Di,j = d(fai , f
b
j ), i, j ∈ [1,K], where

d(fai , f
b
j ) is the Euclidean distance between descriptors fai

and f bj if i 6= j, and an arbitrarily large value otherwise. We

denote the hardest negative sample for Pa
k, i.e., the one with

the smallest distance, as Pb
kmin

, and the hardest negative

sample for Pb
k as Pa

kmin
. We consider both Pa

k and Pb
k as

possible anchors, for all k. Denoting a triplet with anchor

(A), positive (+) and negative (−) patches as (A,+,−),
we form triplet k taking the hardest negative example, i.e.

{Pa
k,P

b
k,P

b
kmin

} if d(Pa
k,P

b
kmin

) < d(Pb
k,P

a
kmin

) and

{Pb
k,P

a
k,P

a
kmin

} otherwise. We then take the loss to be

L(fA, f+, f−) =
K
∑

k=1

max
(

0, 1 + |fAk − f+k |2 − |fAk − f−k |2
)

.

We set the batch size K to 1000. For optimization we use

Stochastic Gradient Descent (SGD) with a learning rate of

10, momentum of 0.9, weight decay 10−4, and decay the

learning rate linearly to zero within a set number of training

epochs [28]. Sampling the patches in-line allows us to apply

data augmentation at training time, jittering the orientation

of each anchor keypoint by ∆θ ∼ N (0, 25) degrees. Our
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Figure 3: Network architecture. We extract patches size 32×32 in-line with a sampler (pictured: PTN) on the desired keypoints. This

enables data augmentation techniques. The patches are then given to a network which produces descriptors size 128.

implementation uses Pytorch as a back-end. Code, models

and training data are all available.2

4. Experiments

In Section 4.1, we introduce the dataset we built to train

scale-invariant descriptors, because there is currently none

available for this purpose. We then compare ourselves to

the state of the art on it. In Sections 4.2, 4.3 and 4.4, we

benchmark our models on three publicly available datasets:

HPatches [3], AMOS patches [30], and the CVPR’19 Photo

Tourism image matching challenge [1]. As baselines, we

consider: SIFT [23], TFeat [4], L2-Net [41], HardNet [28],

and GeoDesc [25].3 For our own method we consider de-

scriptors learned with either cartesian or log-polar patches.

4.1. Results on the New Dataset

Nearly all learned descriptors rely on the dataset of [7]

for training, which provides patches extracted over differ-

ent viewpoints for three different scenes. Correspondences

were established from SfM reconstructions and SIFT. They

are thus biased towards keypoints that can be matched with

SIFT, i.e., commensurate in terms of scale. In order to learn

scale-invariant descriptors under real-world conditions, we

require patches extracted at non-corresponding scales, for

which we need the original images, which are not provided

by [7]. Other datasets, such as [27] or [3], provide images

along with homographies for correspondence, but focus on

affine transformations and are much too small to train deep

networks effectively. Therefore we collected a new dataset

for training purposes. In the remainder of this section, we

detail how we created it and then report our results on it.

4.1.1 Creating the Dataset

We applied COLMAP [34], a state-of-the-art SfM frame-

work, over large collections of photo-tourism images origi-

nally collected by [16]. These images show drastic changes

in terms of viewpoint, illumination, and other imaging prop-

erties, which is crucial to learn invariance [48]. In addition

to sparse reconstructions, COLMAP provides dense corre-

spondences in the form of depth maps. We used them to

generate training data by randomly selecting a pair of im-

ages Ii and Ij , extracting SIFT keypoints for both, and us-

ing the depth maps to build ground truth correspondences.

2https://github.com/cvlab-epfl/log-polar-descriptors
3We use OpenCV for SIFT, and public implementations for the rest.

To do this we projected each keypoint from one image to the

other using the estimated poses and depth maps. We took a

correspondence (m,n) to be valid if the projection of key-

point m in image i falls within 1.5 pixels of keypoint n in

image j. We performed a bijective check to ensure one-to-

one correspondences. We applied this projection in a cycle,

from i to j and back to i, to ensure that the depth estimates

are consistent across both views, and discarded the putative

correspondence otherwise. Points which fall in occluded

areas were likewise discarded. Note that we only check

for corresponding locations, but not scales: in this manner

we are collecting SIFT keypoints with non-matching scales

whose distribution comes from real-world data.

We also require the orientations to be compatible across

views. To guarantee this we use the ground truth camera

poses to compute the difference between orientation esti-

mates and filter out keypoint matches outside 25o, as in [7].

Finally, we suppress pairs of keypoints closer than 7 pixels

to each other, to exclude patches with large overlaps, which

would be particularly problematic for cartesian patches.

We can similarly use the ground truth to warp the

scale across images, which we do in order to estimate the

frequency of inaccurate scale estimates. Given a corre-

spondence (m,n) comprised of two keypoints with scales

(smi , snj ), we warp the scale from image i to image j to

obtain ŝmi , and compute the scale difference ratio as r =
max(ŝmi ,snj )

min(ŝm
i
,sn

j
) , so that r ≥ 1, with 1 encoding perfect scale

correspondence. We histogram this ratio and use it to eval-

uate each method under scale changes, as depicted in Fig. 4.

We select 11 sequences for training, and 9 for testing.

Please refer to the supplementary material for details. We

split the training sequences into training and validation sets

in a per-image basis, with a 70:30 ratio. Images are down-

sampled to a maximum height or width of 1024 pixels,

which is the resolution that we extract keypoints at, and

mirror-padded to 1500×1500 to alleviate boundary effects.

To obtain patches in cartesian space, we sample the image

at the desired keypoints with STN. For log-polar patches we

use PTN over a support region commensurate with STN;

see Section 3.1. We also consider larger patches, increasing

λ. We generate up to 1000 correspondences for each image

pair, and extract the patches from the images on the fly.

Training requires negative samples, that is, points not in

correspondence. Finding negatives is easy when a SfM re-

construction is available, as done in [7], ensuring that key-
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Sequence SIFT TFeat L2-Net Geodesc HardNet
Ours (λ = 12) Ours (λ = 96)

Cart LogPol LogPol

‘british museum’ 5.91 3.53 3.52 4.30 3.21 2.17 2.18 0.96

‘florence cathedral side’ 4.36 1.30 0.51 2.13 0.40 0.23 0.23 0.20

‘lincoln memorial statue’ 2.89 4.32 2.28 2.61 1.65 1.30 1.31 0.91

‘milan cathedral’ 7.08 1.98 1.48 1.86 0.35 0.19 0.12 0.07

‘mount rushmore’ 18.71 11.94 2.52 2.27 0.43 0.42 0.32 0.22

‘reichstag’ 2.22 0.44 0.30 0.42 0.21 0.19 0.19 0.09

‘sagrada familia’ 9.01 2.41 0.85 1.08 0.27 0.21 0.19 0.03

‘st pauls cathedral’ 8.64 2.01 1.48 2.45 0.68 0.42 0.46 0.20

‘united states capitol’ 8.67 3.90 2.64 5.43 1.60 1.33 0.98 0.53

Average 7.50 3.54 1.73 2.51 0.98 0.72 0.67 0.36

Table 1: FPR95 on our new dataset. We benchmark our models against the baselines with patches extracted at the SIFT scale, λ = 12.

We also show that log-polar models are able to leverage much larger support regions, using λ = 96. By contrast, with cartesian patches

performance degrades as we increase the support region, as we demonstrate in the ablation study of Table 2.

points are stable across all views. This not feasible in our

case. Instead, we generate training samples from a single

image pair at a time. Specifically, we take one image pair

from each of the 11 sequences and use it to fill roughly

1/11th of each training batch. We can then perform nega-

tive mining over the entire batch, as outlined in Section 3.2.

4.1.2 Patch Correspondence Verification

In this section we evaluate performance in terms of patch

matching over the test sequences. We extract descriptors

for SIFT keypoints with corresponding locations, but us-

ing their original scales, which are not always in correspon-

dence. We train our networks with cartesian and log-polar

patches, keeping all other settings identical. We use the

standard metric in patch matching benchmarks, FPR95, i.e.,

the False Positive Rate at 95% True Positive recall. For the

baselines, we extract patches at the SIFT scale, i.e., λ = 12.

We also consider λ > 12 for log-polar patches. We report

the results in Table 1 and discuss them below.

Comparison to the state of the art. Our models trained

with log-polar patches deliver the best performance on

each sequence, followed by our models trained on carte-

sian patches, and then HardNet. Remarkably, we achieve

our best results with λ = 96, which corresponds to patches

much larger than those best-suited for traditional descrip-

tors, extracted with λ = 12, a fact that we will examine

more closely below. Note the small gap between HardNet

and Ours-Cartesian, which is due to the innate differences

between datasets and training the latter with mismatched

scales. The other baselines perform significantly worse.

Performance under large scale mismatches. In Fig. 4

we break down the results of Table 1 in terms of orientation

and scale mismatches. Note how models trained on log-

polar representations can tolerate a wide range of scale mis-

matches. Our results show a negligible drop in performance

under scale changes up to 2-3x, and remain useful even at 3-

4x. All baselines degrade significantly under scale changes

of 2x and become essentially useless beyond that. Note

that this invariance is made possible by leveraging log-polar

representations and cannot be achieved by simply exposing

the models to cartesian patches exhibiting scale changes, as

evidenced by the performance of Ours-Cartesian shown in

Fig. 4-(c). Finally, remember that this data has been col-

lected from real-world settings with unreliable scale detec-

tion. In other words, our models allow us to retrieve more

correspondences without changing the detector.

Increasing the size of the support region. As shown

in Fig. 2, patches extracted with log-polar sampling are

remarkably similar across different scales, because scale

changes correspond to shifts in the horizontal dimension.

This representation is not only easier to interpret visually,

but also easier to learn invariant models with. Moreover,

oversampling the immediate neighbourhood of the point

allows us to leverage larger support regions, because the

effect of occlusions and background motion in log-polar

patches is smaller than in their cartesian counterparts. We

demonstrate this by training models for different values of

λ, and report the results in Table 2. Our models are able

to exploit support regions much larger than cartesian-based

approaches. We see performance flatten out at λ = 96, and

observe boundary issues beyond that point, so we use this

value for all experiments in the paper. Note how the ra-

dius of the circle determining the support region is 8 times

larger than the optimal value for cartesian patches, and its

area 64 times larger. Note that we use an identical architec-

ture, which can only leverage this information effectively

thanks to the log-polar representation.

4.1.3 Image-level Patch Retrieval

Next, we evaluate our performance in terms of patch re-

trieval. For every image pair in the test sequence, we ex-
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(c) Ours-Cart (λ = 12) (d) HardNet
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(e) Ours-LogPol (λ = 12) (f) Ours-LogPol (λ = 96)

Figure 4: FPR95 vs Scale and orientation changes. We break

down the results of Table 1, histogramming them by the error in the

keypoint detection stage. Orientation misdetections increase top to

bottom, up to 25o. Scale misdetections increase left to right, up to

4x. (a,b,d) All baselines degrade quickly under scale changes. (c)

Training deep networks with cartesian patches with scale changes

is not sufficient. (e,f) By contrast, our log-polar representation

enables them to learn scale invariance. Note that some bins are

sparsely populated, which explains sudden discontinuities.

tract SIFT keypoints on each image and establish ground

truth correspondences using the procedure outlined in Sec-

tion 4.1. Matches with a difference of up to 25 degrees in

orientation are considered positives. Typically, a large per-

centage of the image pixels are occluded, so that it is not

possible to generate a large number of matches. Instead, for

every pair of images, we extract up to Nm = 500 matches

and then generate Nd = 3000 distractors, defined as key-

points further than 3 pixels away from a keypoint. The task

is thus to find the needle in the haystack, where every key-

point has one positive match and Nm + Nd − 1 negatives.

We compute the distance between descriptors, extract the

λ 12 16 32 64 96 128

Ours, Cart 0.72 0.77 1.36 4.79 7.03 8.43

Ours, LogPol 0.67 0.61 0.47 0.40 0.36 0.36

Table 2: FPR95 vs λ. We evaluate models trained with differently-

sized support regions. Performance increases with λ for log-polar

patches, but quickly degrades for cartesian ones.
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Figure 5: Patch retrieval on the new dataset. We plot the cumu-

lative distribution function of the rank in a patch retrieval scenario

with a large number of distractors. Our models outperform all the

baselines. Log-polar models (pink) are significantly better than

cartesian ones (purple) and baselines based on cartesian patches,

such as HardNet (red).

rank of each match, and accumulate it over all keypoints

and images pairs. The results are summarized in Fig. 5.

Our models with log-polar patches obtain the best results,

retrieving the correct match about 97% of the time for our

best model, for λ = 96. They are followed by our models

with cartesian patches, and HardNet. Notice that contrary

to the previous experiment, we evaluate on a realistic patch

retrieval scenario with a large number of distractors, which

indicates that our performance holds even when sampling

keypoints densely, and that it does so regardless of λ.

4.2. Results on HPatches

The HPatches dataset [3] contains 116 sequences with 6

images each, with either viewpoint or illumination changes.

As in [7], HPatches provides pre-extracted patches sampled

at corresponding scales, which are not useful for our pur-

poses. However, it also provides the original images and

ground truth homographies. We thus define the following

protocol. We use SIFT to find keypoints and determine cor-

respondences among them using the ground truth homogra-

phies. We consider sequences with viewpoint and illumina-

tion changes separately. This provides us with 20733 corre-

spondences for the illumination split and 22079 correspon-
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Method Viewpoint split Illumination split

SIFT, λ = 12 0.740 0.607

HardNet, λ = 12 0.813 0.707

GeoDesc, λ = 12 0.879 0.727

Ours-Cart, λ = 12 0.828 0.722

Ours-Cart, λ = 16 0.831 0.732

Ours-Cart, λ = 32 0.825 0.736

Ours-Cart, λ = 64 0.752 0.666

Ours-Cart, λ = 96 0.681 0.616

Ours, LogPol, λ = 12 0.833 0.729

Ours, LogPol, λ = 16 0.838 0.743

Ours, LogPol, λ = 32 0.849 0.764

Ours, LogPol, λ = 64 0.849 0.774

Ours, LogPol, λ = 96 0.847 0.774

Table 3: Results on HPatches. Rank-1 performance on the view-

point and illumination splits of the HPatches dataset. Our log-

polar sampling approach performs better on average than all the

baselines, and performance increases with λ, until it saturates.

dences for the viewpoint split. For every match, we com-

pute the distance between a pair of corresponding descrip-

tors and also to all the negatives in the dataset, and evaluate

our models in terms of the rank-1 metric, i.e., the percent-

age of samples for which we can retrieve the correct match

with rank 1. We show the results in Table 3. As expected,

our log-polar models outperform most of the baselines, and

perform better as λ increases. For this experiment we use

the models trained on our dataset, without fine-tuning.

4.3. Results on AMOS patches

We also consider AMOS patches [30], a dataset released

recently featuring pairs of images captured by webcams and

carefully curated in order to provide correspondences. We

evaluate our method on the training split, which consists of

27 sequences, each with 50 images, and which also provides

keypoints with scales and orientations for every image. We

use unique matching keypoint pairs across all images, ob-

taining a split of 13268 unique keypoint pairs. We use the

same metric as for HPatches, and summarize the results in

Table 4. As before, we do not re-train the models in any

way. Again, our models outperform the state of the art and

our results improve with the size of the support region, un-

like for methods based on cartesian patches.

4.4. Results on the Phototourism Challenge

Patch matching performance does not always translate

to upstream applications, as evidenced by [48, 35]. We thus

also evaluate our method on the public Phototourism Im-

age Matching challenge [1]. This benchmark features two

tracks: stereo and multi-view matching, and evaluates local

features in terms of the quality of the reconstructed poses.

Method Rank-1

λ 6 12 16 32 64 96

SIFT 0.551 0.518 0.516 0.510 0.480 0.436

GeoDesc 0.434 0.396 0.389 0.416 0.438 0.417

HardNet 0.529 0.464 0.450 0.451 0.470 0.449

Ours, Cart 0.554 0.507 0.530 0.549 0.524 0.481

Ours, LogPol 0.607 0.604 0.625 0.641 0.648 0.651

Table 4: Results on AMOS patches. Rank-1 performance on the

AMOS patches dataset. We noticed that for this dataset, extracting

descriptors with smaller patches produces better results for most

baselines, so we also consider λ = 6. Our models trained on

log-polar patches outperform the state of the art, and performance

increases with λ.

Type Method
Stereo task Multi-view task

mAP15
o

Rank† mAP15
o

Rank†

DoG

SIFT (IJCV’04) 0.0277 9 0.4146 8
TFeat (BMVC’16) 0.0357 8 0.4643 7
L2-Net (CVPR’17) 0.0400 6 0.5087 5
HardNet (NIPS’17) 0.0425 4 0.5481 1
GeoDesc (ECCV’18) 0.0368 7 0.5298 4
ContextDesc (CVPR’19) 0.0439 3 0.5399 3

e2e
SuperPoint (CVPR’18) 0.0415 5 0.4778 6
D2-Net (CVPR’19) 0.0490 1 0.3967 9

Ours
(DoG)

Ours-Cartesian, λ = 16 0.0405 — 0.5208 —
Ours-LogPol, λ = 32 0.0420 — 0.5389 —
Ours-LogPol, λ = 64 0.0432 — 0.5396 —
Ours-LogPol, λ = 96 0.0448 2 0.5427 2

Table 5: PhotoTourism challenge. Mean average precision in

pose estimation with an error threshold of 15o. Top method

(†among comparable submissions) in red, runner-up in green. We

rank 2nd on both tracks, and 1st on average.

Features are submitted to the organizers, who compute the

results. We provide them in Table 5, including comparable

baselines (up to 8k features per image, matched by brute-

force nearest-neighbour) extracted from the public leader-

boards. Our method ranks second on both tracks, and first in

terms of average rank. Note that our observations from Sec-

tion 4.1.2 carry over – models trained on log-polar patches

improve with patch size, and outperform cartesian models.

5. Conclusions and Future Work

We have introduced a novel approach to learn local de-

scriptors that goes beyond the current paradigm, which re-

lies on image measurements sampled in cartesian space. We

show that we can learn richer and more scale-invariant rep-

resentations by coupling log-polar sampling with state-of-

the-art deep networks. This allows us to match local de-

scriptors across a wider range of scales, virtually for free.

Our approach could be used to learn invariance to arbi-

trary scale changes. This can be, however, counterproduc-

tive when used alongside SIFT, as the majority of its de-

tections are accurate enough. Instead, we intend to bypass

scale detection and learn end-to-end pipelines as in [48, 29].
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