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Figure 1: Using a burst, our fine-tuning (starting from the network from Gharbi et al. [16]) is able to not only denoise well

(σ = 5) but also doesn’t show any artifacts like zipper or moire in the difficult regions. Best visualized on a screen.

Abstract

Demosaicking and denoising are the first steps of any

camera image processing pipeline and are key for obtain-

ing high quality RGB images. A promising current re-

search trend aims at solving these two problems jointly us-

ing convolutional neural networks. Due to the unavailabil-

ity of ground truth data these networks cannot be currently

trained using real RAW images. Instead, they resort to sim-

ulated data. In this paper we present a method to learn

demosaicking directly from mosaicked images, without re-

quiring ground truth RGB data. We apply this to learn joint

demosaicking and denoising only from RAW images, thus

enabling the use of real data. In addition we show that for

this application fine-tuning a network to a specific burst im-

proves the quality of restoration for both demosaicking and

denoising.

1. Introduction

Most camera sensors capture a single color at each pho-

toreceptor, determined by a color filter array (CFA) located

on top of the sensor. The most commonly used CFA is the

so-called Bayer pattern, consisting of a regular subsampling

of each color channel. This means, not only that each pixel

of the resulting raw image contains one third of the neces-

sary information, but also that the color channels are never

sampled at the same positions. The problem of interpolating

the missing colors is called demosaicking and is a challeng-

ing ill-posed inverse problem. To further complicate things,

the captured data is contaminated with noise.

For these reasons the first two steps of a camera process-

ing pipeline are demosaicking and denoising. Traditionally,

these problems have been treated separately, but this is sub-

optimal. Demosaicking first a noisy RAW image correlates

the noise making its subsequent denoising harder [35]. Al-

ternatively, if denoising is applied on the mosaicked data

it becomes harder to exploit the cross-color correlations,

which are useful for color image denoising [10, 11].

Until recently, state-of-the-art methods for joint demo-

saicking and denoising were based on carefully crafted

heuristics, such as avoiding interpolation across image

edges [23, 35, 2]. Other methods resort to variational prin-

ciples where the heuristics are encoded as a prior model [8,
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22]. In [43] both problems are addressed simultaneously by

aligning and fusing RAW bursts of frames.

Recent data-driven approaches have significantly outper-

formed traditional model-based methods [25, 16, 26, 27, 28,

38]. In [16], state-of-the-art results are reported with a net-

work trained on a special dataset tailored to demosaicking in

which hard cases are over-represented. In [27] an iterative

neural network is proposed, later improved by [28] obtain-

ing state-of-the-art performance on both real and synthetic

datasets. These networks are relatively lightweight and do

not need a lot of training data. The authors in [38] propose

two networks for demosaicking. They train on several CFA

patterns to compare performance and integrate the handling

of denoising with a fine-tuning step. In [47] the authors find

that the artifacts of challenging cases are better dealt with

L1 norm, or their proposed combination of the L1 norm

with MS-SSIM. Meanwhile in [30] alternative metrics to

PSNR are also considered.

The major difficulty in training data-driven demosaick-

ing and denoising methods is the difficulty to obtain realis-

tic datasets of pairs of noisy RAW and ground truth RGB

images. For this reason demosaicking networks are trained

with simulated data generated by mosaicking existing RGB

images. However simulated data follows a statistic that can

be different from real data. The RGB images used for train-

ing have already been processed by a full ISP (Image Sig-

nal Processors) pipeline which includes demosaicking and

denoising steps which leave their footprint on the output

image. Additionally, the Poisson noise model is only an

approximation to the real noise of a specific camera. Sev-

eral factors can cause deviations. For example the noise can

have spatial variations due to temperature gradients in the

sensor, or caused by the vignetting or the electronic compo-

nents in its surroundings.

The need for a specific treatment of realistic noise has

been identified in the denoising literature. Indeed most of

the existing works target synthetic types of noise, e.g. Gaus-

sian noise. Since the noise distribution is well defined, spe-

cific methods can be crafted [9, 31, 18] and data can be sim-

ulated with ground truth so to train neural networks [45, 46].

However, it has been shown recently in [36] and [1] that net-

works trained on synthetic noise often fail to generalize to

realistic types of noise. This has started a trend of study of

"real noisy images". For example [7, 19] acquire datasets

where a low-noise reference image is created by using a

longer exposure time. Creating this type of dataset is time

consuming and prone to bias, as to avoid motion blur in the

long exposure the images need to be acquired with a tripod

and the scene has to be static.

More recently Lehtinen et al. [32] proposed a novel way

of training a denoising network without ground truth, only

from pairs of noisy images with independent noise realiza-

tions. This approach has been taken further by [29, 4] which

eliminated the need for the second noisy observation, albeit

with a penalty in the quality of the obtained results. In the

context of burst and video denoising the frame-to-frame ap-

proach of [12] proposes to fine-tune a pre-trained Gaussian

denoising network to other types of noise requiring only a

single video.

Contribution In this paper we introduce a mosaic-to-

mosaic training strategy analog to the noise-to-noise [32]

and frame-to-frame [12] frameworks to be able to han-

dle mosaicked RAW data. The trained network learns to

interpolate two thirds of the image data, without having

ever seen a complete image. This allows us to train both

demosaicking and joint demosaicking and denoising net-

works without requiring ground truth. The resulting net-

works attain state-of-the-art results, thus eliminating the

need to simulate simplistic noise models or to capture time-

consuming datasets with long exposure reference frames.

Although we show results only with a Bayer pattern, our

method can equally be applied to other CFA patterns, such

as the Fujifilm X-Trans. To the best of our knowledge, this

is the first method that learns joint demosaicking and de-

noising without any ground truth whatsoever; the network

has only seen noisy mosaicked images.

With the proposed framework, we can fine-tune a pre-

trained network to a RAW burst. This allows leveraging the

already available multi-frame burst data that is present on

many mobile camera phones [43]. The fine-tuning not only

adapts the network to the specificities of the camera noise,

but it also overfits to the burst. We demonstrate that this

overfitting, when controlled, can be beneficial. A similar

conclusion in the context of single-image super-resolution

was reached by the authors of [37]. Additionally, when used

with an L1 loss, the fine-tuned network naturally handles

noise clipping, a common but challenging problem [32, 48].

The proposed strategy can be used to fine-tune other de-

mosaicking networks, for example in this paper we show

this for the network of [16] (see Figure 1), but it could be

used in conjunction with more recent burst denoising net-

works such as [17] and [33] adapted for CFA images.

The rest of the paper is organized as follows. In Section 2

we present the proposed mosaic-to-mosaic training of a de-

mosaicking network from a dataset of RAW mosaicked data

without ground truth. In Section 3 we address the problem

of joint demosaicking and denoising given a burst of RAW

mosaicked noisy images. Results are shown in Section 4.

2. Learning demosaicking w/o ground truth

In this section, we propose a learning method to train

demosaicking networks without any ground truth RGB im-

ages. Consider two different mosaicked pictures of a same

scene I1 and I2. We shall use one image as partial ground

truth to learn demosaicking the other (provided that there is
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a slight movement between the two, so that with high prob-

ability the mosaic patterns do not match).

Our method requires that the two pictures can be reg-

istered, which is possible when the viewpoints are not too

different. This condition is typically met for bursts of im-

ages. Modern cameras systematically take bursts of images,

these sequences allow to eliminate shutter lag, to apply tem-

poral noise reduction, and to increase the dynamic range of

the device. Nevertheless, the pair of pictures can also be ac-

quired manually by taking two separate pictures of the same

scene.

In the following, we suppose we have a set of pairs of

images (for example extracted from bursts), where each pair

(I1, I2) consists of pictures of the same scene for which we

have estimated a transformation T that registers I1 to I2. In

the case of bursts, estimating an affinity is often sufficient.

Pairs with not enough matching parts can be discarded. The

original mosaicked image can be obtained from its demo-

saicked one by masking pixels. Thus, if we apply a demo-

saicking network D to I1, then apply the transformation T
followed by the mosaicking mask, we are supposed to get

I2. We can compute M(T (D(I1))), where M represents

the mosaicking operation (masking pixels), compute a dis-

tance to I2, which acts as ground truth, and backpropagate

the gradient to train D. In some sense, I2 acts as a partial

ground truth, as only one third of T (D(I1)) gets compared

to I2. However, contrary to artifical RGB ground truths,

we do not suffer from bias introduced by the RGB process-

ing pipeline, nor require complex settings to produce these

RGB ground truths. We implemented T with a bicubic in-

terpolation through which gradient can be backpropagated.

This results in the following loss:

ℓp(D(I1), I2) = ‖M(T (D(I1)))− I2‖
p
p, (1)

where p = 1, 2. The norm is computed only in the pixels

where both images are defined. In this section we use p = 2
(squared L2 norm). The training method is depicted in Fig-

ure 2. Our learning process can be linked with [32, 4]. The

main difference is that we have an a priori on the position

of the degraded pixels.

Demosaicking network To test the proposed training, we

will use in this section a network architecture heavily in-

spired by the one from Gharbi et al. [16] while using im-

provements suggested in more recent work with the usage

batch normalization layers [24] as well as residual learn-

ing [21]. These techniques are known to speed-up training

time and sometimes increase performance. The network

starts with a four-channel Bayer image that goes through

a series of 14 Conv+BN+ReLu layers with 64 features and

3 × 3 convolutions. A 15th layer of Conv+BN+ReLu pro-

duces 12 features with 3× 3 convolutions. It is followed by

an upsampling layer producing an RGB image of twice the

width and twice the height. Like Gharbi et al. we added a

layer (a Conv+BN+ReLu with 3 × 3 convolutions) before

the layer producing the final output. Since our network is

residual we need to add the bilinearly interpolated RGB im-

age to produce the final result. All convolution layers have

padding to keep the resolution constant from beginning to

end. The architecture of the network is depicted in Figure 3.

Comparing learning with ground truth RGB and our

method We verify that this method for training demo-

saicking without ground truth is competitive with classic

supervised training by training the same architecture with

both methods and show comparable results. For this experi-

ment we considered a mosaicking with Bayer pattern which

is the most frequent mosaicking pattern.

In order to be able to compare the results of training with

and without ground truth, we decided to simulate the pairs

on which the demosaicking is trained. For both trainings

we use the dataset of [38], which consists of 500 images

(of sizes around 700 × 500) from Flickr. To generate pairs

to learn with our method, we warped the same RGB image

with a random affinity - thus simulating two views - and

generated the mosaicked images from them. To speed-up

the training we chose the same transform for all patches of

a same batch. We trained both networks for 45 epochs using

Adam and a learning rate of 10−2. We reduced the learning

rate by a factor of 10 at epochs 20 and 40.

Figure 4 compares the evolution of the PSNR on the Ko-

dak dataset1 while training our network with ground truth

against the training without ground truth. It can be observed

that training without ground truth behaves the same as with

the ground truth. The convergence speed seems to be equiv-

alent as well as the final demosaicking quality.

Table 1 shows the quality of demosaicking using either

ground truth or no ground truth versus the state of the art

in image demosaicking. The model learned without having

ever seen an RGB image is able to achieve the same qual-

ity than the same network trained using the RGB ground

truth, which indicates that having a ground truth is not nec-

essary to obtain state-of-the-art performance on this task.

For comparison, we also show the results obtained with

model-based methods [15, 22] that do not need training with

ground truth (they do not need training at all).

3. Joint demosaicking and denoising by fine-

tuning on a burst

In the previous section, we demonstrated that having a

training dataset with RGB ground truth is not mandatory

to reach state-of-the-art performance: Similar demosaick-

ing performance is reached with a just a database of pairs

of RAW mosaicked data. While this was demonstrated on

1http://r0k.us/graphics/kodak/
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Figure 2: Proposed pipeline to train for demosaicking without using any ground truth. The output after applying the network

D on the first image is warped using the transform T and masked with M so to be compared to the second masked mosaicked

image. The black corners seen in at the last stage of the diagram indicate the undefined pixels after the transform, which are

not considered by the loss.

64 features

3x3 Conv+BN+ReLU

14 times

Bilinear interpolation

64 features

3x3 Conv+BN+ReLU

+

upsampleddownsampled

Figure 3: Architecture of the network used to compare the performance of learning on RGB ground truth or only with pairs

of RAW images.
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Figure 4: Evolution of the average PSNR on the Kodak

dataset when training with ground truth data and when train-

ing without RGB ground truth data available. Training

without RGB ground truth behaves the same than training

with an RGB ground truth.

noise-free images, it can also be done when images are

noisy. In this section we show an application of the method

to online fine-tuning on bursts. We present the method on

two networks: the noiseless network from Section 2 where

the network has to learn to denoise using only the burst (this

is a sort of a toy example) and the state-of-the-art network

from [16].

Joint demosaicking and denoising without ground truth

Using the noise-to-noise framework presented in [32], we

Method With ground truth Without ground truth

Getreuer et al. [15] - 38.1

Heide et al. [22] - 40.0

Gharbi et al. [16] 41.2 -

Network from §2 41.2 41.3

Table 1: PSNR results for different demosaicking meth-

ods on the Kodak dataset. Training without ground truth

(network from §2) outperforms the methods without ground

truth while still achieving state-of-the-art PSNRs.

aim to train a network with parameters θ. Supervised learn-

ing of a joint demosaicking and denoising network corre-

sponds to solving

argmin
θ

∑

i

L(fθ(xi), yi), (2)

where the xi are noisy mosaicked images, and the yi are

their ideal noise-free demosaicked images, L is a loss such

as L2 or L1. In the noise-to-noise framework, the equivalent

problem (conditionally on the noise being mean preserving
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Figure 5: Fine-tuning a denoising network (DnCNN [45] σ = 25) on a burst of 10 noisy (σ = 25) grayscale images with

saturated regions. From left to right: PSNRs over the whole image, on non-saturated regions, and on the saturated regions.

After fine-tuning, the network works better both on saturated and non-saturated regions. While L2 is not able to deal with

clipping, using L1 for fine-tuning performs similarly to fine-tuning without clipping.

for L2, or median preserving for L1) is to solve

argmin
θ

∑

i

L(fθ(xi), ŷi), (3)

where ŷi are noisy observations of yi.

Combining this with Equation (1), our proposal is to

solve

argmin
θ

∑

i

ℓ1(fθ(xi), zi), (4)

where the (xi, zi) are pairs of noisy images of the same

scene, and ℓp was introduced in Section 2. We use p = 1
in this section (L1 norm), which allows to handle clipped

noise (see discussion on the choice of the loss).

The loss requires the computation of a transform T
matching each pair of mosaicked images. For that we use

the inverse compositional algorithm [39, 3] to estimate a

parametric transform (in practice we estimate an affinity

which we found to be well-suited for bursts). An implemen-

tation of this method is available in [5]. The advantage of

this method is that it is robust to noise and can register two

images very precisely (provided that they can be registered

with an affinity). Since we only have access to Bayer im-

ages of size W×H , the first step is to generate four-channel

images of size W
2
× H

2
corresponding to the four phases of

the Bayer pattern. The transform is then estimated on these

images before upscaling it to the correct size.

Having the pairs with the associated transform, one can

finally apply the pipeline presented in Section 2 and in Fig-

ure 2. As in [12] we initialize the network using a pretrained

one. In particular in the following, we use the network

trained for demosaicking without ground truth presented in

Section 2, as well as the network from [16].

Choice of Loss One particularly well known problem

with denoising is clipped noise: The underlying signal I

belongs to a fixed range, but the noise can make it leave that

intensity range. Due to hardware clipping, the measured im-

age is inside the fixed range, and thus the noise statistics are

biased. When minimizing with the L1 norm over the same

image with several noise realizations, the best estimator is

the median of the realizations [32], which is unaffected by

the hardware clipping. Thus by using L1 norm and fine tun-

ing on a burst, our method handles clipping without any pre

or post-processing required. This phenomenon is illustrated

in Figure 5 with a classic denoising network, DnCNN [45].

Fine-tuning to a single scene By fine-tuning over a single

burst the network ends up overfitting the data. Usually over-

fitting to the training data is avoided as it results in a poor

generalization ability. However, in our case the fine-tuned

network will only be applied to that burst, and overfitting

improves the result for that specific burst. There are other

examples in the literature where a network is overfitted to

a specific input (or a small dataset of inputs). For example,

[6] turns an object classification network into a video seg-

mentation one by fine-tuning it on the first frame, which is

labeled. The network then learns to track the labeled objects

in the following frames. Several image restoration problems

are addressed in [42] by using a network as a prior. The net-

work parameters are trained for each input image. In [37] a

super-resolution CNN is trained by fine-tuning the specific

structures of the current image. In [12] a pre-trained denois-

ing is fine-tuned to an input video. These can be related to

recent works on meta-learning [14].

This fine-tuning is also reminiscent of traditional image

processing methods that fit a model to the patches of the im-

age. In [44] the image patches are modeled using a Gaus-

sian mixture model (GMM), in [13] by representing them

sparsely over a learned dictionary, and in [34] via sparse

convolutions over a set of kernels. In all these cases the

models were trained on the input image. The assumption

underlying these methods is that images are self-similar and

highly redundant, allowing for compact representations of

their patches.

Figure 6 shows that fine-tuning a grayscale denoising

network (DnCNN) on a burst of images can significantly
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Figure 6: From left to right: reference image, noisy (σ = 25), pretrained DnCNN and DnCNN after fine-tuning. The details,

such as the trees, are sharper and more distinguishable after fine-tuning. Figure best visualized zoomed-in on a computer.
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Figure 7: From left to right: image of binary noise and

an image of stripes. Fine-tuning DnCNN on the very self-

similar image of stripes leads to a much bigger increase in

quality compared to the image of binary noise.

improve the denoising results. The likely explanation is

that the network is able to capture a part of the image self-

similarity, similar to the model-based methods. Figure 7

illustrates the performance evolution when fine-tuning a de-

noising network on a set of noisy realizations of two syn-

thetic images, one of stripes (thus very self-similar) and a

binary noise image (thus not self-similar). The performance

gap is explained by the self-similarity of the former image.

4. Experimental results

To evaluate quantitatively the performance of the pro-

posed training strategy, we first apply it on simulated data,

since there are no real noisy raw bursts with ground truth

publicly available. We generate the burst from a single

image by applying random affinities. In the cases where

noise is considered, the added noise is white Gaussian. Dur-

ing training, the affinities are estimated from the noisy raw
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Figure 8: Fine-tuning a pre-trained denoising network

(DnCNN σ = 25) to a specific sequence increase the quality

of the result. The visible drops correspond to each change

of image considered (pairs are considered in lexicographi-

cal order). It is important to finish with the reference image

as to maximise the performance. The fine-tuned network,

which takes as input a single frame, comes close to the per-

formance of DnCNN applied to the temporal average of all

frames.

data. Code to reproduce the results is available on https:

//github.com/tehret/mosaic-to-mosaic

Network fine-tuning on a sequence outperforms single

image denoising Fine-tuning a network to a sequence al-

lows to restore the image beyond the performance of a sin-

gle image denoising. In the experiment shown in Figure 8 a

sequence of 10 frames without mosaicking pattern nor mo-

tion is considered. The plot shows the PSNR evolution as

the fine-tuning processes all the pairs (90 in total).

We consider the pairs in lexicographical order, that is

every time a new input image is selected it is sequentially

paired with all other images in the sequence. Note the char-

acteristic shape traced by the PSNR curve: every time a new

input image is selected the performance first drops and then

steadily improves surpassing the previous peak. This shows

8873



Method kodim19 Kodak dataset

§2 fine-tuned on kodim19 44.4 40.4

§2 without fine-tuning 42.1 41.3

Table 2: PSNR results using an fine-tuned network on the

lighthouse image of the Kodak dataset (kodim19) versus the

same network without fine-tuning. While fine-tuning im-

proves on the specific image, the overall performance on

the dataset is decreased.

that not only the network is adapting the current input image

but it is also building upon previously seen images.

This fine tuning can be linked to a temporal noise reduc-

tion (TNR). For comparison the plot includes the PSNR of

results obtained by averaging the frames, which amounts

to a naive TNR, by denoising a single frame with DnCNN,

and by denoising the naive TNR result with DnCNN. The

latter amounts to the best possible TNR result in this ideal

case. Note that the fine tuning is largely surpassing the per-

formance of single image denoising and approaches TNR

with DnCNN. In practice temporal averaging followed by

denoising is not as straightforward on mosaicked images,

so there is no equivalent of this upper bound on mosaicked

images. This justifies the relevance of the proposed method.

Improving demosaicking by fine-tuning Similarly to

denoising, fine-tuning improves demosaicking. The evo-

lution of the improvement, showed in Figure 10, is quite

similar to the one presented for denoising. Moreover arti-

facts that existed in the initial network, due to a low amount

of training, are removed completely by the fine-tuning, see

Figure 9. The result then looks visually very similar to the

result from Gharbi et al. that was trained specially to deal

with these difficult cases.

Table 2 compares the PSNR obtained for different net-

works on the Kodak dataset. The network from Section

2 was fine-tuned on kodim19, which is singled out in the

table. As expected, the fine-tuned network works well on

the reference image but its performance decreases on the

other images. The network without fine-tuning performs

better on the whole Kodak dataset than the network that

was fine-tuned on a specific image. The increase in per-

formance for this reference image after fine-tuning was of

more than 2dB.

Joint demosaicking and denoising using fine-tuning

The final application of fine-tuning is to do both previous

applications at the same time. Table 3 compares the result

to two other methods of joint demosaicking and denoising.

The networks were fine-tuned on each image individually.

Overall this approach is very competitive. A network that

had never seen noise before (§2 + our fine-tuning) is now

Method [16] [28]

§2 + our

fine-tuning

[16] + our

fine-tuning

01, σ=5 34.9/.9584 34.5/.9540 35.1/.9545 35.9/.9633

13, σ=5 32.9/.9574 32.3/.9515 33.6/.9587 34.3/.9641

16, σ=5 37.1/.9496 36.5/.9390 36.1/.9399 38.2/.9570

19, σ=5 36.1/.9430 35.5/.9380 36.3/.9375 37.3/.9500

All, σ = 5 36.2/.9465 35.2/.9329 36.0/.9401 37.6/.9559

19, σ=10 33.2/.8958 31.1/.8612 32.9/.8877 34.0/.9067

19, σ = 10

20 images

33.2/.8958 31.1/.8612 33.2/.8935 34.3/.9091

Table 3: PSNR results of different methods for the task

of joint demosaicking and denoising. It shows that even

though our method is completely blind, it is able to com-

pete with the state of the art. The rows identify different

images from the Kodak dataset, and noise levels. Moreover

increasing the length of the burst also allows to improve

the quality in the cases where it might perform worse oth-

erwise. Our method used the network trained in Section 2

and was fine-tuned with 10 generated noisy images except

when mentioned otherwise.

able to perform at the same level as one of the best network

trained for this specific application. When using the state-

of-the-art network from [16], our fine-tuning improves the

final quality by more than 1dB.

Not only do we achieve competitive results in terms of

PSNR, the results are free of demosaicking artifacts. In-

deed, as shown in Figure 1, even in the regions that are par-

ticularly hard such as the fence. For example there is no

zippering compared to the result of Gharbi et al.

The final experiment is on real data. We took a burst

from the HDR+ dataset [20] and applied our process. We

compare the result of a simple bilinear interpolation, the re-

sult of [16] and [16] with our fine-tuning in 11. Fine-tuning

allows for a better denoising and a better reconstruction of

details while limiting artifacts.

Remarks on computation cost We empirically found

that the amount of data needed for fine-tuning the network

is linked to the number of pixels and not the number of im-

ages of a burst. This allows to fine-tune even on short bursts

like the ones from the HDR+ dataset (of size 2400× 1300)

using at most six images. Regarding computation time, we

presented fine-tuning as an offline application, for example

for professional photography where best quality is required.

However, recent works [40, 41] have shown that fine-tuning

can also be achieved in real time for videos.
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Figure 9: From left to right: reference image, the network from §2, the network from §2 after fine-tuning and Gharbi et al.

Because of the reduced size of the training set our blind network still has some moire artifact but they completely disappear

after fine-tuning on the data achieving a result visually close to Gharbi et al. without having to learn on a specific well-chosen

dataset. Figure best visualized zoomed-in on a computer.
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Figure 10: Fine-tuning a pre-trained demosaicking network

(from Section 2) to a specific sequence increase the quality

of the result. The visible drops correspond to each change

of image considered (pairs are considered in lexicographical

order). It is important to finish with the reference image as

to maximise the performance.

5. Conclusion

In this work, we have proposed a novel way of train-

ing demosaicking neural network without any RGB ground

truth, by using instead other mosaicked data of the same

scene (such as from a burst of images). Based on it and

on recent neural network advances, we proposed a method

to train jointly demosaicking and denoising with bursts of

noisy raw images. We show that fine-tuning on a given

burst boosts the reconstruction performance. Clipped noise,

a hard problem, is handled natively. It also presents a spe-

cific case where overfitting a network to the training data

is valuable. Since we do not expect generalization there’s

only benefits from this overfitting.

We hope our work can lead to new camera pipeline cal-

ibration procedures, and general improvement of the image

quality when a burst is available.

Figure 11: Experiment on a real burst. Top left to bot-

tom right: The result of the HDR+ pipeline [20], bilinear

interpolation, [16] and [16] with our fine-tuning. Contrast

was enhanced for all methods except HDR+. Note that the

HDR+ pipeline includes color balance as well as sharpen-

ing. It also uses all the images of the burst to produce the

result (all other methods use only the reference frame). Fig-

ure best visualized zoomed in on a computer.
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