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Abstract

Zero-shot learning (ZSL) aims at understanding unseen

categories with no training examples from class-level de-

scriptions. To improve the discriminative power of zero-

shot learning, we model the visual learning process of un-

seen categories with an inspiration from the psychology of

human creativity for producing novel art. We relate ZSL

to human creativity by observing that zero-shot learning is

about recognizing the unseen and creativity is about cre-

ating a likable unseen. We introduce a learning signal in-

spired by creativity literature that explores the unseen space

with hallucinated class-descriptions and encourages care-

ful deviation of their visual feature generations from seen

classes while allowing knowledge transfer from seen to un-

seen classes. Empirically, we show consistent improve-

ment over the state of the art of several percents on the

largest available benchmarks on the challenging task or

generalized ZSL from a noisy text that we focus on, using

the CUB and NABirds datasets. We also show the advan-

tage of our approach on Attribute-based ZSL on three addi-

tional datasets (AwA2, aPY, and SUN). Code is available at

https://github.com/mhelhoseiny/CIZSL.

1. Introduction

With hundreds of thousands of object categories in the

real world and countless undiscovered species, it becomes

unfeasible to maintain hundreds of examples per class to

fuel the training needs of most existing recognition systems.

Zipf’s law, named after George Zipf (1902−1950), suggests

that for the vast majority of the world-scale classes, only

a few examples are available for training, validated ear-

lier in language (e.g., [60, 61]) and later in vision (e.g.,

[43]). This problem becomes even more severe when we

target recognition at the fine-grained level. For example,

there exists tens of thousands of bird and flower species, but

the largest available benchmarks have only a few hundred

classes motivating a lot of research on classifying instances

of unseen classes, known as Zero-Shot Learning (ZSL).

Figure 1: Generalizing the learning of zero-shot models re-

quires a deviation from seen classes to accommodate recog-

nizing unseen classes. We carefully model a learning sig-

nal that inductively encourages deviation of unseen classes

from seen classes, yet not pushed far that the generation fall

in the negative hedonic unrealistic range on the right and

loses knowledge transfer from seen classes. Interestingly,

this curve is similar to the famous Wundt Curve in the Hu-

man Creativity literature (Martindale, 1990) [33].

People have a great capability to identify unseen visual

classes from text descriptions like “The crested auklet is

subspecies of birds with dark-gray bodies tails and wings

and orange-yellow bill. It is known for its forehead crests,

made of black forward-curving feathers.”; see Fig 1 (bot-

tom). We may imagine the appearance of “crested auklet” in

different ways yet all are correct and may collectively help

us understand it better. This imagination notion been mod-

eled in recent ZSL approaches (e.g., [19, 29, 20, 59, 55])

successfully adopting deep generative models to synthesize

visual examples of an unseen object given its semantic de-

scription. After training, the model generates imaginary

data for each unseen class transforming ZSL into a standard

classification task with the generated data.

However, these generative ZSL methods do not guar-

antee the discrimination between seen and unseen classes

since the generations are not motivated with a learning sig-

nal to deviate from seen classes. For example, “Parakeet

Auklet” as a seen class in Fig 1 (left) has a visual text de-

scription [52] that significantly overlaps with “Crested Auk-

let” description, yet one can identify “Crested Auklet”’s
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unique “’black forward-curving feathers” against “Parakeet

Auklet” from text. The core of our work is to address the

question of how to produce discriminative generations of

unseen visual classes from text descriptions by explicitly

learning to deviate from seen classes while allowing trans-

fer to unseen classes. Let’s imagine the space of conditional

visual generations from class descriptions on an intensity

map where light regions implies seen and darker regions im-

plies unseen. These class descriptions are represented in a

shared space between the unseen (dark) and the seen (light)

classes, and hence the transfer is expected. In existing meth-

ods, this transfer signal is formulated by encouraging the

generator to produce quality examples conditioned only on

the descriptions of the seen classes ( light regions only). In

this inductive zero-shot learning, class descriptions of un-

seen classes are not available during training and hence can

not used as a learning signal to explicitly encourage the dis-

crimination across unseen and seen classes. Explicitly mod-

eling an inductive and discriminative learning signal from

the dark unseen space is at the heart of our work.

Creativity Inspiration to Zero-shot Learning. We pro-

pose to extend generative zero-shot learning with a discrim-

inative learning signal inspired from the psychology of hu-

man creativity. Colin Marindale [33] proposes a psycho-

logical theory to explain the perception of human creativity.

The definition relates likability of an art piece to novelty by

“the principle of least effort”. The aesthetic appeal of an art

work first increases when it deviates from existing work till

some point, then decreases when the deviation goes too far.

This means that it gets difficult to connect this art to what

we are familiar with, and hence deems it hard to understand

and hence appreciate. This principle can be visualized by

the Wundt Curve where the X axis represents novelty and Y

axis represents likability like an inverted U-shape; similar

to the curve in Fig 1. We relate the Wundt curve behav-

ior in producing creative art to a desirable generalized ZSL

mode that has a better capability to distinguish the “crested

auklet” unseen class from the “parakeet auklet” seen class

given how similar they are as mentioned before; see Fig 1.

A generative ZSL model that cannot deviate generations of

unseen classes from instances of seen classes is expected

to underperform in generalized zero-shot recognition due

to confusion; see Fig 1(left). As the deviation capabil-

ity increases, the performance is expected to get better but

similarly would decrease when the deviation goes too far

producing unrealistic generation and reducing the needed

knowledge transfer from seen classes; see Fig 1(middle and

right). Our key question is how to properly formulate de-

viation from generating features similar to existing classes

while balancing the desirable transfer learning signal.

Contributions. 1) We propose a zero-shot learning ap-

proach that explicitly models generating unseen classes by

learning to carefully deviate from seen classes. We examine

a parametrized entropy measure to facilitate learning how

to deviate from seen classes. Our approach is inspired from

the psychology of human creativity; and thus we name it

Creativity Inspired Zero-shot Learning (CIZSL).

2) Our creativity inspired loss is unsupervised and orthog-

onal to any Generative ZSL approach. Thus it can be in-

tegrated with any GZSL while adding no extra parameters

nor requiring any additional labels.

3) By means of extensive experiments on seven bench-

marks encompassing Wikipedia-based and attribute-based

descriptions, our approach consistently outperformed state-

of-the-art methods on zero-shot recognition, zero-shot re-

trieval, and generalized zero-shot learning using several

evaluation metrics.

2. Related Work

Early Zero-Shot Learning(ZSL) Approaches A key idea

to facilitate zero-shot learning is finding a common seman-

tic representation that both seen and unseen classes can

share. Attributes and text descriptions are shown to be ef-

fective shared semantic representations that allow transfer-

ring knowledge from seen to unseen classes. Lampert et

al. [26] proposed a Direct Attribute Prediction (DAP) model

that assumed independence of attributes and estimated the

posterior of the test class by combining the attribute predic-

tion probabilities. A parallelly developed, yet similar model

was developed by Farhadi et al. [13].

Visual-Semantic Embedding ZSL. Relaxing the unreal-

istic independence assumption, Akata et al. [2] proposed

an Attribute Label Embedding(ALE) approach that mod-

els zero-shot learning as a linear joint visual-semantic em-

bedding. In principal, this model is similar to prior exist-

ing approaches that learn a mapping function from visual

space to semantic space [57, 46]. This has been also inves-

tigated in the opposite direction [57, 46] as well as jointly

learning a function for each space that map to a common

space [56, 28, 3, 42, 47, 12, 1, 31, 30, 48].

Generative ZSL Approaches The notion of generating ar-

tificial examples has been recently proposed to model zero-

shot learning reducing it to a conventional classification

problem [19, 29, 20, 59]. Earlier approaches assumed a

Gaussian distribution prior for visual space to every class

and the probability densities for unseen classes are mod-

eled as a linear combination of seen class distributions [19].

Long et al. [29] instead proposed a one-to-one mapping

approach where synthesized examples are restricted. Re-

cently, Zhu et al. [59], Xian et al. [55], and Verma et al.[25]

relaxed this assumption and built on top of generative adver-

sarial networks (GANs) [17, 39] to generate examples from

unseen class descriptions. Different from ACGAN [36],

Zhu et al. added a visual pivot regularizer (VPG) encour-

ages generations of each class to be close to the average of

its corresponding real features.
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Semantic Representations in ZSL (e.g., Attributes, De-

scription). ZSL requires by definition additional informa-

tion (e.g., semantic description of unseen classes) to en-

able their recognition. A considerable progress has been

made in studying attribute representation [26, 27, 2, 15, 57,

56, 28, 3, 42, 1]. Attributes are a collection of semantic

characteristics that are filled to uniquely describe unseen

classes. Another ZSL trend is to use online textual de-

scriptions [11, 12, 38, 40, 28]. Textual descriptions can

be easily extracted from online sources like Wikipedia with

a minimal overhead, avoiding the need to define hundreds

of attributes and filling them for each class/image. Elho-

seiny et al. [11] proposed an early approach for Wikipedia-

based zero-shot learning that combines domain transfer and

regression to predict visual classifiers from a TF-IDF tex-

tual representation [44]. Qiao et al. [38] proposed suppress

the noise in the Wikipedia articles by encouraging sparsity

of the neural weights to the text terms. Recently, part-based

zero-shot learning model [12] was proposed with a capa-

bility to connect text terms to its relevant parts of objects

without part-text annotations. More recently, Zhu et al. [59]

showed that suppressing the non-visual information is pos-

sible by the predictive power of the their model to synthe-

size visual features from the noisy Wikipedia text. Our work

also focus on the challenging task of recognizing objects

based on Wikipedia articles and is also a generative model.

Unlike existing, we explicitly model the careful deviation

of unseen class generations from seen classes .

Visual Creativity. Computational Creativity studies build-

ing machines that generate original items with realistic and

aesthetic characteristics [32, 34, 7]. Although GANs [17,

39, 22] are a powerful generative model, yet it is not ex-

plicitly trained to create novel content beyond the training

data. For instance, a GAN model trained on art works might

generate the “Mona Lisa” again, but would not produce a

novel content that it did not see. It is not different for some

existing style transfer work [16, 8] since there is no incen-

tive in these models to generate a new content. More re-

cent work adopts computational creativity literature to cre-

ate novel art and fashion designs [9, 45]. Inspired by [33],

Elgammalet al. [9] adapted GANs to generate unconditional

creative content (paintings) by encouraging the model to de-

viate from existing painting styles. Fashion is a 2.5 tril-

lion dollar industry and has an impact in our everyday life,

this motivated [45] to develop a model that can for exam-

ple create an unseen fashion shape “pants to extended arm

sleeves”. The key idea behind these models is to add an

additional novelty loss that encourage the model to explore

the creative space of image generation.

3. Background
GANs [17, 39] train the generator G, with parameters

θG, to produce samples that the Discriminator D believe

they are real. On the other hand, the Discriminator D, with

parameters θD, is trained to classify samples from the real

distribution pdata as real (1), and samples produced by the

generator as fake (0); see Eq 2.

min
θG

LG = min
θG

∑

zi∈Rn

log(1−D(G(zi))) (1)

min
θD

LD = min
θD

∑

xi∈D,zi∈Rn

− logD(xi)− log(1−D(G(zi))))

(2)

where zi is a noise vector sampled from prior distribution

pz and x is a real sample from the data distribution pdata.

In order to learn to deviate from seen painting styles or fash-

ion shapes, [9, 45] proposed an additional head for the dis-

criminator D that predicts the class of an image (painting

style or shape class). During training, the Discriminator D
is trained to predict the class of the real data through its

additional head, apart from the original real/fake loss. The

generator G is then trained to generate examples that are

not only classified as real but more importantly are encour-

aged to be hard to classify using the additional discriminator

head. More concretely,

LG = LG real/fake + λLG creativity (3)

The common objective between [9] and [45] is to produce

novel generations with high entropy distribution over exist-

ing classes but they are different in the loss function. In [9],

LG creativity is defined as the binary cross entropy (BCE) over

each painting style produced by the discriminator additional

head and the uniform distribution (i.e., 1

K
, K is the number

of classes). Hence, this loss is a summation of BCE losses

over all the classes. In contrast, Sbai et al. [45] adopted

the Multiclass Cross Entropy (MCE) between the distribu-

tion over existing classes and the uniform distribution. To

our knowledge, creative generation has not been explored

before conditioned on text and to also facilitate recogniz-

ing unseen classe, two key differences to our work. Relat-

ing computational creativity to zero-shot learning is one of

the novel aspects in our work by encouraging the deviation

of generative models from seen classes. However, proper

design of the learning signal is critical to (1) hallucinate

class text-descriptions whose visual generations can help

the careful deviation, (2) allow discriminative generation

while allowing transfer between seen and unseen classes to

facilitate zero-shot learning.

4. Proposed Approach

Problem Definition. We start by defining the zero-shot

learning setting. We denote the semantic representations

of unseen classes and seen classes as tui = φ(Tu
k ) ∈ T and

tsi ∈ T respectively, where T is the semantic space (e.g.,

features φ(·) of a Wikipedia article Tu
k ). Let’s denote the

seen data as Ds = {(xs
i , y

s
i , t

s
i )}

Ns

i=1, where Ns is the num-

ber of training(seen) image examples, where xs
i ∈ X de-

notes the visual features of the ith image in the visual space
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Figure 2: Generator G is trained to carefully deviate from seen to unseen classes without synthesizing unrealstic images.

Top part: G is provided with a hallucinated text th and trained to trick discriminator to believe it is real, yet it encourages to

deviate learning from seen classes by maximizing entropy over seen classes given th. Bottom part: G is provided with text

of a seen class ts and is trained to trick discriminator to believe it is real with a corresponding class label(low-entropy).

X , ysi is the corresponding category label. We denote the

number of unique seen class labels as Ks. We denote the

set of seen and unseen class labels as S and U , where the

aforementioned ysi ∈ S . Note that the seen and the unseen

classes are disjointed, i.e., S ∩ U = ∅. For unseen classes,

we are given their semantic representations, one per class,

{tui }
Ku

i=1, where Ku is the number of unseen classes. The

zero-shot learning (ZSL) task is to predict the label yu ∈ U
of an unseen class visual example xu ∈ X . In the more

challenging Generalized ZSL (GZSL), the aim is to predict

y ∈ U∪S given x that may belong to seen or unseen classes.

Approach Overview. Fig. 2 shows an overview of our

Creativity Inspired Zero-Shot Learning model(CIZSL). Our

method builds on top of GANs [17] while conditioning

on semantic representation from raw Wikipedia text de-

scribing unseen classes. We denote the generator as G:

R
Z × R

T θG−−→ R
X and the discriminator as D : R

X θD−−→
{0, 1}×Lcls, where θG and θD are parameters of the gener-

ator and the discriminator as respectively, Lcls is the set of

seen class labels (i.e., S = {1 · · ·Ks}). For the Generator

G and as in [55], the text representation is then concate-

nated with a random vector z ∈ R
Z sampled from Gaussian

distributionN (0, 1); see Fig. 2. In the architecture of [59],

the encoded text tk is first fed to a fully connected layer to

reduce the dimensionality and to suppress the noise before

concatenation with z. In our work, the discriminator D is

trained not only to predict real for images from the training

images and fake for generated ones, but also to identify the

category of the input image. We denote the real/fake prob-

ability produced by D for an input image as Dr(·), and the

classification score of a seen class k ∈ S given the image as

Ds,k(·). Hence, the features are generated from the encoded

text description tk, as follows x̃k ← G(tk, z). The discrim-

inator then has two heads. The first head is an FC layer

that for binary real/fake classification. The second head is a

Ks-way classifier over the seen classes. Once our genera-

tor is trained, it is then used to hallucinate fake generations

for unseen classes, where conventional classifier could be

trained as we detail later in Sec 4.3.

The generator G is the key imagination component that

we aim to train to generalize to unseen classes guided by

signals from the discriminator D. In Sec 4.1, we detail

the definition of our Creativity Inspired Zero-shot Signal to

augment and improve the learning capability of the Gener-

ator G. In Sec 4.2, we show how our proposed loss can be

easily integrated into adversarial generative training.

4.1. Creativity Inspired ZeroShot Loss (CIZSL)

We explicitly explore the unseen/creative space of the

generator G with a hallucinated text (th ∼ phtext). We de-

fine phtext, as a probability distribution over hallucinated text

description that is likely to be unseen and hard negatives to

seen classes. To sample th ∼ phtext, we first pick two seen

text features at random tsa, t
s
b ∈ S . Then we sample th by

interpolating between them as

t
h = αt

s
a + (1− α)tsb (4)

where α is uniformally sampled between 0.2 and 0.8. We

discard α values close to 0 or 1 to avoid sampling a text

feature very close to a seen one. We also tried different

ways to sample α which modifies phtext like fixed α = 0.5
or α ∼ N (µ = 0.5, σ = 0.5/3) but we found uniformally

sampling from 0.2 to 0.8 is simple yet effective; see abla-

tions at the supplementary(sec 5). We define our creativity

inspired zero-shot loss LC
G based on G(th, z) as follows

LC
G = −Ez∼pz,th∼ps

text
[Dr(G(th, z))]

+λEz∼pz,th∼ph
text

[Le({D
s,k(G(th, z))}k=1→Ks)]

(5)

We encourage G(th, z) to be real (first term) yet hard to

classify to any of the seen classes (second term) and hence

achieve more discrimination against seen classes; see Fig. 2
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(top). More concretely, the first term encourage the gener-

ations given th ∼ phtext to trick the discriminator to believe

it is real (i.e., maximize Dr(G(th, z)). This loss encour-

ages the generated examples to stay realistic while deviat-

ing from seen classes. In the second term, we quantify the

difficulty of classification by maximizing an entropy func-

tion Le that we define later in this section. Minimizing

LC
G connects to the principal of least effort by Martindale

et.al. 1990, where exaggerated novelty would decrease the

transferability from seen classes (see visualized in Fig. 1).

Promoting the aforementioned high entropy distribution in-

cents discriminative generation. However, it does not dis-

able knowledge transfer from seen classes since the unseen

generations are encouraged to be an entropic combination

of seen classes. We did not model deviation from seen

classes as an additional class with label Ks + 1 that we al-

ways classify G(th, z) to, since this reduces the knowledge

transfer from seen classes as we demonstrate in our results.

Definition of Le : Le is defined over the seen classes’

probabilities, produced by the second discriminator head

{Ds,k(·)}k=1→Ks (i.e., the softmax output over the seen

classes). We tried different entropy maximization losses.

They are based on minimizing the divergence between the

softmax distribution produced by the discriminator given

the hallucinated text features and the uniform distribu-

tion. Concretely, the divergence, also known as relative

entropy, is minimized between {Ds,k(G(th, z))}k=1→Ks))
and { 1

Ks }k=1→Ks ; see Eq 6. Note that similar losses has

been studied in the context of creative visual generation of

art and fashion(e.g., [9, 45]). However, the focus there was

mainly unconditional generation and there was no need to

hallucinate the input text th to the generator, which is neces-

sary in our case; see Sec 3. In contrast, our work also relates

two different modalities (i.e., Wikipedia text and images).

L
KL
e =

Ks
∑

k=1

1

Ks
D

s,k(G(th, z))

L
SM
e (γ, β) =

1

β − 1

[

Ks
∑

k=1

(Ds,k(G(th, z)1−γ(
1

Ks
)
γ

)
1−β
1−γ − 1

]

(6)

Several divergence/entropy measures has been proposed in

the information theory literature [41, 49, 23, 4, 21]. We

adopted two divergence losses, the well-known Kullback-

Leibler(KL) divergence in LKL
e and the two-parameter

Sharma-Mittal(SM) [21] divergence in LSM
e which is rel-

atively less known; see Eq 6. It was shown in [4], that other

divergence measures are special case of Sharma-Mittal(SM)

divergence by setting its two parameters γ and β. It is equiv-

alent to Rényi [41] when β → 1 (single-parameter), Tsal-

lis divergence [49] when γ = β (single-parameter), Bhat-

tacharyya divergence whenβ → 0.5 and γ → 0.5, and KL

divergence when β → 1 and γ → 1 (no-parameter). So,

when we implement SM loss, we can also minimize any of

the aforementioned special-case measures; see details in the

supplementary(sec 2). Note that we also learn γ and β when

we train our model with SM loss.

4.2. Integrating CIZSL in Adversarial Training

The integration of our approach is simple that LC
G de-

fined in Eq 5 is just added to the generator loss; see Eq 7.

Similar to existing methods, when the generator G is pro-

vided with text describing a seen class ts, its is trained to

trick the discriminator to believe it is real and to predict

the corresponding class label (low-entropy for ts versus hig-

entropy for th); see Fig 2(bottom). Note that the remaining

terms, that we detail here for concreteness of our method,

are simlar to existing generative ZSL approaches [55, 59]

Generator Loss The generator loss is an addition of four

terms, defined as follows

LG = L
C
G − Ez∼pz ,(ts,ys)∼pstext

[Dr(G(ts, z))+

Ks
∑

k=1

y
s
klog(D

s,k(G(ts, z)))]

+
1

Ks

Ks
∑

k=1

||Ez∼pz [G(tk, z)]− Ex∼pk
data

[x]||2

(7)

The first term is our creativity inspired zero-shot loss LC
G,

described in Sec 4.1. Note that seen class text descriptions

{tk}k=1→Ks are encouraged to predict a low entropy dis-

tribution since loss is minimized when the corresponding

class is predicted with a high probability. Hence, the sec-

ond term tricks the generator to classify visual generations

from seen text ts as real. The third term encourages the

generator to be capable of generating visual features condi-

tioned on a given seen text. The fourth term is an additional

visual pivot regularizer that we adopted from [59], which

encourages the centers of the generated (fake) examples for

each class k (i.e., with G(tk, z)) to be close to the centers

of real ones from sampled from pkdata for the same class k.

Similar to existing methods, the loss for the discriminator is

defined as:

LD =Ez∼pz ,(ts,ys)∼pstext
[Dr(G(ts, z))]− Ex∼pdata

[Dr(x)]

+ LLip −
1

2
Ex,y∼pdata

[
Ks
∑

k=1

yklog(D
s,k(x))]

−
1

2
Ez∼pz ,(ts,ys)∼pstext

[
Ks
∑

k=1

y
s
klog(D

s,k(G(ts, z)))]

(8)

where y is a one-hot vector encoding of the seen class label

for the sampled image x, ts and ys are features of a text de-

scription and the corresponding on-hot label sampled from

seen classes pstext. The first two terms approximate Wasser-

stein distance of the distribution of real features and fake

features. The third term is the gradient penalty to enforce

the Lipschitz constraint: LLip = (|| ▽x̃ Dr(x̃)||2 − 1)2,

where x̃ is the linear interpolation of the real feature x and
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the fake feature x̂; see [18]. The last two terms are classifi-

cation losses of the seen real features and fake features from

text descriptions of seen category labels.

Training. We construct two minibatches for training the

generator G, one from seen class ts and from the hallluci-

nated text th to minimize LG (Eq. 7) and in particular LC
G

(Eq. 5). The generator is optimized to fool the discriminator

into believing the generated features as real either from hal-

lucinated text th or the seen text ts. In the mean time, we

maximize their entropy over the seen classes if the gener-

ated features comes from hallucinated text th ∼ phtext or to

the corresponding class if from a real text ts. Training the

discriminator is similar to existing works; see in the supple-

mentary (sec3) a detailed algorithm and code to show how

G and D are alternatively trained with an Adam optimizer.

Note that when Le has parameters like γ and β for Sharma-

Mittal(SM) divergence ( Eq 6), that we also learn.

4.3. ZeroShot Recognition Test

After training, the visual features of unseen classes can

be synthesized by the generator conditioned on a given un-

seen text description tu, as xu = G(tu, z). We can generate

an arbitrary number of generated visual features by sam-

pling different z for the same text tu. With this synthesized

data of unseen classes, the zero-shot recognition becomes a

conventional classification problem. We used nearest neigh-

bor prediction, which we found simple and effective.

5. Experiments

We investigate the performance of our approach on two

class-level semantic settings: textual and attribute descrip-

tions. Since the textual based ZSL is a harder problem, we

used it to run an ablation study for zero-shot retrieval and

generalized ZSL. Then, we conducted experiments for both

settings to validate the generality of our work.

Cross-Validation The weight λ of our loss in Eq 5 is a hy-

perparameter that we found easy to tune on all of our ex-

periments. We start by splitting the data into training and

validation split with nearly 80-20% ratio for all settings.

Training and validation classes are selected randomly prior

to the training. Then, we compute validation performance

when training the model on the 80% split every 100 itera-

tions out of 3000 iterations. We investigate a wide range

of values for λ, and the value that scores highest validation

performance is selected to be used at the inference time. Fi-

nally, we combine training and validation data and evaluate

the performance on testing data.

Zer-Shot Performance Metrics. We use two metrics

widely used in in evaluating ZSL recognition performance:

Standard Zero-shot recognition with the Top-1 unseen class

accuracy and Seen-Unseen Generalized Zero-shot perfor-

mance with Area under Seen-Unseen curve [6]. The Top-1

accuracy is the average percentage of images from unseen

classes classifying correctly to one of unseen class labels.

However, this might be incomplete measure since it is more

realistic at inference time to encounter also seen classes.

Therefore, We also report a generalized zero-shot recogni-

tion metric with respect to the seen-unseen curve, proposed

by Chao et al. [6]. This metric classifies images of both

seen S and unseen classes U at test time. Then, the per-

formance of a ZSL model is assessed by classifying these

images to the label space that covers both seen classes and

unseen labels T = S ∪ U . A balancing parameter is used

sample seen and unseen class test accuracy-pair. This pair

is plotted as the (x, y) co-ordinate to form the Seen-Unseen

Curve(SUC). We follow [59] in using the Area Under SUC

to evaluate the generalization capability of class-level text

zero-shot recognition, and the haromnic mean of SUC for

attribute-based zero-shot recognition. In our model, we use

the trained GAN to synthesize the visual features for both

training and testing classes.

5.1. Wikipedia based ZSL Results (4 benchmarks)

Text Representation. Textual features for each class are

extracted from corresponding raw Wikipedia articles col-

lected by [11, 12]. We used Term Frequency-Inverse Docu-

ment Frequency (TF-IDF) [44] feature vector of dimension-

ality 7551 for CUB and 13217 for NAB.

Visual Representation. We use features of the part-based

FC layer in VPDE-net [57]. The image are fed forward to

the VPDE-net after resizing to 224 × 224, and the feature

activation for each detected part is extracted which is of 512

dimensionality. The dimensionalities of visual features for

CUB and NAB are 3583 and 3072 respectively. There are

six semantic parts shared in CUB and NAB:“head”, “back”,

“belly”, “breast”, “leg”, “wing”, “tail”. Additionally, CUB

has an extra part which is “leg” which makes its feature rep-

resentation 512D longer compared to NAB (3583 vs 3072).

More details in the supplementary(sec 6).

Datasets. We use two common fine-grained recognition

datasets for textual descriptions: Caltech UCSD Birds-

2011 (CUB) [51] and North America Birds (NAB) [50].

CUB dataset contains 200 classes of bird species and their

Wikipedia textual description constituting a total of 11,788

images. Compared to CUB, NAB is a larger dataset of birds,

containing a 1011 classes and 48,562 images.

Splits. For both datasets, there are two schemes to split

the classes into training/testing (in total four benchmarks):

Super-Category-Shared (SCS) or easy split and Super-

Category-Exclusive Splitting (SCE) or hard split, proposed

in [12]. Those splits represents the similarity of the seen

to unseen classes, such that the former represents a higher

similarity than the latter. For SCS (easy), unseen classes are

deliberately picked such that for every unseen class, there is

at least one seen class with the same super-category. Hence,

the relevance between seen and unseen classes is very high,
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Metric Top-1 Accuracy (%) Seen-Unseen AUC (%)

Dataset CUB NAB CUB NAB

Split-Mode Easy Hard Easy Hard Easy Hard Easy Hard

CIZSL SM-Entropy (ours final) 44.6 14.4 36.5 9.3 39.2 11.9 24.5 6.4

CIZSL SM-Entropy (replace 2nd term in Eq 5 by Classifying th as new class) 43.2 11.31 35.6 8.5 38.3 9.5 21.6 5.6

CIZSL SM-Entropy (minus 1st term in Eq 5) 43.4 10.1 35.2 8.3 35.0 8.2 20.1 5.4

CIZSL SM-Entropy: (minus 2nd term in Eq 5) 41.7 11.2 33.4 8.1 33.3 10.1 21.3 5.1

CIZSL Bachatera-Entropy (γ = 0.5, β = 0.5) 44.1 13.7 35.9 8.9 38.9 10.3 24.3 6.2

CIZSL Renyi-Entropy (β → 1) 44.1 13.3 35.8 8.8 38.6 10.3 23.7 6.3

CIZSL KL-Entropy (γ → 1, β → 1) 44.5 14.2 36.3 8.9 38.9 11.6 24.3 6.2

CIZSL Tsallis-Entropy (β = γ) 44.1 13.8 36.7 8.9 38.9 11.3 24.5 6.3

CIZSL SM-Entropy: (minus 1st and 2nd terms in Eq 5)= GAZSL [59] 43.7 10.3 35.6 8.6 35.4 8.7 20.4 5.8

Table 1: Ablation Study using Zero-Shot recognition on CUB & NAB

datasets with two split settings each. CIZSL is GAZSL [59]+ our loss

Figure 3: Seen Unseen Curve for Parakeet Auk-

let (Seen, y-axis) vs Crested Auklet (Unseen, x-

axis) for GAZSL[57] and GAZSL[57]+ CIZSL.

deeming the zero-shot recognition and retrieval problems

relatively easier. On the other end of the spectrum, SCE

(hard) scheme, the unseen classes do not share the super-

categories with the seen classes. Hence, there is lower simi-

larity between the seen and unseen classes making the prob-

lem harder to solve. Note that the easy split is more com-

mon in literature since it is more Natural yet the deliberately

designed hard-split shows the progress when the super cat-

egory is not seen that we also may expect.

Ablation Study (Table 1). Our loss is composed of two

terms shown that encourage the careful deviation in Eq 5.

The first term encourages that the generated visual features

from the hallucinated text th to deceive the discriminator

believing it is real, which restricts synthesized visual fea-

tures to be realistic. The second term maximizes the en-

tropy using a deviation measure. In our work, Shama-

Mittal(SM) entropy parameters γ and β are learnt and hence

adapt the corresponding data and split mode to a matching

divergence function, leading to the best results especially

in the generalized SUAUC metric; see first row in Table 1.

We first investigate the effect of deviating the hallucinated

text by classifying it t a new class Ks + 1, where Ks is

the number of the seen classes. We found the performance

is significantly worse since the loss would significantly in-

crease indecencies against seen classes and hence reduces

seen knowledge transfer to unseen classes; see row 2 in Ta-

ble 1. When we remove the first term (realistic constraints),

the performance degrades especially under the generalized

Seen-Unseen AUC metric because generated visual features

became unrealistic; see row 3 in Table 1 (e.g., 39.2% to

35.0% AUC drop for CUB Easy and 11.9%-8.2% drop for

CUB Hard). Alternatively, when we remove the second

term (entropy), we also observe a significant drop in perfor-

mance showing that both losses are complementary to each

other; see row 4 in Table 1 (e.g., 39.2% to 33.5% AUC drop

for CUB Easy and 11.9%-10.1% drop for CUB Hard). In

our ablation, applying our approach without both terms (our

loss) is equivalent to [59], shown is the last row in Table 1

as one of the least performing baselines. Note that our loss

is applicable to other generative ZSL methods as we show

in our state-of-the-art comparisons later in this section.

We also compare different entropy measures to encour-

(a) CUB with SCS (easy) split (b) CUB with SCE (hard) split

(c) NAB with SCS (easy) split (d) NAB with SCE (hard) split

Figure 4: Seen-Unseen accuracy Curve with two splits:

SCS(easy) and SCE(hard). Ours indicates GAZSL+ CIZSL

age the deviation from the seen classes: Kullback-Leibler

(KL), Rényi [41], Tsallis [49], Bhattacharyya [23]; see rows

5-8 in Table 1. All these divergences measure are special

cases of the two parameter (γ , β) Sharma-Mittal(SM) [21]

divergence that we implemented. For instance, Renyi [41]

and Tsallis [49] on the other hand only learns one parame-

ter and achieves comparable yet lower performance. Bhat-

tacharyya [23] and KL have no learnable parameters an

achieves lower performance compared to SM.

Zero-Shot Recognition and Generality on [55] and [59].

Fig 3 shows the key advantage of our CIZSL loss, dou-

bling the capability of [57] from 0.13 AUC to 0.27 AUC to

distinguish between two very similar birds: Parakeet Auk-

let (Seen class) and Crested Auklet (unseen class), in 200-

way classification; see supplementary (sec1) for details. Ta-

ble 2 shows state-of-the-art comparison on CUB and NAB

datasets for both their SCS(easy) and SCE(hard) splits (to-

tal of four benchmarks). Our method shows a significant

advantage compared to the state of the art especially in gen-

eralized Seen-Unseen AUC metric ranging from 1.0-4.5%
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Metric Top-1 Accuracy (%) Seen-Unseen AUC (%)

Dataset CUB NAB CUB NAB

Split-Mode Easy Hard Easy Hard Easy Hard Easy Hard

WAC-Linear [11] 27.0 5.0 – – 23.9 4.9 23.5 –

WAC-Kernel [10] 33.5 7.7 11.4 6.0 14.7 4.4 9.3 2.3

ESZSL [42] 28.5 7.4 24.3 6.3 18.5 4.5 9.2 2.9

ZSLNS [38] 29.1 7.3 24.5 6.8 14.7 4.4 9.3 2.3

SynCfast [5] 28.0 8.6 18.4 3.8 13.1 4.0 2.7 3.5

ZSLPP [12] 37.2 9.7 30.3 8.1 30.4 6.1 12.6 3.5

FeatGen [55] 43.9 9.8 36.2 8.7 34.1 7.4 21.3 5.6

FeatGen[55]+ CIZSL 44.2 +0.3 12.1 +2.3 36.3 +0.1 9.8 +1.1 37.4 +2.7 9.8 +2.4 24.7 +3.4 6.2 +0.6

GAZSL [59] 43.7 10.3 35.6 8.6 35.4 8.7 20.4 5.8

GAZSL [59] + CIZSL 44.6 +0.9 14.4 +4.1 36.6 +1.0 9.3 +0.7 39.2 +3.8 11.9 +3.2 24.5 +4.1 6.4 +0.6

Table 2: Zero-Shot Recognition on class-level textual description from

CUB and NAB datasets with two-split setting.

Top-1 Accuracy(%) Seen-Unseen H

AwA2 aPY SUN AwA2 aPY SUN

DAP [27] 46.1 33.8 39.9 – 9.0 7.2

SSE [58] 61.0 34.0 51.5 14.8 0.4 4.0

SJE [3] 61.9 35.2 53.7 14.4 6.9 19.8

LATEM [53] 55.8 35.2 55.3 20.0 0.2 19.5

ESZSL [42] 58.6 38.3 54.5 11.0 4.6 15.8

ALE [2] 62.5 39.7 58.1 23.9 8.7 26.3

CONSE [35] 44.5 26.9 38.8 1.0 – 11.6

SYNC [5] 46.6 23.9 56.3 18.0 13.3 13.4

SAE [24] 54.1 8.3 40.3 2.2 0.9 11.8

DEM [57] 67.1 35.0 61.9 25.1 19.4 25.6

DEVISE [15] 59.7 39.8 56.5 27.8 9.2 20.9

GAZSL [59] 58.9 41.1 61.3 15.4 24.0 26.7

GAZSL [59] + CIZSL 67.8 +8.9 42.1 +1.0 63.7 +2.4 24.6 +9.2 25.7 +1.7 27.8 +1.1

FeatGen [55] 54.3 42.6 60.8 17.6 21.4 24.9

FeatGen [55] + CIZSL 60.1 +5.8 43.8 +1.2 59.4 −0.6 19.1 +1.5 24.0 +2.6 26.5 +1.6

cycle-(U)WGAN [14] 56.2 44.6 60.3 19.2 23.6 24.4

cycle-(U)WGAN [14] + CIZSL 63.6 +7.4 45.1 +0.5 64.2 +3.9 23.9 +4.7 26.2 +2.6 27.6 +3.2

Table 3: Zero-Shot Recognition on class-level at-

tributes of AwA2, aPY and SUN datasets.

CUB NAB

25% 50% 100% 25% 50% 100%

ESZSL [42] 27.9 27.3 22.7 28.9 27.8 20.9

ZSLNS [38] 29.2 29.5 23.9 28.8 27.3 22.1

ZSLPP [12] 42.3 42.0 36.3 36.9 35.7 31.3

GAZSL [59] 49.7 48.3 40.3 41.6 37.8 31.0

GAZSL [59]+ CIZSL 50.3 +0.6 48.9 +0.6 46.2 +5.9 41.0 −0.6 40.2 +2.4 34.2 +3.2

Table 4: Zero-Shot Retrieval using mean Average Preci-

sion(mAP) (%) on CUB and NAB with SCS(easy) splits.

improvement. Fig 4 visualizes Seen-Unseen curves for our

four benchmarks CUB (east and hard splits) and NABirds

(easy and hard splits) where ours has a significant advantage

compared to state-of-the-art on recognizing unseen classes;

see our area under SU curve gain in Fig 4 against the runner-

up GAZSL. The average relative SU-AUC improvement on

the easy splits is 15.4% and 23.56% on the hard split. Mean-

ing, the advantage of our loss becomes more clear as splits

get harder, showing a better capability of discriminative

knowledge transfer. We show the generality of our method

by embedding it with another feature generation method,

FeatGen [55], causing a consistent improvement. All the

methods are using same text and visual representation.

Zero-Shot Retrieval. We investigate our model’s perfor-

mance for zero-shot retrieval task given the Wikipedia arti-

cle of the class using mean Average Precision (mAP), the

common retrieval metric. In table 4, we report the perfor-

mance of different settings: retrieving 25%, 50%, 100% of

the images at each class. We follow [59] to obtain the visual

center of unseen classes by generating 60 examples for the

given text then computing the average. Thus, given the vi-

sual center, the aim is to retrieve images based on the nearest

neighbor strategy in the visual features space. Our model is

the best performing and improves the MAP (100%) over the

runner-up ( [59]) by 14.64% and 9.61% on CUB and NAB

respectively. Even when the model fails to retrieve the exact

unseen class, it tends to retrieve visually similar images; see

qualitative examples in supplementary.

5.2. Attributebased ZeroShot Learning

Datasets. Although it is not our focus, we also investi-

gate the performance of our model’s zero-shot recognition

ability using different semantic representation. We follow

the GBU setting [54], where images are described by their

attributes instead of textual describtion deeming the prob-

lem to be relatively easier than textual-description zero-

shot learning. We evaluated our approach on the follow-

ing datasets: Animals with Attributes (AwA2) [26], aPas-

cal/aYahoo objects(aPY) [13] and the SUN scene attributes

dataset [37]. They consist of images covering a variety of

categories in different scopes: animals, objects and scenes

respectively. AwA contains attribute-labelled classes but

aPY and SUN datasets have their attribute signature calcu-

lated as the average of the instances belonging to each class.

Zero-Shot Recognition. On AwA2, APY, and SUN

datasets, we show in Table 3 that our CIZSL loss im-

proves three generative zero-shot learning models includ-

ing GAZSL [59], FeatGen [55], and cycle-(U)WGAN [14].

The table also shows our comparison to the state-of-

the-art where we mostly obtain a superior performance.

Even when obtaining a slightly lower score than state-of-

the-art on AWA2, our loss adds a 9.2% Seen-Unseen H

absolute improvement to the non-creative GAZSL [59].

We also evaluated our loss on CUB-T1(Attributes) bench-

mark [54], where the Seen-Unseen H for GAZSL [59]] and

GAZSL [59]+CIZSL are 55.8 and 57.4, respectively.

6. Conclusion

We draw an inspiration from the psychology of human

creativity to improve the capability of unseen class imagi-

nation for zero-shot recognition. We adopted GANs to dis-

crimnatively imagine visual features given a hallucinated

text describing an unseen visual class. Thus, our generator

learns to synthesize unseen classes from hallucinated texts.

Our loss encourages deviating generations of unseen from

seen classes by enforcing a high entropy on seen class clas-

sification while being realistic. Nonetheless, we ensure the

realism of hallucinated text by synthesizing visual features

similar to the seen classes to preserve knowledge transfer to

unseen classes. Comprehensive evaluation on seven bench-

marks shows a consistent improvement over the state-of-

the-art for both zero-shot learning and retrieval with class

description defined by Wikipedia articles and attributes.
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