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Abstract

The human visual system has a strong ability to quickly

assess the perceptual similarity between two facial sketches.

However, existing popular facial sketch metrics, e.g., FSIM

and SSIM, which initially designed for evaluating local im-

age distortion, often fail to address the perceptual similarity

between faces. In this paper, we design a perceptual met-

ric, called Structure Co-Occurrence Texture (Scoot), which

simultaneously considers the block-level spatial structure

and co-occurrence texture statistics. To test the quality of

metrics, we propose three novel meta-measures based on

various reliable properties. Extensive experiments demon-

strate that our Scoot metric exceeds the performance of

prior work. Besides, we built the first large scale (152k

judgments) human-perception-based sketch database that

can evaluate how well a metric is consistent with human

perception. Our results suggest that “spatial structure” and

“co-occurrence texture” are two generally applicable per-

ceptual features in face sketch synthesis.

1. Introduction

Being able to properly evaluate the quality of different

algorithm outputs [80] against reference data is crucial in

all areas of computer vision and image processing [5,8,89].

For various end-user applications such as face sketch [49],

image style transfer [27], image quality assessment [66],

saliency detection [11–13, 90], segmentation [41–43] and

disease classification [73], image denoising [71], the com-

parison can turn out to be evaluating a “perceptual dis-

tance”, which assesses how similar two images are in a way

that highly correlates with human perception.

In this paper, we study facial sketch and show that hu-

man judgments are often different from current evaluation

metrics, and as the first related attempt, we provide a novel

perceptual distance for sketch according to human choice
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Figure 1: Which synthesized sketch is more similar to the mid-

dle sketch? For the right case, sketch 0 (S0) is more similar than

sketch 1 (S1) w.r.t. reference (R) in terms of structure and texture.

Sketch 1 almost completely destroys the texture of the hair. The

widely-used (SSIM [66], FSIM [76]), classic (IFC [40], VIF [39])

and recently released (GMSD [72]) metrics disagree with humans.

Only our Scoot metric agrees well with humans.

principles. As noticed in [80], human judgments of similar-

ity depend on high-order image structure. Facial sketches

are made up of a lot of textures, and there are many al-

gorithms for synthesizing sketches, which is a good fit for

this problem. However, designing a good perceptual metric

should take into account human perception in facial sketch

comparison, which should:

• closely match human perception so that good

sketches can be directly used in various subjective ap-

plications, e.g., law enforcement and entertainment.

• be insensitive to slight mismatches (i.e., re-size, rota-

tion) since real-world sketches drawn by artists do not

precisely match each pixel to the original photos.

• be capable of capturing holistic content, that is,

prefer the complete sketch to one that only contains

strokes (i.e., has lost some facial components).

To the best of our knowledge, no prior metric can satisfy

all these properties simultaneously.

For example, in face sketch synthesis (FSS), the target

is for the synthetic sketch to be indistinguishable from the

reference by a human subject, although their pixel represen-

tations might be mismatched. Let us take a look at Fig. 1 in
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No. Model Year’Pub Sj. Rr. Ob. No. Model Year’Pub Sj. Rr. Ob.

1 ST [49] 03’ICCV VRR 2 STM [50] 04’TCSVT VRR

3 LLE [31] 05’CVPR VRR 4 BTI [32] 07’IJCAI RMSE

5 E-HMMI [22] 08’NC VRR UIQI 6 EHMM [21] 08’TCSVT VRR

7 MRF [64] 08’PAMI VRR 8 SL [70] 10’NC VRR UIQI

9 RMRF [86] 10’ECCV VRR 10 SNS-SRE [20] 12’TCSVT VRR

11 MWF [91] 12’CVPR VRR 12 SCDL [60] 12’CVPR PSNR

13 Trans [57] 13’TNNLS VRR 14 SFS-SVR [56] 13’PRL VRR VIF

15 Survey [58] 14’IJCV RMSE, UIQI, SSIM 16 SSD [45] 14’ECCV SV VRR

17 SFS [83] 15’TIP VRR FSIM, SSIM 18 FCN [75] 15’ICMR ES VRR

19 RFSSS [81] 16’TIP VRR FSIM, SSIM 20 KD-Tree [88] 16’ECCV VRR VIF, SSIM

21 MrFSPS [36] 16’TNNLS VRR FSIM, VIF, SSIM 22 2DDCM [51] 16’TIP VRR FSIM, SSIM

23 RR [59] 17’NC VRR VIF, SSIM 24 Bayesian [55] 17’TIP VRR VIF, SSIM

25 RFSSS [82] 17’TCSVT VRR FSIM, SSIM 26 S-FSPS [35] 17’TCSVT VRR FSIM, VIF, SSIM

27 ArFSPS [29] 17’NC VRR FSIM 28 BFCN [74] 17’TIP SV VRR

29 DGFL [92] 17’IJCAI VRR SSIM 30 FreeH [30] 17’IJCV SV

31 Pix2pix [27] 17’CVPR 32 CA-GAN [18] 17’CVPR VRR SSIM

33 ESSFA [14] 17’TOG 34 PS2MAN [52] 18’FG VRR FSIM, SSIM

35 NST [38] 17’NPAR 36 CMSG [77] 18’TC SV VRR

37 RSLCR [53] 18’PR VRR SSIM 38 MRNF [78] 18’IJCAI VIF, SSIM

39 ρGAN [84] 18’IJCAI FSIM 40 FSSN [28] 18’PR PSNR, SSIM

41 MAL [85] 18’TNNLS FSIM, SSIM 42 MRNF [79] 18’AAAI VRR VIF, SSIM

Table 1: Summarization of 42 representative FSS-based algorithms. Sj.: Subjective metric. Rr.: Recognition rates. Ob.: Objective

metric. SV = Subjective Voting. ES = Empirical Study. VRR = various recognition rate methods, such as, null-space LDA [4], Random

Sampling LDA [62, 63], dual-space LDA [61], LPP [26], Sparse Representation and Classification [68]. Note that UIQI [65] is a special

case of SSIM [66].

which there are three examples. Which one is closer to the

middle reference? While this comparison task seems trivial

for humans, to date the widely-used metrics disagree with

human judgments. Not only are visual patterns very high-

dimensional, but the very notion of visual similarity is often

subjective [80].

Our contributions to the facial sketch community can be

summarized in three points. Firstly, as described in Sec. 3,

we propose a Structure Co-Occurrence Texture (Scoot) per-

ceptual metric for FSS that provides a unified evaluation

considering both structure and texture.

Secondly, as described in Sec. 4.2, we design three

meta-measures based on the above three reliable properties.

Extensive experiments on these meta-measures verify that

our Scoot metric exceeds the performance of prior works.

Our experiments indicate that “spatial structure” and “co-

occurrence” texture are two generally applicable perceptual

features in FSS.

Thirdly, we explore different ways of exploiting texture

statistics (e.g., Gabor, Sobel, and Canny, etc.). We find that

simple texture features [16, 17] performs far better than the

commonly used metrics in the literature [39, 40, 66, 72, 76].

Based on our findings, we construct the first large-scale

human-perception-based sketch database that can evaluate

how well a metric is in line with human perception.

Our three contributions presented above offer a complete

metric benchmark suite, which provides a novel view and a

practical tool (e.g., metric, meta-measures and database) to

analyze data similarity from the human perception direc-

tion.

2. Related Work

From Tab. 1, we observe that some works utilize recogni-

tion rates (Rr.) to evaluate the quality of synthetic sketches.

However, Rr. cannot completely reflect the visual quality

of synthetic sketches [54]. In the FSS area, the widely-

used perceptual metrics, e.g., SSIM [66], FSIM [76], and

VIF [39] were initially designed for image quality assess-

ment (IQA) which aims to evaluate image distortion such

as Gaussian blur, jpeg, and jpeg 2000 compression. Directly

introducing the IQA metric to FSS may be intractable (see

Fig. 1) due to the different nature of their task.

Psychophysics [94] and prior work, e.g., line draw-

ings [15, 23] indicate that human perception of sketch sim-

ilarity depends on two crucial factors, i.e., image struc-

ture [66] and texture [54]. However, how perceptual are

these so-called “perceptual features”? Which elements are

critical for their success? How well do these “perceptual

features” actually correspond to human visual perceptions?

As noticed by Wang et al. [54], there is currently no reli-

able perceptual metric in FSS. We review the topics most

pertinent to facial sketch within the constraints of space:

Heuristic-based Metric. The most widely used metric

in FSS is SSIM proposed by Wang et al. [66]. SSIM com-

putes structure similarity, and luminance and contrast com-

parison using a sliding window on the local patch. Sheikh

and Bovik [39] proposed the VIF metric which evaluates

the image quality by quantifying two kinds of information.

One is obtained via the human visual system channel, with

the input ground truth and the output reference image in-

formation. The other is achieved via the distortion channel,
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Figure 2: Motivation of the proposed Scoot metric. (a) Pencil grades and their strokes. (b) Using stroke tones to present texture. The

stroke textures used, from top to bottom, are: “cross-hatching”, “stippling”. The stroke attributes, from left to right, are: spare to dense.

Images are from [67]. (c) The artist draws the sketch from guideline to details. (d) The original sketches. (e) The quantized sketches. (f)

Creating various tones of the stroke by applying different pressure (e.g., light to dark) on the pencil tip.

called distortion information, and the result is the ratio of

these two types of information. Studies of the human vision

system (HVS) found that the features perceived by human

vision are consistent with the phase of the Fourier series at

different frequencies. Therefore, Zhang et al. [76] chose

phase congruency as the primary feature. Then they pro-

posed a low-level feature similarity metric called FSIM.

Recently, Xue et al. [72] devised a simple metric named

gradient magnitude similarity deviation (GMSD), where the

pixel-wise gradient magnitude similarity is utilized to ob-

tain image local quality. The standard deviation of the over-

all gradient magnitude similarity map is calculated as the fi-

nal image quality index. Their metric achieves the state-of-

the-art (SOTA) performance compared with the other met-

rics.

Learning based Metric. As well as the heuristic-based

metric, there are numerous learning based metrics [7, 19,

48], for comparing images in a perceptual-based manner

which have been used to evaluate image compression and

many other imaging tasks. We refer readers to a recent sur-

vey [80] for a comprehensive review of various deep fea-

tures adopted for perceptual metrics. This paper focuses on

showing why face sketches require a specific perceptual dis-

tance metric that differs from or improves upon previously

heuristic-based methods.

2.1. Motivation

We observed the basic principles of the sketch and noted

that “graphite pencil grades” and “pencil’s strokes” are the

two fundamental elements in the sketch.

2.2. Graphite Pencil Grades.

In the European system, “H” & “B” stand for “hard” &

“soft” pencil, respectively. Fig. 2(a) illustrates the grade of

graphite pencil. Sketch images are expressed through a lim-

ited medium (graphite pencil) which provides no color. Il-

lustrator Sylwia Bomba [47] said that “if you put your hand

closer to the end of the pencil, you have darker markings.

Gripping further up the pencil will result in lighter mark-

ings.” Besides, after a long period of practice, artists will

form their fixed pressure (e.g., from guideline to detail in

Fig. 2(c)) style. In other words, the marking of the stroke

can be varied (e.g., light to dark in Fig. 2(f)) by changing

the pressure on the pencil tip. Note that different pressures

on the tip will result in various types of marking which is

one of the quantifiable factors called gray tone.

Gray Tone. The quantification of gray tone should

reduce the effect of slight amounts of noise and over-

sensitivity to subtle gray tone gradient changes in sketches.

We introduce intensity quantization during the evaluation of

gray tone similarity. Inspired by previous works [6], we can

quantize the input sketch I to Nl different grades to reduce

the number of intensities to be considered: I ′ = Ω(I). A

typical example of such quantization is shown in Fig. 2(d,

e). Humans will consistently rank Pix2pix higher than LR

before (Fig. 2(d)) and after (Fig. 2(e)) quantizing the in-

put sketches when evaluating the perceptual similarity. Al-

though quantization may introduce artifacts, our experi-

ments (Sec. 6) also show that this process can reduce sen-

sitivity to minor intensity variations and balance the perfor-

mance and computational complexity.

2.3. Pencil’s Strokes.

Because all of the sketches are generated by moving a

tip on the paper, different paths of the tip along the pa-

per will create various stroke shapes. One example is

shown in Fig. 2(b), in which different spatial distributions

of the stroke have produced various textures (e.g., sparse or

dense). Thus, the stroke tone is another quantifiable factor.

Stroke Tone. The stroke tone and grey tone are not inde-

pendent concepts. The gray tone is based on the different
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strokes of gray-scale in a sketch image, while the stroke

tone can be defined as the spatial distribution of gray tones.

An example is shown in Fig. 2(d). Intuitively,

Pix2pix [27] is better than LR [59] since Pix2pix preserves

the texture (or stroke tone) of the hair and details in the face.

However, LR presents an overly smooth result and has lost

much of the sketch style.

3. Proposed Algorithm

This section explains the proposed Scoot metric, which

captures the co-occurrence texture statistics in the “block-

level” spatial structure.

3.1. Co­Occurrence Texture

With the two quantifiable factors at hand, we start to de-

scribe the details. To simultaneously extract statistics about

the “stroke tone” and their relationship to the surrounding

“gray tone”, we need to characterize their spatial interre-

lationships. Previous work in texture [25] verified that the

co-occurrence matrix can efficiently capture the texture fea-

ture, due to the use of various powerful statistics. Since the

sketches show a lot of similarities to textures, we use the

co-occurrence matrix as our gray tone and stroke tone ex-

tractor. Specifically, this matrix M is defined as:

M(i,j)|d =

H
∑

y=1

W
∑

x=1

{

1, if I ′x,y = i and I ′(x,y)+d
= j

0, otherwise

(1)
where i and j denote the gray value; d = (∆x,∆y) is the

relative distance to (x, y); x and y are the spatial positions

in the given quantized sketch I ′; I ′x,y denotes the gray value

of I ′ at position (x, y); W and H are the width and height

of the sketch I ′, respectively. To extract the perceptual fea-

tures in a sketch, we test the three most widely used [24]

statistics: Homogeneity (H), Contrast (C), and Energy (E).

Homogeneity reflects how much the texture changes in

local regions, it will be high if the gray tone of each pixel

pair is similar. The homogeneity is defined as:

H =

Nl
∑

j=1

Nl
∑

i=1

M(i,j)|d

1 + |i− j|
, (2)

Contrast represents the difference between a pixel in I ′

and its neighbor summed over the whole sketch. This re-

flects that a low-contrast sketch is not characterized by low

gray tones but rather by low spatial frequencies. The con-

trast is highly correlated with spatial frequencies. The con-

trast equals 0 for a constant tone sketch.

C =

Nl
∑

j=1

Nl
∑

i=1

|i− j|2M(i,j)|d (3)

Energy measures textural uniformity. When only similar

gray tones of pixels occur in a sketch (I ′) patch, a few el-

ements in M will be close to 1, while others will be close

to 0. Energy will reach the maximum if there is only one

Algorithm 1: Structure Co-Occurrence Texture Measure

Input: Synthetic Sketch X , Ground Truth Sketch Y

Step 1: Quantize X and Y into Nl grades

Step 2: Calculate the matrices M(X) and M(Y ) according to Eq. 1

Step 3: Divide the whole sketch image into a k × k grid of k2 blocks

Step 4: Extract the CE features according to Eq. 3 & 4 from each block

and concatenate them together

Step 5: Compute the average feature of four orientations with Eq. 5

Step 6: Evaluate the similarity between X and Y according to Eq. 6

Output: Scoot score;

gray tone in a sketch (I ′) patch. Thus, high energy corre-

sponds to the sketch’s gray tone distribution having either a

periodic or constant form.

E =

Nl
∑

j=1

Nl
∑

i=1

(M(i,j)|d)
2 (4)

3.2. Spatial Structure

To holistically represent the spatial structure, we follow

the spatial envelope strategy [9, 34] to extract the statistics

from the “block-level” spatial structure in the sketch. First,

we divide the whole sketch image into a k × k grid of k2

blocks. Our experiments demonstrate that the process can

help to derive content information. Second, we compute the

co-occurrence matrix M for all blocks and normalize each

matrix such that the sum of its components is 1. Then, we

concatenate p statistics (e.g., H, C, E) of all the k2 blocks

into a vector
−→
Φ(I ′s|d)∈R

p×k×k.

Note that each of the above statistics is based on a single

direction (e.g., 90o, that is d = (0, 1)), since the direction

of the spatial distribution is also very important to capture

the style such as “hair direction”, “the direction of shad-

owing strokes”. To exploit this observation for efficiently

extracting the stroke direction style, we compute the aver-

age feature
−→
Ψ(I ′s) of T orientation vectors to capture more

directional information:

−→
Ψ(I ′s) =

1

T

T
∑

i=1

−→
Φ(I ′s|di), (5)

where di denotes the ith direction and
−→
Ψ(I ′s)∈R

p×k×k.

3.3. Scoot Metric

After obtaining the perceptual feature vectors of the ref-

erence sketch Y and synthetic sketch X , a function is

needed to evaluate their similarity. We have tested various

forms of functions such as Euclidean distance or exponen-

tial functions, etc., but have found that the simple Euclidean

distance is a simple and effective function and works best in

our experiments. Thus, the proposed perceptual similarity

Scoot metric can be defined as:

Es =
1

1 +
∥

∥

∥

−→
Ψ(X ′

s)−
−→
Ψ(Y ′

s )
∥

∥

∥

2

. (6)

where ‖·‖2 denotes the l2-norm. X ′
s, Y

′
s denote the quani-

tized Xs, Ys, respectively. Es = 1 represents identical

style.
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(a) Photo (b) Reference (c) Difference (d) Downsized (e) Reference (f) Re-sized (g) Pix2pix (h) LR

Figure 3: Meta-measure 1: Stability to Slight Re-sizing.

(a) Reference (b) R-Reference (c) Pix2pix (d) MWF

Figure 4: Meta-measure 2: Rotation Sensitivity.

4. Experiments

4.1. Implementation Details

The size of spatial structure k in Sec. 3.2 is set to 4 to

achieve the best performance. The quantization parameter

Nl in Eq. (6) is set to 6 grades. We have demonstrated that

p = 2 (e.g., C in Eq. 3 combined with E in Eq. 4) achieve

the best performance (see Sec. 6). Due to the symmetry

of the co-occurrence matrix M(i, j), the statistical features

in 4 orientations are actually equivalent to the 8 neighbor

directions at 1 distance. Empirically, we set T = 4 orien-

tations di ∈ {(0, 1), (−1, 1), (−1, 0), (−1,−1)} to achieve

the robust performance.

4.2. Meta­measures

As described in [33], one of the most challenging tasks

in designing a metric is proving its performance. Follow-

ing [37], we use the meta-measure methodology, which is a

measure that assesses a metric. Inspired by [9, 10, 33], we

further propose three meta-measures based on the 3 proper-

ties described in Sec. 1.

Meta-measure 1: Stability to Slight Resizing. The first

meta-measure (MM1) specifies that the rankings of syn-

thetic sketches should not change much with slight changes

in the reference sketch. Therefore, we perform a mi-

nor 5 pixels downsizing of the reference by using nearest-

neighbor interpolation. Fig. 3 gives an example. The hair

of the reference in (b) drawn by the artist has a slight

size discrepancy compared to the photo (a). We observe

that about 5 pixels deviation (Fig. 3(c)) in the boundary is

common. Although the two sketches (e) & (f) are almost

identical, widely-used metrics, e.g., SSIM [66], VIF [39],

and GMSD [72] switched the ranking of the two synthetic

sketches (g, h) when using (e) or (f) as the reference. How-

ever, the proposed Scoot metric consistently ranked (g)

higher than (h).

(a) Reference (b) Synthetic (c) Light
Figure 5: Meta-measure 3: Content Capture Capability.

For this meta-measure, we applied the θ = 1 − ρ [2]

measure to test the metric ranking stability before and after

the reference downsizing was performed. The value of θ

falls in the range [0, 2].

Tab. 2 shows the results: the lower the result is, the more

stable a metric is to slight downsizing. We can see a sig-

nificant (≈ 77% and 83%) improvement over the existing

SSIM, FSIM, GMSD, and VIF metrics in both the CUFS

and CUFSF databases. These improvements are mainly be-

cause the proposed metric considers “block-level” statistics

rather than “pixel-level”.

Meta-measure 2: Rotation Sensitivity. In real-world situ-

ations, sketches drawn by artists may also have slight ro-

tations compared to the original photographs. Thus, the

proposed second meta-measure (MM2) verifies the sensi-

tivity of reference rotation for the evaluation metric. We

did a slight counter-clockwise rotation (5o) for each refer-

ence. Fig. 4 shows an example. When the reference (a) is

switched to the slightly rotated reference (b), the ranking

results should not change much. In MM2, we got the rank-

ing results for each metric by applying reference sketches

and slightly rotated reference sketches (R-Reference) sepa-

rately. We utilized the same measure (θ) as meta-measure 1

to evaluate the rotation sensitivity.

The sensitivity results are shown in Tab. 2. It is worth

noting that MM2 and MM1 are two aspects of the expected

property described in Sec. 4.2. Our metric again signifi-

cantly outperforms the current metrics over the CUFS and

CUFSF databases.

Meta-measure 3: Content Capture Capability. The third

meta-measure (MM3) describes that a good metric should

assign a complete sketch generated by a SOTA algorithm

a higher score than any sketches that only preserve incom-

plete strokes. Fig. 5 presents an example. We expect that a

metric should prefer the SOTA synthetic result (b) over the
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CUFS [64] RCUFS CUFSF [87] RCUFSF

Metic MM1↓ MM2↓ MM3↑ Jud↑ MM1↓ MM2↓ MM3↑ Jud↑

resize rotation content judgment resize rotation content judgment

Classical & Widely Used

IFC [40] 0.256 0.189 1.20% 26.9% 0.089 0.112 3.07% 25.4%

SSIM [66] 0.162 0.086 81.4% 37.3% 0.073 0.074 97.4% 36.8%

FSIM [76] 0.268 0.123 14.2% 50.0% 0.151 0.058 32.4% 37.5%

VIF [39] 0.322 0.236 43.5% 44.1% 0.111 0.150 22.2% 52.8%

GMSD [72] 0.417 0.210 21.9% 42.6% 0.259 0.132 63.6% 58.6%

Scoot (Ours) 0.037 0.025 95.9% 76.3% 0.012 0.008 97.5% 78.8%

Texture-based & Edge-based

Canny [3] 0.086 0.078 33.7% 27.8% 0.138 0.146 0.00% 0.10%

Sobel [44] 0.040 0.037 0.00% 32.8% 0.048 0.044 0.00% 52.6%

GLRLM [17] 0.111 0.111 18.6% 73.7% 0.125 0.079 64.6% 68.0%

Gabor [16] 0.062 0.055 0.00% 72.2% 0.089 0.043 19.3% 80.9%

Scoot (Ours) 0.037 0.025 95.9% 76.3% 0.012 0.008 97.5% 78.8%

Feature Combination

HEC 0.034 0.024 95.9% 76.3% 0.011 0.008 97.4% 78.7%

H 0.007 0.005 61.5% 77.5% 0.003 0.003 79.1% 77.8%

E 0.200 0.104 98.5% 73.1% 0.044 0.026 99.2% 77.4%

C 0.010 0.007 54.4% 74.6% 0.009 0.006 64.7% 73.4%

HC 0.011 0.007 60.1% 74.6% 0.007 0.005 78.1% 73.7%

HE 0.156 0.088 97.9% 75.7% 0.030 0.017 98.8% 80.3%

CE (Scoot) 0.037 0.025 95.9% 76.3% 0.012 0.008 97.5% 78.8%

Table 2: Benchmark results of classical and alternative texture/edge based metrics. The best result is highlighted in bold, and these

differences are all statistically significant at the α < 0.05 level. The ↑ indicates that the higher the score is, the better the metric performs,

and vice verse (↓).

light strokes1 result (c). For MM3, we compute the mean

score of 10 SOTA [27, 31, 45, 53, 55, 59, 64, 75, 91, 92] face

sketch synthesis algorithms. The mean score is robust to

situations in which a certain model generates a poor result.

We recorded the number of times the mean score of SOTA

synthetic algorithms is higher than a light stroke’s score.

For the case shown in Fig. 5, the current widely-used

metrics (SSIM, FSIM, VIF) are all in favor of the light

sketch. Only the proposed Scoot metric gives the correct

order. In terms of pixel-level matching, it is obvious that

the regions where dark strokes are removed are different

from the corresponding parts in (a). But at other positions,

the pixels are identical to the reference. Previous metrics

only consider “pixel-level” matching and will rank the light

strokes sketch higher. However, the synthetic sketch (b) is

better than the light one (c) in terms of both style and con-

tent. From Tab. 2, we observe a great (≥14%) improvement

over the other metrics in CUFS database. A slight improve-

ment is also achieved for the CUFSF database.

5. Proposed Dataset

Following Zhang et al. [80], we established a facial

sketch perceptual similarity judgments dataset using the 2

1To test the third meta-measure, we use a simple threshold of grayscale

(e.g. 170) to separate the sketch (Fig. 5 Reference) into darker strokes &

lighter strokes. The image with lighter strokes loses the main texture fea-

tures of the face (e.g. hair, eye, beard), resulting in an incomplete sketch.

alternative forced choice (2AFC) strategy. These judgments

are derived from a wide space of distortions and real algo-

rithm synthesises. Because the true test of a synthetic sketch

assessment metric is on real problems and real algorithms,

we gather perceptual judgments using such outputs.

5.1. Collecting Various Version of Facial Sketch

Source Images. Data on real algorithms is more limited,

as each synthesis model will have its own unique properties.

To obtain more distortion data, we collect 338 pairs (CUFS)

and 944 pairs (CUFSF) of test set images as source images

following the split scheme of [53].

Distortion Types. In order to provide more diverse dis-

tortion types arise from different synthesis algorithms, we

employ a diverse set of synthetic methods [27, 31, 45, 53,

55, 59, 64, 75, 91, 92]. As shown in Fig. 6, we introduce 10

distortion types, such as lightness shift, foreground noise,

shifting, linear warping, structural damage, contrast change,

blur, component lost, ghosting, and checkerboard artifact.

5.2. Similarity Assessments

Data selection. 21 viewers, who were pre-trained with

50 pairs of ranking, are asked to rank the synthetic sketch

result based on two criteria: texture similarity and content

similarity. To minimize the ambiguity of human ranking,

we follow the voting strategy [54] to conduct this experi-

ment (∼152K judgments) through the following stages:
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linear warping lightness shift noise structural damage shifting contrast change blur component lost ghosting checkerboard

Figure 6: Our distortions. These distortions are generated by various real synthesis algorithms [27, 31, 45, 53, 55, 59, 64, 75, 91, 92].

• We let the first group of viewers (7 subjects) select four

out of ten sketches for each photo. The 4 sketches

should consist of two good and two bad ones. Thus,

we are left with 1352 (4 × 338), and 3776 (4 × 944)

sketches for CUFS and CUFSF, respectively.

• For the selected four sketches in each photo, the sec-

ond group of viewers (seven people) is further asked

to choose three sketches for which they can rank them

easily. Based on the voting results of viewers, we pick

out the 3 most frequently selected sketches.

• Sketches that are too similar will make it difficult for

viewers to judge which sketch is better, potentially

causing them to give random decisions. To avoid this

random selection, we ask the last group of viewers

(seven) to pick out the pair of sketches that are most

obvious to rank.

2AFC similarity judgments [80]. For each image, we

have a reference sketch r drawn by artists and two dis-

tortions s0, s1. We ask the viewer which is closer to the

reference s, and provide a similarity value q ∈ {0, 1}.

The average judgment time per image is about 2 seconds.

Note that we have 5 volunteers involved in the whole pro-

cess for cross-checking the ranking. For example, if there

≥ 4 viewer preferences for s0 and ≤ 1 for s1, the fi-

nal ranking will be s0 > s1&q = 1. All triplets with a

clear majority will be preserved and the other triplets are

discarded. Finally, we establish two new human-ranked2

datasets: RCUFS and RCUFSF. Please refer to our web-

site for complete datasets.

5.3. Human Judgments

Here, we evaluate how well our Scoot and other com-

pared metrics. The RCUFS and RCUFSF contain 338 and

944 judged triplets, respectively. To increase an inher-

ently noisy process, we compute the agreement of a metric

with each triplet and adopt the average statistics among the

dataset as the final performance.

How well do classical metrics and our Scoot perform?

Tab. 2 shows the performance of various classical metrics

(e.g., IFC, SSIM, FSIM, VIF, and GMSD). Interestingly,

these metrics perform at about the same low level (e.g.,

≤59%). The main reason is that these metrics were not

2The two datasets include 1014 (3×338 triplets), and 2832 (3×944

triplets) human-ranked images, respectively. Recent works [46, 69] show

that the scale of a dataset is important. To our best knowledge, this is the

first large-scale publicly available human judgment dataset in FSS.

originally designed for pixel mismatching which is com-

mon in FSS. However, the proposed Scoot metric shows a

significant (∼26.3%) improvement over the best prior met-

ric in RCUFS. This improvement is due to our consideration

of structure and texture similarity which human perception

considers as two essential factors when evaluating sketches.

6. Discussion

Which elements are critical for their success? In

Sec. 3.1, we considered 3 widely-used statistics: Homo-

geneity (H), Contrast (C), and Energy (E). To achieve the

best performance, we need to explore the best combination

of these statistical features. We have applied our three meta-

measures as well as human judgments to test the perfor-

mance of the Scoot metric using each single feature, each

feature pair and the combination of all three features.

The results are shown in Tab. 2. All possibilities (H, E ,

C, CE , HE , CH, HEC) perform well in Jud (human judg-

ment). H and C are insensitive to re-sizing (MM1) and ro-

tation (MM2), while they are not good at content capture

(MM3). E is the opposite compared to H and C. Thus, us-

ing a single feature is not good. The results of combining

two features show that if H is combined with E , the sensi-

tivity to re-sizing and rotating will still be high, while par-

tially overcoming the weakness of E . The performance of

H+ E + C shows no improvement compared to the combi-

nation of “CE” features. Previous work in [1] also found the

energy and contrast to be the most efficient features for dis-

criminating textural patterns. Thus, we choose “CE” feature

as our final combination to extract the perceptual features.

How well do these “perceptual features” actually

correspond to human visual perceptions? As de-

scribed in Sec. 3.1, sketches are quite close to textures.

There are many other texture & edge-based features (e.g.

GLRLM [17], Gabor [16], Canny [3], Sobel [44]). Here,

we select the most wide-used features as candidate alterna-

tives to replace our “CE” feature. For GLRLM, we select

all five statistics mentioned in the original version. Results

are shown in Tab. 2. Gabor and GLRLM are texture fea-

tures, while the other two are edge-based. All the texture

features (GLRLM, Gabor) and the proposed Scoot metric

provide a good (e.g., ≥68%) consistency with human rank-

ing (Jud). Among all the texture features, the proposed met-

ric provides a consistently high average performance with

human ranking (Jud). GLRLM performs well according to

MM1 & 2 & 3. Gabor is reasonable in terms of MM1 &
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Figure 7: Sensitivity experiments of the spatial structure (top) and quantization (bottom). For MM1 & MM2, the lower the better.

For MM3 & MM4, the higher the better.

2, but not good at MM3. For edge-based features, Canny

fails according to all meta-measures. Sobel is very stable

to slight re-sizing (MM1) or rotating (MM2), but cannot

capture content (MM3) and is not consistent with human

judgment (Jud). Interestingly, Canny, Sobel, and Gabor as-

signed the incomplete stroke a higher score than the sketch

generated by the SOTA algorithm. In other words, the met-

ric has completely reversed the ranking results for all the

tested cases. In terms of overall results, we conclude that

our “CE” feature is more robust than other competitors.

What is the Sensitivity to the Spatial Structure? To ana-

lyze the effect of spatial structure, we derive seven variants,

each of which divides the sketch with a different sized grid,

i.e., k is set to 1, 2, 4, · · · , 64. The results of MM3 & 4

in Fig. 7(b) show that k = 1 achieves the best performance.

However, the weakness of this version is that it only cap-

tures the “image-level” statistics, and the structure of the

sketch is ignored. That is, a sketch made up of an arbitrary

arrangement can also achieve a high score. The experiment

of MM1 in Fig. 7(a), clearly shows that k = 4 achieves the

best performance for the CUFS dataset. Based on the two

experiments, k = 4 gains the most robust performance.

What is the Sensitivity to Quantization? To determine

which quantization parameter Nl (baseline: Nl = {2, 4, 6, 8,

16, 32, 64, 128}) produces the best performance we perform

a further sensitivity test. From Fig. 7(c)&(d), we observe

that quantizing the input sketch to 32 grey levels achieves an

excellent result. However, for the experiments of MM3 &

MM4, it gains the worst performance. Considering overall

experiments, Nl = 6 achieves a more robust result.

7. Conclusion

In this work, we explore the human perception problem,

e.g., what is the difference between human choice and met-

rics. A tool used to analyze the above question are facial

sketches. We provide a specific metric, called Scoot (Struc-

ture Co-Occurrence Texture), that captures human percep-

tion, and is analyzed by the proposed three meta-measures.

Finally, we built the first human-perception-based sketch

database that can evaluate how well a metric is in line with

human perception. We systematically evaluate different

texture-based/edge-based features on our Scoot architecture

and compare them with classic metrics. Our results show

that “spatial structure” and “co-occurrence” texture are two

generally applicable perceptual features in facial sketches.

In the future, we will continue to develop and apply Scoot

in order to further push the frontiers of research, e.g., for

evaluation of background subtraction [93].
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