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Abstract

We present an information-theoretically motivated con-
straint for self-supervised representation learning from
multiple related domains. In contrast to previous self-
supervised learning methods, our approach learns from
multiple domains, which has the benefit of decreasing the
build-in bias of individual domain, as well as leveraging
information and allowing knowledge transfer across multi-
ple domains. The proposed mutual information constraints
encourage neural network to extract common invariant in-
formation across domains and to preserve peculiar infor-
mation of each domain simultaneously. We adopt tractable
upper and lower bounds of mutual information to make
the proposed constraints solvable. The learned representa-
tion is more unbiased and robust toward the input images.
Extensive experimental results on both multi-domain and
large-scale datasets demonstrate the necessity and advan-
tage of multi-domain self-supervised learning with mutual
information constraints. Representations learned in our
framework on state-of-the-art methods achieve improved
performance than those learned on a single domain.

1. Introduction

Unsupervised visual representation learning algorithms
using deep convolutional neural networks (CNNs) have led
to breakthroughs in relieving the burden of massive manual
annotation [47, 5, 11, 48, 19]. They are capable of learn-
ing high-level semantic image representation transferable
to various downstream tasks without using expensive anno-
tated labels, which greatly expend the scope of applications
for CNNs. Among many unsupervised learning methods,
the recently emerged self-supervised learning (SSL) tech-
niques produce excellent representations, achieving state-
of-the-art performance on standard computer vision bench-
marks [34, 20, 18, 7, 36, 51]. SSL discovers supervisory
signals directly from the input data itself and defines a pre-
text task from this supervision. CNNs trained to accom-
plish such objectives have to understand the input data, for

Figure 1: We propose to perform self-supervised learning using
data from multiple related domains. (Images are selected from the
PACS dataset [26].)

instance salient objects and surrounding backgrounds for
object-oriented images. Intermediate layers of the CNN
will hence gain the ability of extracting high-level seman-
tic representations for this type of data, which are useful for
solving different downstream tasks like image recognition.

Although the efficient training on unlabeled data largely
alleviates the burden of human labeling, the properties of
unlabeled training data themselves are not investigated thor-
oughly for image based SSL. Most of the prior work focuses
on proposing novel pretext tasks to improve the learned rep-
resentation. Few methods investigate what is the influence
of training data used or in which way should training data be
chosen for SSL. In computer vision community, it has long
been recognized that datasets collected for vision tasks are
often individually biased and deviated from the goal of rep-
resenting the visual world [46], if application on such real
world images is our aim. Moreover, total available images
for some domains can also be fundamentally constrained
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like art images and sketches [26]. CNNs trained on one sin-
gle dataset will likely lead to biased representations, pay-
ing excessive attention on unwanted variations in images
induced by sources like viewing angle, illumination condi-
tion and imaging system [46]. SSL algorithms generally
train CNNs on one dataset (ImageNet). As a result, such
restricted training on only one dataset will less likely lead
to good unbiased general-purpose representations of images
we interest.

Training using multiple datasets has achieved great suc-
cess in compensating the training set bias [12, 21, 14].
However, such considerations have not been appreciated
for SSL. Toward the goal of learning unbiased representa-
tions that filter away unwanted variations, we propose to
train SSL models on data from multiple related domains.
Given a dataset on which we want to learn representations,
we can exploit existing datasets from other related domains
that contain semantically overlapping but non-identical in-
formation (See Figure 1 for illustration), and perform multi-
domain learning (MDL) for SSL. This has the benefit of en-
riching the data variety, decreasing the build-in bias of indi-
vidual dataset, leveraging shared information and allowing
knowledge transfer across multiple domains, making dis-
coveries that could not have been obtained from any indi-
vidual domain alone [43]. The learned CNN is expected
to extract superior representations on the images of interest
than training solely on them.

As has been discovered in supervised learning, learning
from multiple domains by just naively concatenating more
datasets is not the best policy, which can even lead to re-
duced performance on the dataset of interest [46, 21]. We
also observed this phenomenon for SSL. This fact suggests
that the presence of domain difference can impact perfor-
mance when left untreated and cross-domain relationship
has to be considered.

Based on this observation, in this paper we present mu-
tual information (MI) based criteria for SSL from multi-
domain data. MI is used as an indicator of how much inter-
and intra-domain information the model captures. In or-
der to capture semantically shared information across dif-
ferent domains, we minimize the MI between the represen-
tation and the domain label of images. Under this objective,
domain-invariant information that excludes unwanted vari-
ations will be encoded to the high-level representations. On
the other hand, the enforced domain invariance and the ex-
istence of dataset imbalance may let the model overlooks
or overfits some domains and hence lose their information.
Regarding persevering specific information of each domain,
we introduce constraints on the value of the MI between in-
put images and their CNN representations for every domain,
so that the representation will maintain certain level of in-
formation on every domain. To make these two information
theoretic constraints computable, an adversarial approxima-

tion of the variational upper bound and a contrastive lower
bound of MI are applied to approximately optimize the ob-
jectives. Therefore, the learned representation will result in
a controllable trade-off between learning domain-invariant
and domain-specific information.

To demonstrate the effectiveness of our proposed MI
criteria on MDL for SSL, we conduct experiments on the
multi-domain dataset PACS [26], as well as on large-scale
datasets ILSVRC 2012 [42] and Places [55] following the
SSL benchmark. We perform ablation studies to examine
the effectiveness of each component in our model. Experi-
mental results demonstrate the advantages of our approach.

2. Related work

This work relates to several topics in computer vi-
sion and machine learning: self-supervised learning (SSL),
multi-domain learning (MDL), domain generalization (DG)
and mutual information (MI) criterion, which we briefly re-
view here.

Self-supervised learning. SSL constructs pretext tasks
by discovering supervisory signals directly from the input
data itself. CNNs trained to predict this supervisory infor-
mation will encode high-level semantic representations of
the input. Notable types of pre-text tasks for images include
constructing relationship between image patches like patch
position prediction [9, 31], solving jigsaw puzzle [32, 6] and
counting [33], and reconstructing part of the image like im-
age completion [37], colorization [52, 24, 25] and channel
prediction [53].

Some other important aspects beyond the form of pre-
text tasks have also been studied. For example, Ren and
Lee [41] studied the effects of synthetic images for rep-
resentation learning and the influence of the domain gap
between synthetic images and real-world images. It is re-
lied on the free ground truth from synthetic images. Do-
ersch and Zisserman [10] investigated the effect of com-
bining multiple pretext tasks together. They conclude that
deeper networks outperform shallow networks and combin-
ing tasks always improves performance over the tasks alone.
Kolesnikov et al. conducted a thorough large-scale study on
the choice of modern CNNss for self-supervised learning by
revisiting several pretext tasks [22]. They discover many
crucial insights related to the CNNs architecture including
skip-connections and the number of filters. Our work also
focuses beyond designing pretext task. We explore the in-
fluence of using multiple related datasets and propose two
strategies for learning with multi-domain data.

Multi-domain learning and domain generalization.
MDL aims to solve the shortcomings of a single dataset
by using the data from multiple domains [12]. Several
methods in supervised learning setting design specific net-
work to handle domain-related feature, such as encoding
domain descriptor [50] and using domain-specific parame-
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Figure 2: Illustration of the proposed method. We leverage image data from multiple related domains to perform a self-supervised learning
task. MI acts as a proxy for domain-related information and is used as constraints for the main SSL task.

ters [39, 40, 8]. Some other work seek a common feature ex-
tractor, for example discovering domain-related neurons by
domain guided dropout [49] or learning domain-invariant
representation [43]. Since SSL expect the encoder to be
able to extract better representation for certain input images
or similar ones, we do not reply on specific-parameters and
focus on a common feature extractor.

Another line of research that aims to improve the gen-
eralization ability of a supervised learning algorithm is
DG [16, 26, 30, 27, 28, 29]. Note that our approach is essen-
tially different from methods that cope with DG problem,
where they care more about building a domain-agnostic
classifier that is effective when applied in an unseen target
domain. While for SSL, the aim is learning better repre-
sentation for input images, so that they can be used to ex-
tract representations of these images or similar ones. We
argue that it is demanding to require the learned representa-
tion transfer to a dramatically different domain, where the
pre-text task could even be unsuitable (e.g. transferring rep-
resentations learned by RotNet [18] to a rotation-invariant
image domain seems unreasonable). We aim at taking more
related unlabeled datasets into training to boost the perfor-
mance on similar images given one dataset, even though
this dataset exist in small amounts. Most of the DG meth-
ods only conduct experiments on small-scale datasets like
VLCS [14] and PACS [26]. It is unclear whether they
are able to scale to large-scale datasets like ImageNet and
Places. We aim at improving SSL with images from large-
scale datasets. Data from each domain are expected to help
each other, and we mainly evaluate the learned representa-
tion based on the performance on each individual domain.

Mutual information criterion. MI criterion has been
explored before to model the relationship of data from dif-

ferent domains. Shi and Sha [44] examined the objec-
tives in the form of both MI between all data and their
binary domain labels and MI between the target data and
estimated class labels for unsupervised domain adaptation.
However, their model and the corresponding computation
of MI build upon discriminative clustering and metric for-
mulation, which can not be scaled to deep neural networks.
Gholami et al. [17] use MI for multi-target domain adap-
tation with labeled source domain data. Its optimization of
MI objective is based on Barber & Agakov lower bound [3]
of MI. MI has achieved wide applications and successes
in deep learning [2, 1, 4]. It has also been used to estab-
lish connections between structure in data [36, 19]. We use
tractable bounds of Ml in this paper to establish connections
between multiple domains.

3. Multi-domain learning

In this section, we first introduce the problem setting
and present the proposed information-theoretic constraints.
Then we describe in detail of the tractable approximation of
MI minimization and maximization. Our model is summa-
rized in Figure 2.

Our goal is to transform each image example x € X
from a certain domain, where X" denotes an input space for
images, into a high-level semantic representation z € 2
that is transferable to a variety of downstream tasks in an
unsupervised way. To achieve this goal, we employ a para-
metric encoder function E(+; 0,) : X — Z with parameters
0. (e.g. a neural network).

We are interested in learning with data from multiple do-
mains. Assume the number of related domains available
at hand is M. For¢ = 1,..., M, the i-th domain has N;
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training images: S; = {(x\),d" )} i), where d is the
discrete domain label. We denote the empirical probabil-
ity distribution of x; on the i-th domain by p;(x). The
representation z for an image x are obtained by sampling
from a conditional probability distribution pg_(z|x) param-
eterized by 0.. There are several possible choices for the
encoder distribution pg_(z|x). In this paper we assume
that pg, (z|x) is defined by the deterministic function of x,
which is F(+;0.). The marginal distribution of z on each
domain is then

Pio.(2) = Y pe.(z|x)pi(x). (1

X€ES;

First of all, we want to encode the representation z with
semantic information by training under an SSL objective.
Let F'(-; 0) denotes the head network for SSL that takes z
as input. The loss function for an SSL method is defined
as [(F(E(x;6.);6¢)) for simplicity. Many state-of-the-
art SSL methods can be used here to learn representations.
For example, if we choose Rotation [18] as the SSL task,
then [(-,-) is the cross-entropy loss for rotation classifica-
tion. Given data from all domains available, the objective
for multi-domain SSL is

1 1 ;

min £y = 37> (F(E(x:0.):0y)). ()

Learning under this objective alone is equal to naively
combining datasets. Our experimental results reveal that the
performance of MDL is sometimes no better than learning
on the single domain, which shows that naively adding ad-
ditional training examples is not always beneficial. we next
introduce MI based constraints to address this issue.

3.1. Mutual information constraints

As previously discussed, we have to explicitly model
cross-domain relationship so that the resulting representa-
tion could learn cross-domain semantic knowledge. We
now discuss in detail of our desiderata.

3.1.1 Domain-invariant information

Regarding leveraging information across domains, our de-
sired properties of the representation are that they capture
the common semantic knowledge in the input data across
different domains, although they may appear differently.
Variations in appearance of images may include viewing
angle, illumination condition, image style, imaging system,
place where datasets are collected and even preference of
dataset collectors [14, 43]. For some downstream tasks
(e.g. object-oriented image recognition), these variations
are harmful for representation learning since they are un-
related to the decision of the task most of the time. Hence,

we hope the z of images with similar objects from differ-
ent domains will be similar as much as possible and reveal
the information of their specific form of variation as less as
possible.

Let p(x) and pg, (z) denote the empirical mixture distri-
butions derived from the collection of distributions from ev-
ery domain, and x ~ p(x) and z ~ pg, (2z) are random vari-
ables. We express our desideratum for learning similar con-
cepts from related domains as limiting the maximum value
of MI I(z, d) between the image representation z from all
domains and the corresponding domain label d of the orig-
inal image. Conceptually, this objective is similar to the
idea in existing works to make marginal distributions of the
representation similar across domains [15, 43]. If I(z, d) is
small, then given a z, it is hard to tell which domain the in-
put image x is from. As a result, the learned representation
will discard unwanted domain-related variations and form a
domain-invariant representation space, where every domain
has a similar marginal distribution.

3.1.2 Domain-specific information

Although domain-related variations are discarded, enforc-
ing the similarity in marginal distributions bear no direct
consequence on useful information capture on each domain.
The domain-invariant representation space can also be cre-
ated by projecting input images to a random invariant space
without semantic correspondence. Maintenance of specific
information for each domain is necessary. Furthermore, the
MDL strategy introduced so far does not take dataset imbal-
ance into consideration. Images in some domains could be
abundant while in other domains they might be scarce. Do-
mains with only small amount of data will be either over-
looked by the domain-invariant objective or overfitted by
the SSL objective. Specific information about these do-
mains should be preserved to ensure an intra-domain per-
formance.

Formally, let x; ~ p;(x) and z; ~ p; g, (z) denote the
random variables of input images and representations from
i-th domain, respectively. Our desideratum is limiting the
minimum value of MI I(z;,x;) for every domain so that
domain-specific information is retained in the representa-
tion to a certain level for every domain.

Rewriting the objective function (2) with these two
desiderata, we have the following constrained optimization
problem:

M N;
1 1 ;
min  Lp=—> — Y UF(Ex:6.);0,))

=1 Jj=1 (3)
st I(z,d) < e

I(zi,%;) > e, Vi€ {1,..., M},

which is different from (2) as the introduced MI constraints
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allow z to be more semantically representative by excluding
unwanted variations while retaining specific information in
each x;. The hyper-parameters ¢,, and ¢; control the amount
of MI between z and x. Approximating the Lagrangian dual
of problem (3) using Lagrangian multipliers A\, and };, the
objective becomes:

Lr+N(z,d) = N> I(zi,%; 4
gmn r+ (z, ! Z Zi,X;) %)

Both MI terms in (4) are difficult to compute and opti-
mize. We provide tractable approximations by using upper
and lower bounds of MI in the following two sections.

3.2. Upper bound of 7(z, d) via adversarial training

Mutual information is upper bounded by replacing one
of the marginal distributions with a variational posterior dis-
tribution [1, 2, 54, 38]. Formally, for any distribution ¢(d),
we can have an upper bound of I(z, d):

I(z,d) = Ep,_(5,0)[log pe, (d|z) — log p(d)]
= Epy. (2) DL (e, (d|2)]|q(d)) — Dxr(p(d)|q(d))

< Epe. () Dx1(po. (d|2)]q(d)) := C.
)

However, the pg,_(d|z) in Eq. (5) is intractable. We can
instead approximate pg, (d|z) with a parameterized model
q¢, (d|z), thus this upper bound has a lower bound [45]:

C > Ep,, (2)[DxL(pe. (d|z)||q(d))—
Dxw(pe, (d2)llgg, (d|2))] (6)
=Epp_ (2.0 [ 108 4, (d]z) — log q(d)] := C.

Maximizing ¢ with respect to ¢, will decrease
Dxuw(pe, (d|z)||qe, (d|z)), making C a good approxi-
mate toward the upper bound C. The ¢(d) in Eq. (5)
can be chosen as a kernel density estimate based on all
datasets [45]. By making Dk, (p(d)||q(d)) as small as
possible, C' gets closer to I(z, d). Therefore, minimization
of I(z, d) can be achieved through the following adversarial
objective:

min rr(})ax Ly =Epg (2,0) [log e, (d|z) —logq(d)]. (7)

Practically, we model gy (d|z) as a function D(-; ¢,,) :
ZoA={acRM :aq;+...+ay=1,a4>0,d=
1,..., M} (e.g. aneural network with softmax output) with
parameters ¢,, that outputs a probability vector for an input
z, where A is the probability simplex. The value of the
d-th component is denoted by D4 (-; ¢,). Modeled with
empirical distributions, £,, can be further expressed as

Ly = Z Zlog DU (B 6,);

®)

®.)/a(d))].

Interestingly, this formulation is equal to the cross-
entropy loss used in multi-class classification. The net-
work D(+; ¢,,) classifies input z into correct domain while
E(+; 0,) tries to confuse D(-; ¢,,). In practice, the ¢(d) is a
constant value and can be omitted during optimization.

3.3. Lower bound of 7(z;, x;)

It is able to maximize the MI I(z;, x;) in objective (4) by
just maximizing one of its tractable lower bounds. MI can
have a lower bound formulation based on Noise Contrastive
Estimation [36]:

I(Zi,Xi) Z

=E,, %) [T(E(Xi; 0.),xi; b;)— ©)

Em (%) [log Z eT(E(Xi;Ge),Xi‘,d)l)} :| 7

/
X5

j—(NCE) (zi7 Xi)

where x; is the random variable of input images sampled
from the distribution p;(x) = p;(x). We can also max-
imize MI by maximizing the Jensen-Shannon divergence
(JSD) [35] formulation of MI, which is capable of provid-
ing stable approximation results [19]. To be specific, the
JSD formulation is

TV9P)(z;,%,) 1= By o [ — sp(=T(E(x50.), %5 )| —
Eop, () s (x) [SP(T (B (%43 0c), X35 )]
(10)

where sp(z) = log(1l + e®) is the softplus function. As
suggested in [19], the function T( ,+; ¢;) can share lower
layers with E(-;0.) so that E(-;0.) = f(;0.) o C(-;0.)
and T'(-,;¢;) = D(C(+;0.),E(-;0.); ¢;). Maximizing
Eq. (10) with respect to 8. and ¢; will maximize the MI
1(z;,x;) in objective (4).

Our complete model comprises three core modules:
multi-domain self-supervised learning (Eq. (2)), domain-
invariant representation constraint (Eq. (8)) and domain-
specific information preservation (Eq. (10)), and can be
written as the following minimax objective:

min maxL¢+ ALy — A I(JSD)Z X5 11
0..05,0, ¢, ! l; ). an

Solving this objective requires adversarial training of the
CNN. We connect a Gradient Reversal Layer (GRL) [15]
after E(+;6.), so that maximizing £, w.r.t. ¢, will give
rise to the minimization of £, w.r.t. 0.

4. Experiments

In this section, we conduct experiments on three types
of dataset to demonstrate the effectiveness of our approach.
These datasets are:
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e PACS dataset [26]: A small-scale multi-domain
dataset containing 4 sub-datasets, where the image
styles are different. This mainly aims to examine how
our approach performs in scenarios where the total
number of data available is limited.

e ImageNet (ILSVRC 2012) [42] and Places [55]:
We combine these two large-scale datasets and each
dataset is viewed as a domain. The former mainly
contains object-oriented images while the latter con-
tains scene-oriented images. We test the performance
of our apporach under large-scale datasets through this
setting.

e PASCAL VOC 2007 [13]: We test how our approach
performs when we use more diverse data available (Im-
ageNet and Places) to help the learning on a rather
small dataset (PASCAL).

We investigate the behavior of our mutual information con-
straints in comparison to both the standard single-domain
SSL model and the strategy of naively combining datasets
(marked as DeepAll in tables) as proof-of-principle.

Linear classification is a common procedure for feature
evaluation [53]. Its rationality has also been confirmed re-
cently by a study through thorough experiments, where it
is shown that a linear model is adequate for evaluating the
quality of a representation [22]. Therefore, we evaluate the
learned representations by training a linear multi-class clas-
sifier on top of them. High performance on this task requires
high-level semantic image understanding from the learned
representation. Following previous procedure [36, 19], for
all experiments we evaluate representations from the last
convolutional layer (conv5) and the output of the encoder
E(+;0.) (last fully-connected) layer (£c7).

4.1. Implementation details

We choose predicting image rotation (RotNet) [18] and
AET [51] as the running examples of SSL since they are ef-
ficient methods and achieve state-of-the-art results on many
downstream tasks. The proposed multi-domain solution
can be integrated with mainstream SSL methods. As sev-
eral transformation copies of an image are created in every
batches in RotNet and AET, we apply the MI constraints
separately on each copy of a minibatch. The encoder func-
tion E(-;0.) is implemented as a standard AlexNet archi-
tecture [23] following the setting of [18]. It consists of
five convolutional layers and two fully-connected layers.
The prediction function F'(-;0) of SSL is implemented
as a one-layer linear network. For functions T'(-, -; ¢;) and
D(-; ¢,,) used in MI approximation, we use a three-layer
multilayer perceptron (MLP) with the number of hidden
layers being 512. The feature map C(+; 6, ) are taken from
the conv4 layer of the encoder F(-;8.). For all experi-
ments, we set the Lagrangian multipliers A,, and A; as 0.1,

except on PACS A; is 1. In order to prevent the network
from seeing different levels of total images for each do-
main, we divide each data batch equally to each domain.
Our model is trained with momentum of 0.9, a batch size of
128 and an [, penalization of all weights with 5 - 10~%. The
learning rate is set to 0.01 initially and then decayed by a
factor of 10 when loss on validation set reaches plateau.

On PACS dataset, due to the low number of total im-
ages in the dataset, the number of channels on each con-
volutional layer of E(-;8.) are scaled to 1/4 of the original
size. The last convolutional layer is followed by 2 fully con-
nected layers with output size of 512 and 64, respectively.
The conv5 feature is pooled to a size of 64 by global av-
erage pooling for linear evaluation. The number of hidden
layers in D(+; ¢,,) is also scaled to 64. For experiments
involving ImageNet, the output of E(+;0.) is first linearly
projected to a 128-dimensional feature vector before it is
fed into T'(-, -; ¢;) according to the practice of [19] for the
purpose of reducing memory consumption. Feature map on
conv5 are spatially resized (with adaptive max pooling) so
as to have around 9,000 elements [52] for linear evaluation.

4.2. PACS dataset

PACS [26] consists of images from photo (P), art paint-
ing (A), cartoon (C) and sketch (S) domains. Although it is
originally proposed for the purpose of evaluating DG meth-
ods, the four domains in PACS are closely related and share
same object-level semantics (same seven classes), while are
seemingly dissimilar (different image style). Training on
any one of these domains alone will not guarantee good
comprehensive semantics for objects.

The numbers of images in each domain are 1,670, 2,048,
2,344 and 3,929, respectively. The total number of images
is 9,991. We use the original train-validation split on each
domain in PACS, and train our model on training set and re-
port the representation evaluation results on each validation
set. The linear classifier is chosen as support vector machine
(SVM). Experimental results are summarized in Table 1.

From the results, we can see that DeepAll (training on
all sub-datasts together) is slightly better than training an
SSL algorithm on a single domain on average. But the
performance on some domains get decreased. This sug-
gests that SSL from multi-domain data without consider-
ing cross-domain relationship will hurt the representation.
Our method (DeepAll+MI) outperforms DeepAll and single
domain training on most domains. The average accuracies
on conv5 and fc7 are improved by 1.1% and 3.0% un-
der RotNet, respectively. Information loss on some domain
are successfully saved back. These results confirm the ad-
vantage of utilizing the proposed mutual information con-
straints. Our method is effective in boosting the SSL on
multiple domain by leveraging information across domains.
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Training domain\ Test domain Art painting Cartoon Photo Sketch Average
conv5 fc7 convb fc7 convb fc7 conv5 fc7 convb fc7
DeepAll-labels 64.7 58.0 85.4 89.2 83.2 85.2 76.1 74.7 774  76.8
Art painting (RotNet) 504 446 61.6 53.9 777 754 61.8 58.0 62.9 58.0
Cartoon (RotNet) 49.9 51.6 65.9 57.1 762 742 66.7 63.0 64.7 61.5
Photo (RotNet) 45.1 37.7 65.5 53.2 80.9 738 64.0 59.8 63.9 56.1
Sketch (RotNet) 454 38.7 56.3 45.0 71.9 64.1 72.6 59.9 61.6 51.9
PACS (DeepAll, RotNet) 543 430 68.5 58.7 80.9 735 60.9 61.9 66.2 593
PACS (DeepAll, AET) 53.1 434 67.6 422 773 72.1 66.3 50.6 66.1 52.1
Ours (DeepAll+MI, RotNet) 555 49.7 68.5 66.3 81.6 77.1 63.4  64.7 673 645
Ours (DeepAll+MI, AET) 569 46.7 69.6 569 80.9 739 67.9  59.7 68.8 59.3

Table 1: Top-1 linear classification accuracies on PACS dataset using activations from different pretraining strategies.

ImageNet  Places Average

Training dom.\ Test dom.
convbfc7 conv5fc7 conv5fc?

479 559 377 413 428 48.6

ImageNet-labels

Random 72 1.1 119 35 9.6 23
ImageNet 319 204 325 247 322 226
Places 30.1 105 341 19.7 321 15.1
ImageNet+Places (DeepAll) 31.6 21.4 332 28.5 324 25.0
Ours (DeepAll+MI) 325 26.0 33.7 31.8 33.1 289

Table 2: Top-1 linear classification accuracies on ImageNet and
Places validation set using activations from different pretraining
strategies.

4.3. ImageNet and Places

ImageNet and Places are two large-scale image datasets
with 1,281,167 and 2,448,873 images in training set, re-
spectively, and 3,730,040 in total. As usual, we train logis-
tic regression on top of the representations on the training
set and report accuracies on the validation set [53]. We pre-
compute the visual representations for all training images
and train the logistic regression by SGD for 50 epochs. This
is inspired by [22], enabling a fast evaluation and compar-
ison between different scenarios. Table 2 shows the linear
classification accuracies with the representations learned in
RotNet.

Either of these two datasets has enough images to let
CNNs get a reasonably good representation in SSL. When
integrating more data into training, we can see that perfor-
mance does not improve much. This is reflected by compar-
ing ImageNet entry with ImageNet+Places entry on Ima-
geNet performance, as well as comparing Places entry with
ImageNet+Places entry on Places performance. The result
even decreases on conv5 layer (from 31.9 to 31.6 and from
34.1 to 33.2). Transfer learning results get large improve-
ments (comparing ImageNet entry with ImageNet+Places
entry on Places performance, and vice versa on ImageNet),
which is possibly due to the explicit use of target domain
images. Again, our method (DeepAll+MI) further outper-

Training domain) Test domain PASCAL Classification
convb fc7
ImageNet-labels 80.3 83.5
Random 55.6 45.2
ImageNet 74.3 72.7
ImageNet+Places 74.5 73.8
ImageNet+PASCAL 74.8 73.2
Ours (ImageNet+Places+MI) 75.0 75.6
Ours (ImageNet+PASCAL+MI) 74.8 75.3

Table 3: Mean average precision on PASCAL VOC 2007 using
activations from different pretraining strategies.

forms naive combination (DeepAll). The improvement on
fc7 layer is most significant, which represents that learn-
ing from multi-domain data and the proposed constraints
are able to improve the representation outputted by E(-; 6,)
and mitigate its over-fitting toward the SSL task.!

4.4. PASCAL VOC

Transfer a CNN pretrained in a pre-text task on Ima-
geNet to PASCAL dataset is a standard test in SSL experi-
mental benchmark. The relatively small size of the training
sets on PASCAL makes it a good proxy toward real-world
applications. In order to show the effect of multi-domain
learning, we first pre-train RotNet on ImageNet and Places,
and test on PASCAL by training a linear logistic regression
(a multi-label cross entropy loss) on top of the features. This
is somewhat similar to domain generalization setting and
will show the generalization ability of our method. We then
pre-train RotNet on ImageNet and PASCAL, which evalu-
ate the effect when we combine the target data at hand with
a large dataset.

IThese results of linear evaluation do not use data augmentation, and
they are lower than those reported in RotNet [18]. For consistency
and comparison with RotNet, when trained with data augmentation, our
method is able to improve the performance on conv5 from 37.3% [18]
to 38.2%, and from 34.8% [18] to 36.0% on ImageNet and Places, re-
spectively (Results of RotNet are reproduced by us and outperform those
reported in [18] (36.5 and 33.7)).
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Training domain\ Test domain Art painting Cartoon Photo Sketch Average
(Aws A1) conv5 fc7 conv5 fc7 conv5 fc7 conv5 fc7 conv5 fc7
PACS (DeepAll) (0, 0) 543 430 68.5 58.7 80.9 735 60.9 619 66.2 593
Ours (Deeplnvariance) (0.1, 0) 554 450 684  60.1 804 734 63.9 58.0 67.0 59.1
Ours (DeepSpecific) 0,0.1) 55.8 482 669 645 80.8  76.5 61.5 619 663 62.8
Ours (Full) (0.1, 0.1) 563 454 67.6 629 78.1 758 66.7  65.7 672 625
Ours (Full) 0.1, 1) 55.5  49.7 68.5 66.3 81.6 77.1 63.4 647 673 645
Ours (Full) (0.1, 0.01) 532  46.5 67.1 627 80.8 75.4 63.4 604 66.1 613
Ours (Full) (1,0.1) 553 447 679 64.1 81.0 793 653 604 674 62.1
Ours (Full) (0.01,0.1) 55.5 464 66.3 64.2 79.5 76.2 645 643 66.5 62.8

Table 4: Comparison of different components and different values of parameters A\, and A; in our model on PACS linear classification task.

As shown in Table 3, both these two strategies are bet-
ter than ImageNet pretrained model on PASCAL. This indi-
cates that leveraging information from large scale datasets is
useful for representation learning on PASCAL. Our method
further improves simple dataset combination. Pretraining
on ImageNet and Places with MI constraints achieve the
best results. This suggests that the proposed mutual infor-
mation constraints improve the generalization ability of the
representation.

4.5. Ablation studies

In this section, we further conduct experiments on PACS
linear classification task to understand the impact of differ-
ent components and different hyper-parameter values in our
method.

4.5.1 Impact of different components

To investigate the contributions of each component in our
framework, we compare the following variants: DeepAll:
Train SSL on all available domains (naive combination).
DeeplInvariance: Train SSL on all available domains with
constraint in Eq. (7) only. DeepSpecific: Train SSL on all
available domains with constraint in Eq. (10) only. Full:
Our full model (Eq. (11)). Results for every variant are sum-
marized in Table 4. We can observe the influence of each
individual component:

1. Deeplnvariance outperforms DeepAll mainly on
conv5 layer, which can be seen from the Average re-
sults. This invariance constraint is imposed on the out-
put layer of E(-;0.) (£c7). It seems that the enforced
invariance alone does not add additional information
toward the output feature on average, but the interme-
diate layer will encode better representation.

2. DeepSpecific outperforms DeepAll mainly on fc7
layer, demonstrated by the improved performance on
it. This is the result of maintaining domain-specific
information on each domain.

3. Ours (Full) model achieves a trade-off between
Deeplnvariance and DeepSpecific, and outperforms

DeepAll. Note that the result of using domain-invariant
and domain-specific constraints together does not sim-
ply equal to linearly add their effects separately. They
interact in a complex way and can further improve each
of them.

4.5.2 Impact of different )\ value

Finally, we also evaluate the influence of the parameters A,
and ); in our model. The last five rows in Table 4 sum-
marize the results on PACS linear classification task with
different settings of A\, and \;. We observe that the rela-
tive strength of these two MI constraints will have an ef-
fect on the final results. Emphasizing each one of them
will make the performance follow the effect of Deeplnvari-
ance or DeepSpecific. These results verify the effect of the
two MI desiderata and their ability in seeking a controllable
trade-off between learning domain-invariant and domain-
specific information.

5. Conclusion

In this paper, we have presented an information-theoretic
approach to improve the use of training data when com-
bining datasets from multiple domains for self-supervised
learning, and demonstrated its effectiveness with RotNet
using popular vision datasets. Our proposed mutual infor-
mation constraints explicitly exploit common, invariant as
well as specific information across different domains. The
learned representation seeks a trade-off between maximal
invariance and maximal information maintenance, which
lead to improved performance than previous results. We
believe that learning from multiple domains is beneficial to
representation and is a promising future direction especially
for practical applications of self-supervised learning.
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