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Abstract

Most existing text spotting methods either focus on hori-

zontal/oriented texts or perform arbitrary shaped text spot-

ting with character-level annotations. In this paper, we pro-

pose a novel text spotting framework to detect and recognize

text of arbitrary shapes in an end-to-end manner, using only

word/line-level annotations for training. Motivated from the

name of TextSnake [32], which is only a detection model,

we call the proposed text spotting framework TextDragon.

In TextDragon, a text detector is designed to describe the

shape of text with a series of quadrangles, which can han-

dle text of arbitrary shapes. To extract arbitrary text re-

gions from feature maps, we propose a new differentiable

operator named RoISlide, which is the key to connect ar-

bitrary shaped text detection and recognition. Based on

the extracted features through RoISlide, a CNN and CTC

based text recognizer is introduced to make the framework

free from labeling the location of characters. The pro-

posed method achieves state-of-the-art performance on two

curved text benchmarks CTW1500 and Total-Text, and com-

petitive results on the ICDAR 2015 Dataset.

1. Introduction

Scene text spotting aims to detect and recognize text

in an image. It has attracted increasing attention in re-

cent years, due to its wide applications in document anal-

ysis and scene understanding. Although previous meth-

ods [29, 33, 25, 3] have made significant progress on

datasets where text boundary is labeled by quadrangles or

rectangles, text spotting for arbitrary shapes is still challeng-

ing for both detection and recognition.

Most existing methods perform text spotting through two

independent steps: a detector is firstly employed to detect

all texts in the image, and then text recognition is con-

ducted on the detected regions. The disadvantages of these

S O M -... ... ...

Figure 1. The reading mechanism of humans. Red boxes show the

areas of fixations, and yellow arrows indicate the directions of eye

movement. Black arrows indicate the recognition results, in which

“-” means blank. Green and blue lines show text boundaries.

methods lie in the heavy time cost and correlation igno-

rance between text detection and recognition. Thus, several

methods [29, 25, 3] are proposed recently to unify horizon-

tal/oriented text detection and recognition in an end-to-end

manner. However, scene texts in the real-world often appear

in arbitrary shapes. Instead of describing text with quad-

rangles or rectangles, TextSnake [32] describes text with a

series of local units, which behaves like a snake. However,

this work mainly focuses on curved text detection. Lyu et

al. [33] proposed Mask Textspotter to detect and recognize

text of arbitrary shapes, in which a character-segmentation

based text recognizer is used, and thus character-level an-

notations are required in the training process. Neverthe-

less, most datasets do not have character-level annotations,

which require much more human labeling efforts.

To achieve the text spotting of arbitrary shapes, we can

follow the reading mechanism of human [1] as shown in

Fig 1. First, a local area of the text is detected. After that,

the contents of the local area are recognized. Finally, the

eyes move along the centerline of the text and repeat the
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Figure 2. The overview of the proposed framework. Text of arbitrary shapes can be detected and recognized in a single forward pass.

above three steps. There are two advantages of this reading

process. On one hand, text of arbitrary shapes can be split

into a series of local units, so detecting local area rather

than the whole text could be more robust to the diversity

of text shapes. On the other hand, characters in one text

may have different sizes and orientations as shown in Fig 1.

Therefore, recognizing only one local area at a time, rather

than the whole, can overcome the variations of character

size and orientation.

Inspired by the above analysis and the name of

TextSnake, we propose a novel scene text spotter named

TextDragon as shown in Fig 2. Specifically, a text detec-

tor is used to describe the shape of text with a series of lo-

cal quadrangles, which is adaptive to describe complex text

shapes. To connect the detection and recognition modules, a

feature operator named RoISlide is proposed to extract and

rectify arbitrary text regions from feature maps, which can

reduce the influence of changes in character size and orien-

tation. After that, rectified text features are fed into a Con-

volutional Neural Network (CNN) and Connectionist Tem-

poral Classification [9] (CTC) based text recognizer to gen-

erate the final recognition result, making the framework free

from character-level annotations. As the framework inte-

grates both text detection (like an improved snake body) and

text recognition (a newly grown paw branch from snake)

modules into an end-to-end trainable system, the whole text

spotting process is like the shape of a dragon. To the best of

our knowledge, this is the first end-to-end trainable frame-

work for scene text spotting of arbitrary shapes, using only

word/line-level annotations for training.

Our contributions are in three folds: (1) A novel end-

to-end scene text spotter named TextDragon is proposed,

which is flexible for text of arbitrary shapes. (2) A new dif-

ferentiable operator RoISlide is designed to unify arbitrary

shaped text detection and recognition into an end-to-end

pipeline. (3) The proposed model can be trained in weakly

supervised manner with only word/line-level annotations,

which improves the model’s practicability. TextDragon is

effective for both curved and oriented text spotting, and has

achieved state-of-the-art performance on two curved text

benchmarks Total-Text [6] and CTW1500 [31], and per-

forms competitively on the ICDAR 2015 Dataset [23].

2. Related Work

In literature, text spotting is referred to the joint process

of text detection and recognition. Therefore, in this section,

we review related works from perspectives of text detec-

tion, recognition and spotting, respectively. Surveys can be

found in [47, 50].

2.1. Scene Text Detection

Traditional methods [43, 13, 4] first localize characters

and then group them into words. Deep learning based meth-

ods [27, 15, 49] detect words directly without redundant

intermediate steps. Although they make great progress on

standard benchmarks, these methods impose strict restric-

tions on the shape of text.

Recently, several methods are proposed to detect curved

text in the wild. Liu et al. [31] integrated the recurrent trans-

verse and longitudinal offset connection to detect curved

text, which is described by a 14 vertexes polygon. Wang et

al. [46] proposed an arbitrary shape text detection method

with adaptive text boundary representation using a recurrent

neural network. Long et al. [32] described the curved text

as a series of ordered, overlapping disks centered at sym-

metric axes. However, the shape of disks is not convenient

to connect with the text recognizer. The proposed method

describes the curved text as quadrangles rather than disks,

which are easier for the connection between text detection

and recognition.

2.2. Scene Text Recognition

Traditional methods like [44, 21, 34] detect and rec-

ognize each character firstly, and then integrate them into
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words. Deep learning based methods extract features from

the whole image by CNN [12], and then employ Recurrent

Neural Network (RNN) to generate sequential labels [42].

However, these methods regard texts as one-dimensional se-

quences, which are not suitable for curved text recognition.

To handle curved text, Shi et al. [39] and Liu et al. [28]

introduced the spatial attention mechanism to transform the

curved text into a suitable pose for recognition. Cheng et

al. [5] proposed the arbitrary orientation network to deal

with irregular texts, in which the features are combined into

an attention-based decoder.

2.3. Scene Text Spotting

Most existing methods treat scene text spotting [19, 2,

26] as two separate steps: the first step is to detect text lines

and the second step is to recognize them. However, the

multitude of steps may require exhaustive tuning, leading

to sub-optimal performance and time consumption.

Recently, Li et al. [25] proposed an end-to-end text spot-

ter which focuses on horizontal texts. Liu et al. [29] in-

troduced a differentiable operator RoIRotate, which ex-

tracts oriented text regions from feature maps. Patel et

al. [35] proposed an end-to-end method for multi-language

text spotting and script identification. However, these meth-

ods can only deal with horizontal or oriented texts. On the

basis of Mask-RCNN [11], Lyu et al. [33] detect and rec-

ognize text instances of arbitrary shapes by segmenting the

text regions and character regions. Unlike [33], our method

does not need character-level annotations. Moreover, the

anchor mechanism in [33] may not be able to generate suit-

able text proposals as the shape of curved text is highly vari-

able.

3. Methodology

Our proposed end-to-end scene text spotting framework

is shown in Fig 2. First, a stem network is used to extract

visual features on the input image. After feature extraction,

the text detector is applied to describe each text with a series

of quadrangles, which locate along the centerline. Then, the

newly proposed RoISlide extracts features along each text

centerline from feature maps, in which a local transformer

network converts features in each quadrangle into rectified

ones. Finally, the CNN based text recognizer predicts the

category of each quadrangle, and decodes the sequenced re-

sult using a CTC decoder. The modules of text detection

and recognition are trained jointly on images of texts with-

out character-level annotations. In the following, we will

introduce the details of the detector, RoISlide, recognizer

and inference procedure.

3.1. Text Detection

To detect text with arbitrary shapes, we adopt similar

idea in TextSnake [32] by predicting local geometry at-
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Figure 3. The architecture of text detector. “Conv Stages” 1-5 are

from VGG-16, and “Upsample” represents a deconvolution layer

of 128 channels with stride 2. We only show part of the bound-

ing boxes in the Local Height branch for better visualization, but

actually the bounding boxes are much more dense.

tributes of text shown in Fig 3. However, TextSnake uses

disks to represent local geometric attributes, which is diffi-

cult for the subsequent feature extraction, thus text is rep-

resented as a series of quadrangles here. To detect texts of

a wide scale range, we merge feature maps from different

levels and upscale the fused feature map to 1/4 size of the

input image. The output module consists of two tasks: Cen-

terline Segmentation and Local Box Regression. The output

maps of the two tasks are also 1/4 size of the input image.

The rest of this subsection will introduce details of the two

tasks.

Centerline Segmentation. This task is to extract text re-

gions from images and can be deemed as down-sampled

pixel-level classification between text (positive category)

and non-text (negative category). Instead of segmenting all

pixels within the text region out, here we only regard the

centerline region which is a shrunk version of the original

text area as positive. The eroded text region is to relieve the

touching effect when texts are close to each other and brings

better local units grouping results in the inference stage. To

alleviate the negative influence of class imbalance between

text and non-text, online hard example mining (OHEM) in-

troduced in [40] is adopted during the training stage.

The loss function Lseg for Centerline Segmentation task

is derived from the cross entropy loss. Denote the set of

selected elements by OHEM as S, Lseg is formulated as:
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Figure 4. The illustration of RoISlide. The green arrows indicate

the direction of sliding, and the blue arrows indicate the results

of each quadrangle through RoISlide. We show the process of

RoISlide on the input image for better visualization, but actually

the operation is on the feature maps.

Lseg =
1

|S|

∑

s∈S

L (ps, p
∗

s)

=
1

|S|

∑

s∈S

(−p∗s log ps − (1− p∗s) log (1− ps)) ,

(1)

where | · | is the number of element in a set, and L (ps, p
∗

s)
refers to the cross entropy loss between the predicted pixel-

level text score ps and the corresponding ground truth p∗s
(p∗s ∈ {0, 1}).

Local Box Regression. This task is to depict the local quad-

rangles of each text to facilitate the further curved boundary

generation and text recognition. Each local quadrangle is

represented by two geometry attributes in this task. The first

attribute is the local text height, which is represented by a

squared box as shown in Fig 3, where the box side length is

equal to the local text height. The second attribute is the lo-

cal text orientation, which is the tangent angle of the curved

text as shown in Fig 3.

Given a pixel i located in the positive area P in Cen-

terline Segmentation task, the loss function Lreg for Local

Box Regression task is formulated as:
[

LB

Lθ

]

=
1

|P |

∑

i∈P

SmoothL1

[

Bi −B∗

i

θi − θ∗i

]

, (2)

Lreg = LB + λθLθ, (3)

where Bi and θi are predicted local squared box and angle,

respectively, while B∗

i and θ∗i are the corresponding ground

truth. λθ is a hyper-parameter which is set to 10 in our

experiments. We choose SmoothL1
loss [36] here for its

robustness to variation in object shape.

3.2. RoISlide

Text shapes in the real-world vary tremendously, there-

fore, it is difficult to directly transform the whole text fea-

tures into axis-aligned features. As the text detection branch

has transformed the shape of text into a series of quadran-

gles, RoISlide is proposed to transform the whole text fea-

tures into axis-aligned features indirectly by transforming

each local quadrangle sequentially, which is the key to make

the framework end-to-end trainable. Specifically, the RoIS-

lide has two steps: firstly, we arrange quadrangles which are

distributed along the text centerline in order. Then a Local

Transformer Network (LTN) is proposed to transform fea-

ture maps cropped from each quadrangle into rectified ones

in a sliding manner. After the above two steps, arbitrary

shaped text features are converted into sequenced squared

feature maps of identical dimension as shown in Fig 4.

Denote the sequenced quadrangles after the first step as

R = {R1, R2, ..., RN}. For each quadrangle Rn, the LTN

converts features in Rn into a unified spatial dimension

which is H × H , and we set H to 8 in the experiment.

To achieve this goal, the LTN first computes a series of

affine transformation matrices M = {M1,M2, ...,MN} us-

ing features in R, which contain 6-dimensional parameters.

The LTN consists of two convolution + max pooling layers,

followed by two fully-connected layers for the regression of

the transformation parameters. It should be noticed that the

LTN is trained jointly with other modules without the need

of position supervision.

After that, a grid generator generates a sampling grid to

perform a warping of the input features. The point-wise

affine transformation can be written as:

(

xs
c

ysc

)

= Mn





xt
c

ytc
1



 =

[

θ11n θ12n θ13n
θ21n θ22n θ23n

]





xt
c

ytc
1



 , (4)

where (xs
c, y

s
c) and (xt

c, y
t
c) represent the coordinate of a

point on the shared feature maps and transformed feature

maps respectively.

Finally, the RoI features are extracted from the shared

feature maps with the set of sampling points, in which the

interpolation method is bilinear interpolation.

Spatial transformer network (STN) [20] also uses affine

transformation, which is mainly focused on transforming

whole images. Different from STN, the proposed LTN takes

local feature maps as input, and the transformed local fea-

ture maps make up the whole text features, which is more

domain-specific for the arbitrary shaped text spotting.

3.3. Text Recognition

Although the shapes of texts are arbitrary, humans’ eyes

always read along the centerline. Meanwhile, their eyes do

not move continuously, but make short rapid movements.

Inspired by [45, 48], we adopt the sliding convolution char-

acter models rather than traditional LSTM [16] to recognize

texts of arbitrary shapes for fast recognition. Unlike [45, 48]

which extract features from the original images, we predict
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Table 1. The network architecture of the text recognizer. Each

convolutional layer is followed by a batch normalization layer and

a ReLU layer. W is the number of character classes.

Type Configurations

Input N×8×8

Conv bn relu 3×3, 128, stride 1×1

Conv bn relu 3×3, 128, stride 1×1

Max Pooling 2×2, stride 2×2

Conv bn relu 3×3, 256, stride 1×1

Conv bn relu 3×3, 256, stride 1×1

Max Pooling 2×2, stride 2×2

Conv bn relu 3×3, 512, stride 1×1

Conv bn relu 3×3, 512, stride 1×1

Fully Connection 256, drop: 0.5

Fully Connection W

text labels with the features transformed by RoISlide. The

text recognition branch consists of two parts: a character

classifier and a transcription layer. The character classifier

predicts a label distribution from the input squared features,

and the transcription layer decodes each square’s predic-

tions into the final sequence.

As the input features are transformed from the shared

feature maps, which contain rich semantic information, we

replace the network in [48] with a simpler one as shown in

Table 1. Each convolutional layer is followed by a batch

normalization [17] (BN) layer for fast convergence. After

every two convolutional layers, max-pooling layer is used

to halve the size of feature maps. The final convolutional

output is flattened into a vector of length 2048, and then

fed into the following two fully-connected layers. To avoid

overfitting, we insert one dropout layer after the first fully-

connected layer. Finally, we use the softmax layer to get

each square’s label distribution.

In the transcription layer, we adopt the CTC decoder [9]

and assume that each squared features after RoISlide repre-

sents a time step. The CTC decoder aims to transform each

square’s probability distribution to the label sequence. De-

note the probability distribution at step n as P (k|n) and π is

a CTC path, whose sequence length is equal to the number

of squares N . The probability P (π|X) can be written as:

P (π|X) =
N
∑

n=1

P (πn|n,X). (5)

Then, a CTC mapping function B is used to remove rep-

etitions and delete the blank. The conditional probability of

the ground truth y is the sum of the probabilities of all the

paths by B:

P (y|X) =
∑

π∈B−1(y)

P (π|X), (6)

and the objective is to maximize the log likelihood of con-

Group

Sort

Sample

Input Boxes Output Boundaries

Classify

Decoder

Recognition Results

BOSTON
HomeStyleMeals

MARKET

B-O-S--T-OO-NN-
Home-Style-Meals

MM-A-RR-K--E-T-

Figure 5. The procedure of inference. Red quadrangles show the

input boxes of the inference stage. After grouping, quadrangles

with the same color represent the same group. Yellow arrows indi-

cate the directions of sorting. In the output boundaries, dots show

the vertexes after sampling. In the classification result, “-” means

blank.

ditional probability of ground truth. Denote the number of

words in the input image as M . The loss for text recognition

Lrec can be written as:

Lrec = −
1

M

M
∑

m=1

log p(y|X). (7)

For end-to-end training of text detection and recognition,

the whole loss function can be formulated as:

L = Lseg + λregLreg + λrecLrec, (8)

where λreg and λrec are the hyper-parameters to control the

balance among each task.

3.4. Inference

In the inference stage, our goal is to provide the text

boundary through detector, as well as the text content to-

gether with recognizer. We first apply thresholding to the

text centerline segmentation map, and then NMS is applied

to the local bounding boxes to reduce redundancy. Finally,

four steps are conducted based on the quadrangles produced

by NMS to get the final results as shown in Fig 5.

Group. Given the input boxes, instead of using the disjoint-

set as introduced in TextSnake [32], we group bounding

boxes according to their geometric relation. In order to

make the connected component complete, full resolution

and low threshold are used in TextSnake, which will lead to

more noise and heavy time consumption, but we can use a

higher threshold and quarter resolution output to avoid these

problems. Each box in a group should satisfy two heuristic

conditions with at least other one box in the same group:

(1) Their IoU should be higher than 0.5; (2) their absolute

angle difference should be less than π/4.

Sort. After grouping bounding boxes, we sort the boxes for

boundary generation and text recognition. First, we judge

whether the overall direction is horizontal or vertical ac-

cording to the average angle of all boxes within the same
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(a) (b)

(c) (d)

Figure 6. (a, b) showing that end-to-end training helps text detection. (c, d) showing that RoIRotate leads to wrong recognition results for

curved text. In the first row, from left to right: detection without guidance from recognition and TextDragon. In the second row, from left

to right: with RoIRotate and with RoISlide. Green dots show the vertexes of polygons.

group. Then boxes are sorted from left to right (horizontal)

or from top to bottom (vertical).

Sample. For boundary generation, we just evenly sample

the ordered boxes to form the vertexes of polygons. Then

the boundary of text is generated by linking the vertexes

sequentially.

Recognize. For text recognition, we first perform RoISlide

on the shared feature maps with the ordered boxes. Then

each transformed features are classified by the character

classifier. Finally, the CTC decoder is used to predict the

final recognition result.

4. Experiments

We evaluate both text spotting and detection perfor-

mance of the proposed method on several standard bench-

marks. Moreover, analysis of each module and comparisons

with previous methods are also given to demonstrate the su-

periority and reasonableness of TextDragon.

4.1. Datasets

CTW1500. The CTW1500 dataset contains 1000 training

images and 500 test images. Each image has at least one

curved text. Horizontal and multi-oriented texts are also

contained in this dataset. Each text is labeled as a poly-

gon with 14 vertexes in line-level. The evaluation proto-

col of end-to-end recognition is similar to ICDAR 2015,

where quadrangles are changed to arbitrary polygons. We

report the end-to-end recognition results over two lexicons:

“None” and “Full”. “None” means that no lexicons are pro-

vided, and “Full” lexicon provides all words in the test set.

Total-Text. The Total-Text dataset has 1255 training im-

ages and 300 test images, which contains curved text, as

well as horizontal and multi-oriented text. Each text is la-

beled as a polygon in word-level, and the evaluation proto-

col of end-to-end recognition follows that for CTW1500.

ICDAR 2015. The ICDAR 2015 dataset contains 1000

training images and 500 test images. Each text is labeled

as a quadrangle with 4 vertexes in word-level. The text

spotting task reports results over three lexicons: “Strong”,

“Weak” and “Generic”. Strong lexicon provides 100 words

that may appear in each image. Weak lexicon provides

words in the whole test set, and generic lexicon provides

a 90K vocabulary.

4.2. Implementation Details

Our implementation is based on Caffe framework [22].

The stem network VGG-16 [41] inherits parameters trained

on ImageNet dataset [24], and then we pre-train the model

on SynthText [10] for 600k iterations, and fine-tune on other

datasets for 120k iterations. The input images of 512×512

are cropped from images after random scaling and rotation.

We first set the loss weight λreg and λrec to 0.01, and then

we raise them to 0.1 and 0.05 respectively after the segmen-

tation task is well optimized. In the pre-training stage, the

learning rate is 0.01. During the fine-tuning stage, we train

the model with a learning rate of 0.001. Experiments are

implemented on a workstation with 2.9GHz 12-core CPU,

256G RAM, GTX Titan X and Ubuntu 64-bit OS.

4.3. Ablation Studies

For better understanding the strengths of the proposed

method, we first provide the ablation studies from three

aspects. First, we demonstrate the benefits of end-to-end

training. Second, we compare RoISlide and RoIRotate on

recognition performance under different text shapes. Third,

we compare the proposed CNN based recognizer with the

more popularized LSTM based one.
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Table 2. Results on CTW1500 test set.

Method
Detection End-to-End

P R F None Full

SegLink [37] 42.3 40.0 40.8 - -

EAST [49] 78.7 49.1 60.4 - -

DMPNet [30] 69.9 56.0 62.2 - -

FOTS [29] 79.5 52.0 62.8 21.1 39.7

CTD [31] 74.3 65.2 69.5 - -

CTD+TLOC [31] 77.4 69.8 73.4 - -

TextSnake [32] 67.9 85.3 75.6 - -

Our Two-Stage 79.5 81.0 80.2 37.2 69.9

With RoIRotate 80.7 83.4 82.3 38.6 70.9

With LSTM 84.3 81.8 83.0 39.2 71.5

TextDragon 84.5 82.8 83.6 39.7 72.4

Table 3. Results on Total-Text test set.

Method
Detection End-to-End

P R F None Full

SegLink [37] 30.3 23.8 26.7 - -

Ch’ng et al. [6] 40.0 33.0 36.0 - -

EAST [49] 50.0 36.2 42.0 - -

FOTS [29] 52.3 38.0 44.0 32.2 35.9

Liao et al. [27] 62.1 45.5 52.5 36.3 48.9

Mask TextSpotter [33] 69.0 55.0 61.3 52.9 71.8

TextSnake [32] 82.7 74.5 78.4 - -

Our Two-Stage 84.5 74.2 79.0 46.1 70.6

With RoIRotate 86.0 74.3 79.7 47.1 73.6

With LSTM 85.2 75.7 80.2 48.3 74.7

TextDragon 85.6 75.7 80.3 48.8 74.8

Table 4. Results on ICDAR 2015 test set. “P”, “R”, “F” represent “Precision”, “Recall”, “F-measure” respectively. “S”, “W”, “G” represent

recognition with “Strong”, “Weak”, “Generic” lexicon respectively. “*” indicates that the method is designed for text of arbitrary shapes.

Method
Detection

Method
End-to-End Word Spotting

P R F S W G S W G

SegLink [37] 74.74 76.50 75.61 Baseline OpenCV3.0 [23] 13.84 12.01 8.01 14.65 12.63 8.43

EAST [49] 83.27 78.33 80.72 Stradvision [23] 43.7 - - 45.9 - -

He et al. [15] 82.0 80.0 81.0 TextProposals [8, 18] 53.3 49.6 47.2 56.0 52.3 49.7

TextSnake∗ [32] 84.9 80.4 82.6 HUST MCLAB [37, 38] 67.9 - - 70.6 - -

PixelLink [7] 85.5 82.0 83.7 Deep text spotter [3] 54.0 51.0 47.0 58.0 53.0 51.0

Mask TextSpotter∗ [33] 91.6 81.0 86.0 Mask TextSpotter∗ [33] 79.3 73.0 62.4 79.3 74.5 64.2

He et al. [14] 87.0 86.0 87.0 He et al. [14] 82.0 77.0 63.0 85.0 80.0 65.0

FOTS [29] 91.85 87.92 89.84 FOTS [29] 83.55 79.11 65.33 87.01 82.39 67.97

Our Detection 84.82 81.82 83.05 Our Two-Stage 75.23 73.15 53.04 77.03 75.11 54.51

With RoIRotate 92.18 82.93 87.31 With RoIRotate 82.51 79.21 65.37 86.20 82.03 68.14

TextDragon 92.45 83.75 87.88 TextDragon 82.54 78.34 65.15 86.22 81.62 68.03

4.3.1 Spotting with vs. without End-to-End Training

The recognition supervision can provide more detailed text

stroke features for text detection. Without end-to-end train-

ing, text detection may miss some text regions or mis-

classify text-alike background. To demonstrate the impor-

tance of end-to-end training, we evaluate a variant of our

method in which text detection and recognition are trained

separately. As shown in Tables 2, 3 and 4, the end-to-end

training based methods (including TextDragon and other

configurations) outperform our two-stage method signifi-

cantly in text detection and end-to-end recognition. Further-

more, using different text recognizers in end-to-end training

shows similar performances in text detection. It demon-

strates that the text recognition supervision can provide text

stroke features for text detection no matter which kinds of

text recognizers are used.

Some qualitative results are shown in Fig 6. In the

Fig 6(a), with end-to-end training, text whose feature is

not salient could also be detected. In the Fig 6(b), the

flag which has repetitive structured stripes is well classified

when adopting the recognition task.

4.3.2 RoISlide vs. RoIRotate

The RoIRotate operator [29] aims to transform features with

affine transformation in a similar way, in which the transfor-

mation parameters are calculated from the detection results.

However, the RoISlide operator gets transformation param-

eters by the proposed LTN. Through analyzing the recogni-

tion results, we argue that RoIRotate may be unsuitable for

curved text, because the characters at the junction of two

quadrangles will rotate with two different θ, causing diffi-

culties in recognizing characters. Two examples are shown

in Fig 6. The character “A” in the Fig 6(c) and the charac-

ter “E” in the Fig 6(d) are mis-classified with RoIRotate, as

they are located at the junction of two quadrangles.

Therefore, we use the transformation parameters pre-

dicted by the LTN rather than detection results. To fur-

ther explore the impact of RoIRotate on text of different

shapes, we evaluate a variant of our method with RoIRotate

for curved and oriented text. Tables 2 and 3 show that using

RoIRotate for curved text will reduce the end-to-end recog-

nition performance, indicating that getting transformation

parameters from detection results is not suitable for curved
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Figure 7. Examples of word spotting results. First column: CTW1500; second column: Total-Text; third column: ICDAR 2015.

text recognition. Although the orientation of each charac-

ter in oriented text is consistent, Table 4 shows that RoIS-

lide and RoIRotate achieve similar performance on oriented

text, which verifies the generalization ability of RoISlide.

4.3.3 Spotting with vs. without LSTM

Most previous text recognition methods are based on

LSTM, which predict classification results sequentially. But

our text recognition model can classify each local box in

parallel instead of sequential prediction like LSTM, and

therefore our method is faster than those based on LSTM.

To verify the effectiveness of CNN based recognizer, we

evaluate a variant of our method which adds a bi-directional

LSTM before the fully-connected layer in the text recogni-

tion branch, with D = 256 output channels per direction.

As shown in Tables 2 and 3, adopting LSTM has little in-

fluence on end-to-end recognition performance. However,

the speed of the CNN based text recognizer is four times

faster than the LSTM based one (3 ms vs 12 ms), which

demonstrates the advantages of CNN based recognizer.

4.4. Comparison with the State­of­the­art

In this subsection, we compare with previous methods on

several benchmarks to verify the superiority of our work.

4.4.1 Experiments on Curved Text

As shown in Tables 2 and 3, the proposed method can

achieve state-of-the-art performance on both CTW1500

and Total-Text. With the help of end-to-end training,

TextDragon outperforms TextSnake on both datasets in the

text detection task by a larger gap. For the end-to-end

recognition task, TextDragon achieves state-of-the-art per-

formance over full lexicon on Total-Text. Although the per-

formance is inferior to Mask TextSpotter without lexicon, it

is worth noting that our method does not need any character-

level annotations, which owns much more practical value.

4.4.2 Experiments on Oriented Text

The results for oriented text are shown in Table 4. Com-

pared with other methods designed for curved text, our

method performs better on both text detection and end-to-

end recognition. Meanwhile, our method achieves com-

petitive results to the state-of-the-art approaches which are

particularly designed and suitable for horizontal or oriented

text. We also reimplement FOTS [29] on CTW1500 and

Total-Text as shown in Tables 2 and 3. The results indi-

cate that our method outperforms FOTS significantly on

curved text, which demonstrates that TextDragon is suitable

for both curved and oriented texts.

Some word spotting results in Fig 7 show that the pro-

posed method can handle texts of arbitrary shapes .

5. Conclusion

In this paper, we propose a novel end-to-end scene text

spotter to detect and recognize the text of arbitrary shapes.

The text detector describes text with a series of quadrangles,

which can adapt to complex shapes. A differentiable oper-

ator RoISlide is introduced to extract arbitrary text regions

from feature maps. This is the key to unify text detection

and recognition into an end-to-end pipeline. A text recog-

nizer based on CNN classifier and CTC decoder is proposed

to make the framework efficient and free from character-

level annotations. Experiments on standard benchmarks

have demonstrated the effectiveness of our method.
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