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Abstract

Recent works attempt to improve scene parsing perfor-

mance by exploring different levels of contexts, and typi-

cally train a well-designed convolutional network to exploit

useful contexts across all pixels equally. However, in this

paper, we find that the context demands are varying from

different pixels or regions in each image. Based on this ob-

servation, we propose an Adaptive Context Network (AC-

Net) to capture the pixel-aware contexts by a competitive

fusion of global context and local context according to dif-

ferent per-pixel demands. Specifically, when given a pixel,

the global context demand is measured by the similarity be-

tween the global feature and its local feature, whose re-

verse value can be used to measure the local context de-

mand. We model the two demand measurements by the pro-

posed global context module and local context module, re-

spectively, to generate adaptive contextual features. Fur-

thermore, we import multiple such modules to build sev-

eral adaptive context blocks in different levels of network to

obtain a coarse-to-fine result. Finally, comprehensive ex-

perimental evaluations demonstrate the effectiveness of the

proposed ACNet, and new state-of-the-arts performances

are achieved on all four public datasets, i.e. Cityscapes,

ADE20K, PASCAL Context, and COCO Stuff.

1. Introduction

Scene parsing is a fundamental image understanding task

which aims to perform per-pixel categorizations for a given

scene image. Most recent approaches for scene parsing are

based on Fully Convolutional Networks (FCNs) [24]. How-

ever, there are two limitations in FCN framworks. First, the
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Figure 1. The performance improvements over the basic FCN (a.

Dilated FCN) on Cityscapes val set with the help of global context

(b. Dilated FCN+Global context) and local context (c. Dilated

FCN+Local context). Specially, pixel-wise enhanced representa-

tion by the global average pooling feature are employed as the

global context, and a concatenated representation with low-level

features as the local context.

consecutive subsampling operations like pooling and con-

volution striding lead to a significant decrease of the ini-

tial image resolution and make the loss of spatial details for

scene parsing. Second, due to the limited receptive field

[23, 25] or local context features, the per-pixel dense clas-

sification is often ambiguous. In the end, FCNs result in the

problems of rough object boundaries, ignorance of small

objects, and misclassification of big objects and stuff.

Throughout various FCN-based improvements to over-

come the above limitations, effective strategies to utilize

different levels of contexts (i.e., local context and global

context) are the main directions. Specifically, some meth-

ods [22, 39, 34, 9] adopt “U-net” architectures, which ex-
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ploit multi-scale local contexts from middle-layers, to com-

plement more visual details. Some methods [2, 35] em-

ploy dilated convolution layers to capture a wider context

with a larger receptive field while maintaining the resolu-

tion. Besides, the image-level features obtained by global

average pooling [23, 3, 40] are proposed as a global context

to clarify local confusion. However, these FCN-based vari-

ants adopt per-pixel unified processing and overlook differ-

ent per-pixel demands on different levels of contexts. That

is, the local context from middle layers is essential for the

class prediction of those pixels on edges or small objects,

while the global context exploring the image-level represen-

tation is benefit to categorize large objects or stuff regions,

especially for the case when the target region exceeds the

receptive field of the network. We can also observe the

necessity of pixel-sensitive context modeling from the re-

sults comparison shown in Figure 1, in which the local and

global contexts achieve different improvements on differ-

ent objects or stuff. Therefore, how to effectively capture

such pixel- or region-aware contexts in an end-to-end train-

ing framework is an open but valuable research topic for

comprehensively accurate scene parsing.

In this paper, we propose an Adaptive Context Net-

work (ACNet) to capture the pixel-aware contexts for im-

age scene parsing. Different from previous methods which

fuse different-level contexts for each pixel equally, AC-

Net generates different per-pixel contexts, i.e., the context-

based features are functions of the input data and also vary

from different pixels. Such an adaptive context genera-

tion is achieved by a competitive fusion mechanism of the

global context from image-level feature and local context

from the middle-layer feature according to per-pixel differ-

ent demands. In other words, with the more attention paid

on global context for a certain pixel, the less attention is

paid on local context, and vice versa.

Usually, the global average pooled feature has a seman-

tic guidance for large objects and stuff, but it lacks spatial

information which makes it different from the features of

details. Hence, we can match the global pooled feature

with the feature of each pixel, obtaining the possibility of

the pixel to be an element of large objects or spatial details.

It can be further used as a pixel-aware context guidance to

adaptively fuse the global features (global context) and low-

level features (local context). Motivated by this intuition,

we propose a global context module to adaptively capture

global context. By measuring the similarity between the

global feature and per-pixel feature, we can obtain the pixel-

aware demanding extent, called as global gated coefficient.

The larger gated coefficient indicates that more global con-

text and the less local context could be fused to the pixel.

Then we multiply the global feature with the pixel-aware

global gated coefficient before adding it to the pixel feature,

with which some mislabeling and inconsistent results can

be further corrected.

We also propose a local context module to compen-

sate spatial details according to the local context demands.

Specifically, we find that the pixels with features dissimilar

to global feature, trend to be detail parts of images and need

more local context to obtain precise results. Hence, we re-

gard the reverse value of the global gated coefficient as local

gated coefficient and multiply it with the low-level feature

to generate a local gated feature. It emphasizes pixel-aware

local context to spatial details and avoids some noises to

the pixels belonging to big objects. Furthermore, we reuse

multiple local gated features, which is similar to a recurrent

learning process and complements more detail information.

We jointly employ a global context module and a local

context module as an adaptive context block, and import

such blocks into different levels of network. The architec-

ture of our proposed ACNet is shown in Figure 2. Finally,

comprehensive experimental analyses on Cityscapes dataset

[5], ADE20k[42], PASCAL Context [26], and COCO

stuff[1] dataset demonstrate the effectiveness of ACNet.

The main contributions of this paper are as follows:

• We propose an Adaptive Context Network (ACNet)

to improve contextual information fusion according to

the context demands of different pixels.

• A novel mechanism is proposed to measure global con-

text demand. Global pooled feature can be adaptively

fused to the pixels which need large context, thus re-

ducing misclassification for large objects or stuff.

• We improve local context fusion according to the local

context demand and reuse local feature progressively,

thus improving segmentation results on small objects

and edges.

• ACNet achieves new state-of-the-art performance on

various scene parsing datasets. In particular, our AC-

Net achieves a Mean IoU score of 82.3% on Cityscapes

testing set without using coarse data, and 45.90% on

ADE20K validation set, respectively.

2. Related Work

Global context embedding. Global context embedding

have been proven its effectiveness to improve the catego-

rization of some large semantic regions. ParseNet [23] em-

ploys the global average pooled feature to augment the fea-

tures at each location. PSPNet [40] applies the global av-

erage pooling in their Spatial Pyramid Pooling module to

collect global context. The work [15] captures global con-

texts by a gloabl context network based on scene similar-

ities. BiSeNet [33] adds the global pooling on the top of

the encoder structure to capture the global context. EncNet

[37] employs an encoding layer to capture global context

and selectively highlight the class-dependent featuremaps.
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Local context embedding. U-net based methods often

adopt local context from low- and middle-level visual fea-

tures to generate sharp boundaries or small details for high-

resolution prediction. RefineNet [22] utilizes an encoder-

decoder framework and refines low-resolution segmenta-

tion with fine-gained low-level feature. ExFuse [39] as-

signs auxiliary supervisions directly to the early stages

of the encoder network for improving low-level context.

Deeplabv3+ [4] adds a simple decoder module to capture

local context, refining the segmentation results.

Attention and gating mechanisms. Attention mechanisms

have been widely used to improve the performance of seg-

mentation task. PAN [17] uses a global pooling to generate

global attention, which can select the channel maps effec-

tively. LRR [10] generates a multiplicative gating to refine

segment boundaries reconstructed from lower-resolution

score maps. Ding et al.[7] proposes a scheme of RNN-based

gating mechanism to selectively aggregate multi-scale score

maps, which can achieve an optimal multi-scale aggrega-

tion. The works [16, 36, 14] adopt self-attention mechanism

to model the relationship of features.

Different from these works,we introduce a data-driven

gating mechanism to capture global context and local con-

text according to pixel-aware context demand.

3. Adaptive Context Network

3.1. Overview

Contextual information is effective for scene parsing

task, most of current methods fuse the different context to

each pixel equally, ignoring the different demands of pixel-

aware contexts. In this work, we propose a novel Adap-

tive Context Network (ACNet) to weigh the global and local

context complemented to each pixel by a competitive fusion

mechanism.

The overall architecture is shown in Figure 2, which

adopts pretrained dilated ResNet [13], as the backbone net-

work, and multiple adaptive context blocks to progressively

generate high-resolution segmentation map. In the back-

bone network, we remove the downsampling operations and

employ dilated convolutions in the last ResNet blocks, thus

obtaining dense feature with output size 1/16 of the input

image. It could achieve the balance between retaining spa-

tial details and computation cost [4]. In upsampling pro-

cess, three adaptive context blocks are employed with three

different resolutions. Each adaptive context block consists

of a global context module, an upsampling module and a lo-

cal context module, where the global context module selec-

tively captures global context from the high-level features

and the local context module selectively captures local con-

text from the low-level features.

In the following subsections, we will elaborate the de-

signing details of the global context module, the local con-

Conv-1

Resnet block-1

Resnet block-2

Resnet block-3,

Resnet block-4

(dilation conv)

1/16

1/2

1/4

1/8

Adaptive Context
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Adaptive Context

Block

Adaptive Context

Block

Upsampling

Module

Local Context 

Module

Global Context 

Module

Figure 2. Overview of Adaptive Context Network. (Best viewed

in color)

text module and their aggregation within an adaptive con-

text block.

3.2. Global Context Module

Global context can provide global semantic guidance

for overall scene images, thus rectifying misclassification

and inconsistent parsing results. However, the benefit from

global context is different for large objects and spatial de-

tails. it is necessary to treat each pixel differently when ex-

ploring the global context, that is to say, some pixels need

more global context for categorization, while others may do

not. Based on the intuition that the global pooled feature

prefers to the large objects and stuff and lacks spatial infor-

mation, we can match the global feature with the feature in

each pixel, obtaining its possibility to be as an element of

large objects or spatial details. Then we can exploit it to

adaptively fuse the global context. To this end, we propose

a Global Context Module (GCM) as follows.

Given an input feature map A ∈ R
C×H×W , we use

a global average pooling following a convolution layer to

generate a global feature p ∈ R
C×1×1. In order to obtain

the pixel-aware demand for global context (global gated co-

efficient), we first measure the feature similarity by calcu-

lating the euclidean distance D ∈ R
H×W between global

feature p and the features ai ∈ A for each pixel i, di ∈ D

is denoted as:

di = ‖ai − p‖
2

(1)

where ai ∈ A , i ∈ [1, 2, ..., H × W ] is ith location in A.

Noted that the smaller di indicates that the feature at ith

locations is closer to the global feature. Then we generate a

global gated coefficient Wg ∈ R
H×W which is smoothed

by an exponential function, w
g
i ∈ W

g is denoted as:

w
g
i = exp(−

di − k

δ
) (2)

6750



Global average 

pooling+conv

conv

2. Local Context Module

1. Global Context Module

x

x

S
im

ila
rity

m
e

a
su

re
m

e
n

t

conv

In
v
e

rse

+

c c

Bilinear 

Upsampling

2x

cconvconv

cx

+ Element-wise Sum

Concatenation

Global gated 

coefficient

Local gated 

coefficient

Element-wise Multiplication

Bilinear 

Upsampling

2x E

Wg

A

B

W𝑙
p

C

F

Upsampling

conv Conv+BN+ReLU

Figure 3. The details of Adaptive Context Block including (1) Global Context Module and (2) Local Context Module. (Best viewed in

color)

where k is set to minH×W
i=1

(di) for limiting the range of

w
g
i ∈ (0, 1]. And δ is a hyperparameter, which controls

the amplitude of the difference between high response and

low response.

Finally, we multiply the global feature p by w
g
i and a

scale parameter α, and then perform an element-wise sum

operation with the features A to obtain the final output C ∈
R

C×H×W , ci ∈ C is denoted as:

ci = αw
g
i p+ ai (3)

where α is a learned factor and initialized as 1. Here, we

adopt sum operation instead of concatenation for saving

memory. The details of global context module is shown in

Figure.3 (1).

It can be inferred from the above formulation that the

feature C at different position obtain different global con-

text according to global gated coefficient Wg. With this

design, GCM could selectively enhance semantic consis-

tency and reduce the misclassification and inconsistent pre-

dictions for large objects or stuff.

3.3. Local Context Module

Local context contributes to refine object boundaries and

details. However, many methods fuse local context to all

pixels without considering the different demand for local

context. To solve this problem, we propose a Local Context

Module (LCM) to selectively fuse local context for better

refined segmentation.

As mentioned in Section 3.2, the global gated coefficient

with high response indicates the pixels belong to large ob-

jects and stuff while low response indicates the pixels be-

long to spatial details. Based on this observation, we could

obtain the local gated coeffcient by reversing value of global

gated coefficient, where the global gated coefficient have

been upsampled, formulated as:

W
l = 1− up(Wg) (4)

where up(·) denotes a bilinear interpolation operation. In

this way, the local gated coefficient indicates the more pos-

sibility the pixels belong to spatial details, the more lo-

cal contexts are required, and vice versa. Then we obtain

pixel-aware local context (gated local features) by multiply

the local feature B ∈ R
C×H×W from middle-layer fea-

tures with the local gated coefficient and a scale param-

eter β. Finally, we concat the feature with the upsam-

pled feature E ∈ R
C×H×W to generate a refined feature

F ∈ R
C×H×W , fi ∈ F is denoted as:

fi = cat(βwl
ibi, ei) (5)

where cat(·) denotes a concatenation operation, and β is a

learned factor and initialized as 1. We adopt concatenation

operation to combine the gated local feature and high-level

feature, and a convolution layer is employed to fuse them.

The details of local context module is shown in Figure.3(2).

With this design, we can selectively aggregate the local con-

text according to the context demand of each pixel.

In addition, we find that it is useful to introduce gated

local context directly multiple times. Specifically, we reuse

gated local features by a concatenation operation followed

by a convolution layer for three times. Such a recur-

rent learning process complements more spatial details for

each position, and achieve a coarse-to-fine performance im-

provement. Noted that, it haven’t been discussed in previ-

ous works [22, 39, 35, 4]. And we also verify the effective-

ness of this process in experiments.

3.4. Adaptive Context Block

Based on GCM and LCM, we further design an Adap-

tive Context Block to selectively capture global and local

contextual information simultaneously.
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Adaptive context block is built upon a cascaded archi-

tecture, the high-layer features are first fed into a global

context module to selectively fuse global context to each

pixel. Then passed sequentially through a bilinear upsam-

pling layer and a local context module for learning a restora-

tion of refined features. In order to obtain resolution corre-

sponding to low-level feature, we also enlarge spatial res-

olution of the global gated coefficient by a bilinear upsam-

pling operation before feeding into the local context mod-

ule. Following [4], we apply a convolution layer on the

low-level features to reduce the number of channels, thus

refining the low-level features.

In the adaptive context block, we introduce a competi-

tive fusion mechanism to capture global and local context

according to their correlation of gated coefficient, thus suit-

able context can be adaptively fused to each pixels for better

feature representation.

4. Experiments

The proposed method are evaluated on Cityscapes [5],

ADE20K [42], PASCAL Context [26], COCO Stuff [1].

Experimental results demonstrate that ACNet achieves new

state-of-the-art performance on these datasets. In the next

subsections, we first introduce the datasets and implemen-

tation details, then we make detail comparisons to eval-

uate our approaches on Cityscapes dataset. Finally, we

present our results compared with state-of-the-art methods

on ADE20K, PASCAL Context, COCO Stuff dataset.

4.1. Datasets

Cityscapes The dataset is a well-known road scene date-

set collected for scene parsing, which has 2,979 images for

training, 500 images for validation and 1,525 images for

testing. Each image has a high resolution of 2048× 1024
pixels with 19 semantic classes. Noted that no coarse data

is employed in our experiments.

ADE20K The ADE20K dataset is a vary challenge scene

understanding dataset, which contains 150 classes (35 stuff

classes and 115 discrete object classes). The dataset is di-

vided into 20, 210/2, 000/3, 352 images for training, valida-

tion and testing.

PASCAL Context The dataset is widely used for scene

parsing, which contains 4,998 images for training and 5,105

images for testing. Following previous works [22, 37], we

evaluate the method on 60 categories ( 59 classes and one

background category ).

COCO Stuff The dataset has 171 categories including 80

objects and 91 stuff annotated to each pixel. Following pre-

vious works [7, 27, 22], we adopt 9,000 images for training

and 1,000 images for testing.

4.2. Implementation Details

We employ a dilated pretrained ResNet architecture as

our backbone network, where the dilated rates in the last

ResNet block is set to (2,2,2). Following [37, 40], we apply

a 3 × 3 convolution layer with BN, ReLU on the outputs

of the last ResNet block to reduce the number of channels

to 512 before feeding into the first adaptive context block.

In addition, we adopt the outputs of ResNet block-1 and

ResNet block-2 as the low-level features, which provide lo-

cal context for the first two adaptive context blocks. And we

only adopt a global context module in last adaptive context

block. In the first two adaptive context block,we employ

a 3 × 3 convolution layer on the low-level featues before

feeding it into local context module. The other convolution

layers in the first two adaptive context block are composed

of a 3 × 3 convolution operation with 448 and 256 kernels

respectively followed by BN and ReLU. Pytorch is used to

implement our method.

During training phase, we employ a poly learning rate

policy where the initial learning rate is multiplied by (1 −
iter

total iter
)0.9 after each iteration, and enable synchronized

batch normalization [37]. The base learning rate is set

to 0.005 for Cityscapes and ADE20K, 0.001 for PASCAL

Context and COCO stuff. Momentum and weight decay

coefficients are set to 0.9 and 0.0001 respectively. Follow-

ing [40], auxiliary loss is adopted when we adopt the bock-

bone ResNet101. In addition, we apply random cropping

and random left-right flipping during training phase, and the

randomly scaling for data augmentation is not employed if

not mentioned on Cityscapes dataset.

4.3. Results on Cityscape dataset

Global Context Module: Firts of all, we design a global

context module to adaptively aggregate global context ac-

cording to pixel-aware demands. Specifically, we follow

[2] and build two dilated networks (ResNet-50) which yield

the final feature maps with the 1/8 and 1/16 size of the orig-

inal image. Next, the global context are added on the top

of the networks with two different settings, which are GC

and GCM respectively (GC denotes that we directly sum

the global features to each pixel equally, GCM represents

the global context module).

Experimental results are shown in Table. 1, we can see

that GCM (global context module) achieves better perfor-

mance than GC in both two settings, especially for the out-

put 1/8 size of the original image. It shows the effective-

ness of GCM and also indicates that the improvement will

be more obvious if the higher-resolution global gated coef-

ficient is produced in GCM based on the dilated FCN. In

addition, we also provide a discussion about δ, which con-

trols the amplitude of the difference between high response

and low response of the global gated coefficient (mentioned

in Sec.3.1). When we set δ to 5, the gloabl context module

6752



Image FCN Ground TruthOursCoefficient#1/16 Coefficient#1/8 Coefficient#1/4

Figure 4. Visualization results of global gated coefficient from global context module with 1/16, 1/8 and 1/4 resolution respectively, we can

find that the pixels with large global gated coefficient perfer to dominant stuff and large objects. Compared with FCN, our method enhance

semantic guidance with global context in the regions with large coefficient and provide more local context in other regions, thus obtaining

accurate segmentation results. (Best viewed in color)

Method mIOU(%)

Outputsize 1/16 1/8

Res-50 69.15 70.83

Res-50+GC 71.24 72.77

Res-50+GCM ( δ = 2) 72.36 74.21

Res-50+GCM ( δ = 5) 72.45 74.50

Res-50+GCM ( δ = 10) 71.87 74.30

Table 1. Ablation experiments of Global Context Module on

Cityscapes validation set, δ denotes the amplitude of difference

distribution of the global gated coefficient.

Method mIOU(%)

Res-50 69.15

Res-50+GCM 72.45

Res-50+GCM+LC 73.48

Res-50+GCM+LCM(1) 74.03

Res-50+GCM+LCM(2) 74.56

Res-50+GCM+LCM(3) 74.67

Table 2. Ablation experiments of Local Context Module on

Cityscapes validation set, (n) denotes the n times of fusion of local

gated features in the LCM.

yields the best performance. We fix this value and employ

the lowest resolution output 1/16 size of the original image

in following experiments.

Local Context Module: We also propose a local context

module to refine spatial details. Since we need to generate

the local gated coefficient for each pixel by inversing global

gated coefficien, the local context module is built on the

global context module. Specifically, experiments are con-

ducted on a dilated ResNet-50 with a GCM, then we cas-

cade local features from the outputs of ResNet block-2 with

(LCM) and without (LC) local gated coefficient .

Results are shown in Table 2, we can see that the local

Method mIoU(%)

Res-50+ACB#1 74.67

Res-50+ACB#2 75.98

Res-50+ACB#3 76.53

Res-101+ACB#3 77.42

Res-101+ACB#3+MG 78.50

Res-101+ACB#3+MG+DA 80.09

Res-101+ACB#3+MG+DA+OHEM 80.89

Res-101+ACB#3+MG+DA+OHEM+MS 82.00

Table 3. Ablation experiments of Adaptive Context Block on

Cityscapes validation set, #n denotes the number of Adaptive Con-

text Block, MG denotes multi-grid dilated convolution, DA de-

notes data augmentation with multi-scale input during training

phase, MS denotes multi-scale testing.

context improves the performance from 72.45% to 73.48%.

When we adopt the local gated coefficient to selectively fuse

local context for each pixel once, the performance is further

improved to 74.03%. Reusing local gated feature brings

continuous improvements of the performance from 74.03%

to 74.67%.

Adaptive Context Block: We further build an adaptive

context block and cascade it for three times to obtain high

resolution predictions. Results are listed in Table 3. When

we employ three adaptive context blocks (ACB#3), the per-

formance is improved to 76.53%, which verifies the effec-

tiveness of our method.

In addition, we visualize the global gated coefficients in

three adaptive context blocks with different resolutions as

shown in Figure 4. The images are from the validation set

of Cityscapes. We can find that the pixels with large global

gated coefficient perfer to dominant stuff and large objects,

such as the “road” in the first row and “car” in the last two

rows. These stuff and objects are improved in our method.

In addition, the pixels with small global gated coefficient

perfer to small objects and edges, such as the “traffic sign”
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Ground TruthACNetImage Ground TruthACNetImage

Figure 5. Example results of ACNet on Cityscapes validation set. (Best viewed in color)
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RefineNet [22] 73.6 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70

DUC [29] 77.6 98.5 85.5 92.8 58.6 55.5 65 73.5 77.9 93.3 72 95.2 84.8 68.5 95.4 70.9 78.8 68.7 65.9 73.8

ResNet-38 [30] 78.4 98.5 85.7 93.1 55.5 59.1 67.1 74.8 78.7 93.7 72.6 95.5 86.6 69.2 95.7 64.5 78.8 74.1 69 76.7

PSPNet [40] 78.4 - - - - - - - - - - - - - - - - - - -

BiSeNet [33] 78.9 - - - - - - - - - - - - - - - - - - -

PSANet [41] 80.1 - - - - - - - - - - - - - - - - - - -

DenseASPP [32] 80.6 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8

CCNet [14] 81.4 - - - - - - - - - - - - - - - - - - -

DANet [16] 81.5 98.6 86.1 93.5 56.1 63.3 69.7 77.3 81.3 93.9 72.9 95.7 87.3 72.9 96.2 76.8 89.4 86.5 72.2 78.2

ACNet 82.3 98.7 87.1 93.9 61.6 61.8 71.4 78.7 81.7 94.0 73.3 96.0 88.5 74.9 96.5 77.1 89.0 89.2 71.4 79.0

Table 4. Category-wise comparison with state-of-the-art methods on Cityscapes testing set.

and “pole”,“person”, etc. These spatial details are also be

refined in our results. A similar trend is also spotted in other

images.

Some improvement strategies: we follow the common

procedure of [3, 16, 12, 8, 6, 11] to further improve the

performance of ACNet: (1) A deeper and powerful net-

work ResNet-101. (2) MG: Different dilated rates (4,8,16)

in the last ResNet block. (3) DA: We transform the input

images with random scales (from 0.5 to 2.2) during train-

ing phase. (4) OHEM: The online hard example mining is

also adopted. (5) MS: we apply the multi-scale inputs with

scales {0.5 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25} as well as their

mirrors for inference.

Experimental results are shown in Table 3, when em-

ploying a deeper backbone (ResNet101), ACNet obtains

77.42% in terms of mean IoU. Then multi-grid dilated

convolutional improves the performance by 1.08%. Data

augmentation with multi-scale input (DA) brings another

1.59% improvement. OHEM increases the performance to

80.89%. Finally, using multi-scale testing, we attains the

best performance of 82.00% on the validation set.

Compared with state-of-art methods: We also compare

our method with state-of-the-art methods on Cityscapes test

set. Specifically, we fine tune our best model of ACNet with

only fine annotated trainval data, and submit our test results

to the official evaluation server. For each method, we report

the accuracy for each class and the average class accuracy,

which are reported in the original paper. Results are shown

in Table. 4. We can see that our ACNet achieve a new

state-of-the-art performance of 82.3% on the test set. With

the same backbone ResNet-101, our model outperforms

DANet[16]. Moreover, ACNet also surpasses DenseASPP

[32] , which uses more powerful pretrained models, and is

heigher than Deeplabv3+ [4] (82.1%), which uses extra the

coarse annotations in training phase.

4.4. Results on ADE20K dataset

In this subsection, we conduct experiments on the

ADE20K dataset to validate the effectiveness of our

method. Following previous works [14, 18, 37, 40, 41],

data augmentation with multi-scale input and multi-scale

testing are used. We evalute ACNet by pixel-wise accu-

racy (PixelAcc) and mean of class-wise intersection over

union (mIoU). Quantitative results are shown in Table.5.

With ResNet50, the dilated FCN obtains 37.32%/77.78% in

terms of mIoU and PixelAcc. When adopting our method,

the performance is improved by 5.69%/3.23%. When em-

ploying a deeper backbone ResNet101, ACNet achieves a

new state-of-the-art performance of 45.90%/81.96%, which

outperforms the previous state-of-the-art methods. In ad-
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Backbone Method mIoU (%) PixAcc%

Res-50

Dilated FCN 37.32 77.78

EncNet[37] 41.11 79.73

GCU[18] 42.60 79.51

PSPNet[40] 42.78 80.76

PASNet[41] 42.98 80.92

ACNet 43.01 81.01

Res-101

UperNet[31] 42.66 81.01

PSPNet[40] 43.29 81.39

DSSPN[20] 43.68 81.13

PASNet[41] 43.77 81.51

SGR [19] 44.32 81.43

EncNet[37] 44.65 81.19

GCU[18] 44.81 81.19

ACNet 45.90 81.96

Table 5. Results of semantic segmentation on ADE20K validation

set.

Method Final score(%)

PSPNet269 (1st in place 2016) 55.38

PSANet-101[41] 55.46

CASIA IVA JD (1st in place 2017) 55.47

EncNet-101 [37] 55.67

ACNet-101 55.84

Table 6. Results of semantic segmentation on ADE20K testing set.

Backbone Method mIoU (%)

Res-101

Ding et al.[7] 51.6

EncNet [37] 51.7

SGR [19] 52.5

DANet [16] 52.6

ACNet 54.1

Res-152
RefineNet [22] 47.3

MSCI[21] 50.3

Xception-71 Tian et al.[28] 52.5

Table 7. Segmentation results on PASCAL Context testing set.

dition, we also fine tune our best model of ACNet-101

with trainval data, and submit our test results on the test

set. The with single model of ACNet-101 gets final score

as 55.84%. Among the approaches, most of methods

[40, 37, 18, 38, 41, 14] attemp to explore the global infor-

mation by aggregation variant and relationship of the fea-

ture on the the top of the backbones. While our method fo-

cuses on capturing the pixel-aware contexts from high and

low-level features and achieves better performance.

4.5. Results on PASCAL Context Dataset

We also carry out experiments on the PASCAL Context

dataset to further demonstrate the effectiveness of ACNet.

We employ the ACNet-101 network with the same train-

Backbone Method mIoU(%)

Res-101

RefineNet [22] 33.6

Ding et al.[7] 35.7

DSSPN[20] 38.9

SGR [19] 39.1

DANet[16] 39.7

ACNet 40.1

Table 8. Segmentation results on COCO Stuff testing set.

ing strategy on ADE20K and compare our model with pre-

vious state-of-the-art methods. The results are reported in

Table 7. ACNet obtains a Mean IoU of 54.1%, which sur-

passes previous published methods. Among the approaches,

the recent methods[21, 28] use more powerful network(e.g.

ResNet-152 and Xception-71) as encoder network and fuse

high-and low-level feature in decoder network, our method

outperforms them by a relatively large margin.

4.6. Results on COCO stuff Dataset

Finally, we demonstrate the effectiveness of ACNet on

the COCO stuff dataset. The ACNet-101 network is also

employed. The COCO stuff results are reported in Table 8.

ACNet achieves performance of 40.1% Mean IoU, which

also outperforms other state-of-the-art methods.

5. Conclusion

In this paper, we present a novel network of ACNet to

capture pixel-aware adaptive contexts for scene parsing, in

which a global context module and a local context mod-

ule are carefully designed and jointly employed as an adap-

tive context block to obtain a competitive fusion of the both

contexts for each position. Our work is motivated by the

observation that the global context from high-level features

helps the categorization of some large semantic confused

regions, while the local context from lower-level visual fea-

tures helps to generate sharp boundaries or clear details.

Extensive experiments demonstrate the outstanding perfor-

mance of ACNet compared with other state-of-the-art meth-

ods. We believe such an adaptive context block can also be

extended to other vision applications including object de-

tection, pose estimation, and fine-grained recognition.
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