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Abstract

In this work, we present a new operator, called Instance

Mask Projection (IMP), which projects a predicted instance

segmentation as a new feature for semantic segmentation.

It also supports back propagation and is trainable end-to-

end. By adding this operator, we introduce a new way to

combine top-down and bottom-up information in semantic

segmentation. Our experiments show the effectiveness of

IMP on both clothing parsing (with complex layering, large

deformations, and non-convex objects), and on street scene

segmentation (with many overlapping instances and small

objects). On the Varied Clothing Parsing dataset (VCP),

we show instance mask projection can improve mIOU by

3 points over a state-of-the-art Panoptic FPN segmenta-

tion approach. On the ModaNet clothing parsing dataset,

we show a dramatic improvement of 20.4% compared to

existing baseline semantic segmentation results. In addi-

tion, the Instance Mask Projection operator works well on

other (non-clothing) datasets, providing an improvement in

mIOU of 3 points on “thing” classes of Cityscapes, a self-

driving dataset, over a state-of-the-art approach.

1. Introduction

This paper addresses producing pixel-accurate semantic

segmentations. This is relevant for a wide range of appli-

cations, from self-driving, where predicting accurate local-

izations of objects, buildings, people, etc, (as illustrated in

the Cityscapes dataset [9]), will be necessary for produc-

ing safe autonomous vehicles, to commerce, where accu-

rate segmentations of the clothing items someone is wear-

ing [43] will form a foundational building block for applica-

tions like visual search or virtual try-on. Many other poten-

tial applications can be envisioned, especially in real-world

scenarios where intelligent agents are using vision to per-

ceive their surrounding environments, but for this paper we

focus on two areas, street scenes and fashion outfits, as two

widely differing settings to demonstrate the generality of

our method.

We propose combining top-down information from de-
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Figure 1: Example system flow: An Instance Mask Projec-

tion operator takes the instance mask as the input (Class,

Score, BBox, Mask) and projects the results as a feature

map for semantic segmentation prediction. In this example,

a “Dress” is detected in the instance detection pipeline, then

projected to the feature layer.

tection results, bounding box and instance mask prediction,

as in Mask R-CNN [18], with semantic segmentation. The

core of our approach is a new operator, Instance Mask Pro-

jection (IMP), that projects the predicted masks (with uncer-

tainty) from Mask R-CNN for each detection into a feature

map to use as an auxiliary input for semantic segmentation,

significantly increasing accuracy. Furthermore, in our im-

plementations the semantic segmentation pipeline shares a

trunk with the detector, as in Panoptic FPN [21], resulting

in a fast solution.

This approach is most helpful for improving semantic

segmentation of objects for which detection works well,

movable foreground objects (things) as opposed to regions

like grass (stuff). Using the instance mask output from a de-

tector allows the approach to make decisions about the pres-

ence/absence/category of an object as a unit, and to explic-

itly estimate and use the scale of a detected object for aggre-

gating features (e.g. in roi-pooling). In contrast, standard

semantic segmentation must make the decision about object

type over and over again at each location using a fixed scale

for spatial context. Combining semantic segmentation pre-

diction with Instance Mask Projection improves accuracy

for concave shapes, in addition to offering high-resolution

output.

As part of validating the effectiveness of this approach
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we demonstrate several new results:

• The object masks predicted by Mask R-CNN [18] are

sometimes more accurate than semantic segmentation

for some objects. See Sec. 4.1 and 4.2.

• Following this insight we design the Instance Mask

Projection (IMP) operator to project these masks as a

feature for semantic segmentation, see Sec. 3.1.

• Segmentation results with IMP significantly improve

on the state of the art for semantic segmentation on

clothing segmentation. Showing the best results on

ModaNet [43], improving mean IOU from 51% for

DeepLabV3+ to 71.4%. See sec. 4.2.

• Across three datasets, using features from IMP im-

proves significantly over a Panoptic segmentation

baseline (the same system without IMP) and produces

state of the art results. See Sec. 4.3.

2. Related Work

Our work builds on current state-of-the-art object detec-

tion and semantic segmentation models which have ben-

efited greatly from recent advances in convolution neural

network architectures. In this section, we first review re-

cent progress on object localization and semantic segmen-

tation. Then, we describe how our proposed model fits in

with other works which integrate both object detection and

semantic segmentation.

2.1. Localizing Things

Initially, methods to localize objects in images mainly

focused on predicting a tight bounding box around each ob-

ject of interest. As the accuracy matured, research in object

localization has expanded to not only produce a rectangular

bounding box but also an instance segmentation, identifying

which pixels corresponding to each object.

Object Detection: R-CNN [16] has been one of the most

foundational lines of research driving recent developments

in detection, initiating work on using the feature representa-

tions learned in CNNs for localization. Many related works

continued this progress in two-stage detection approaches,

including SPP Net [19], Fast R-CNN, [15] and Faster R-

CNN [34]. In addition, single-shot detectors, YOLO [33]

and SSD [28], have been proposed to achieve real-time

speed. Many other recent methods have been proposed

to improve accuracy. R-FCN [11] pools position-sensitive

class maps to make predictions more robust. FPN [24]

and DSSD [14] add top-down connections to bring seman-

tic information from deep layers to shallow layers. Focal-

Loss [25] reduces the extreme class imbalance by decreas-

ing influence from well-predicted examples.

Instance Segmentation: Compared to early instance seg-

mentation works [10, 23], Mask R-CNN [18] identifies the

Input Panoptic-FPN Mask R-CNN-IMP Panoptic-FPN-IMP

(a)

(b)

(c)

(d)

skin hair hat tie glasses

t-shirt shirt dress jacket leggings
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necklace

Figure 2: From left to right, images, results of Panoptic-

FPN, results of Mask R-CNN-IMP, results of our final

model, Panoptic-FPN-IMP. Figure 2b, Figure 2c and 2d

show Mask R-CNN-IMP generates cleaner results than

Panoptic-FPN. Figure 2a shows combing semantic segmen-

tation features with IMP can fix problems from both. Fig-

ure 2b shows Mask R-CNN-IMP causes less false positives.

core issue for mask prediction as ROI-pooling box mis-

alignment and proposes a new solution, ROI-Alignment us-

ing bilinear interpolation to fix quantization error. Path

Aggregation Network [27] pools results on multiple layers

rather than one to further improve results.
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2.2. Semantic Segmentation

Fully Convolutional Networks (FCN) [36] has been the

foundation for many recent semantic segmentation models.

FCN uses convolution layers to output semantic segmenta-

tion results directly. Most current semantic segmentation

approaches can be roughly categorized into two types, di-

lated convolution, or encoder-decoder based methods. We

describe each, and graphical model enhancements below.

Dilated Convolution: Dilated convolution [39, 7] increases

the dilated kernels to learn larger receptive fields with fewer

convolutions, producing large benefits in semantic segmen-

tation tasks where long range context is useful. Thus, many

recent approaches [8, 41, 40, 3] have incorporated dilated

convolution. Deformable Convolution Network [12] takes

this idea one step further, learning to predict the sampling

area to improve the convolution performance instead of us-

ing a fixed geometric structure.

Encoder-Decoder Architecture: SegNet [2] and U-

NET [35] proposed adding a decoder stage, to upsample

the feature resolution and produce higher resolution se-

mantic segmentations. Encoder-decoder frameworks have

also been widely adopted in other localization related ar-

eas of computer vision, such as Facial Landmark Predic-

tion [20], Human Key Point Detection [30], Instance Seg-

mentation [32], and Object Detection [24, 14] .

Graphical Models: Although deep learning approaches

have improved semantic segmentation results dramatically,

the output result is often still not sharp enough. One com-

mon approach to alleviate these issues is to apply a CRF-

based approach to make the output more aligned with the

color differences. Fully connected CRF [8, 6], and Domain

Transform [5] are two such approaches that can be trained

with neural networks in an end-to-end manner. Soft Seg-

mentation [1] fuses high-level semantic information with

low-level texture and color features to carefully construct

a graph structure, whose corresponding Laplacian matrix

and its eigenvectors reveal the semantic objects and the soft

transitions between them. Soft segments can then be gen-

erated via eigen decomposition. Although using graphical

models can make the prediction boundary align with the

color differences, it cal also cause small objects to disappear

due to excessive smoothing. Additionally, these methods all

rely on good semantic segmentation results.

2.3. Combined Detection & Semantic Segmentation

In part due to newly released datasets, such as COCO-

Stuff [4], research efforts toward integrating object detec-

tion/instance segmentation and semantic segmentation in a

single network have increased. Panoptic Segmentation [22]

proposed a single evaluation metric to integrate instance

segmentation and semantic segmentation. Following these

efforts, Panoptic FPN [21] showed that the FPN architecture

can easily integrate both tasks in one network trained end-

to-end. Earlier work, Blitznet [13], also demonstrated that

both tasks can be improved in multitask training. One re-

lated improvement on Panoptic FPN is UPSNet [38] which

uses projected instance masks stacked with semantic seg-

mentation outputs to make a decision about which type of

prediction (instance mask or semantic segmentation) to use

at each location. This decision is made using softmax (with-

out learning). In comparison, our approach uses the pro-

jected instance masks as features to improve semantic seg-

mentation, an orthogonal improvement.

Although we use Mask R-CNN [18] / Panoptic FPN [21]

architectures for producing instance segmentation and se-

mantic segmentation predictions, our Instance Mask Projec-

tion operator is general and could alternatively make use of

other instance and semantic segmentation architectures as

baseline models, making it easy to incorporate future devel-

opments on either task to provide better combined results.

3. Model

Our goal is to develop a joint instance/semantic seg-

mentation framework that can directly integrate predictions

from instance segmentation to produce a more accurate se-

mantic segmentation labeling. Our model is able to take

advantage of recent advances in instance segmentation al-

gorithms like Mask R-CNN [18] as well as advancements

in semantic segmentation models [21]. In this section, we

first explain the proposed Instance Mask Projection (IMP)

operator (Sec 3.1). Next, we describe how this is used to

augment and improve various base models (Sec 3.2).

3.1. IMP: Instance Mask Projection

The Instance Mask Projection operator projects the seg-

mentation masks from an instance mask prediction, defined

on a detection bounding box, onto a canvas defined over the

whole image. This canvas is then used as an input feature

layer for semantic segmentation1.

Each predicted instance mask has a Class, Score, BBox

location, and h×w Mask2. First, the score for each pixel in

the Mask is scaled by the object Score for the Class. Then,

locations in the canvas layer for the Class are sampled from

the scaled mask. Note that the canvas is updated only if the

scaled mask value is larger than the current canvas value.

This is illustrated in Figure 1 where a “dress” is detected

by Mask R-CNN and then projected onto the canvas in its

detected BBox location. The projected layer shows the low

resolution instance mask which predicts an outline of the

dress, while the next step of semantic segmentation uses

some of the FPN feature layers as well as the canvas as fea-

tures to produce a more accurate parse.

1The resolution of the canvas can be chosen according to which feature

layer is attached.
2The resolution of Mask is 28×28 in Mask R-CNN
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Figure 3: Variants of models we used in the experiments. (a)

Mask R-CNN-IMP uses IMP to directly generate a semantic

segmentation prediction. (b) Panoptic-P2 uses the P2 layer

in FPN to generate a semantic segmentation. (c) Panoptic-

P2-IMP demonstrates how to apply IMP on Panoptic-P2.

(d) Panoptic-FPN combines the features layers {P2, P3, P4,

P5} for semantic segmentation. See Figure 4 for an illustra-

tion of Panoptic-FPN-IMP.

The IMP operator can be implemented efficiently us-

ing custom CUDA kernels, see Algorithm 1. The in-

put parameters are instance segmentation results, Class

C:[N ], Probability P :[N ], Mask M :[N, 28, 28], and BBox

B:[N ], where N is the number of masks. For each

cell ci in Mask M , it first identifies its indices in the

Mask using the DecodeIndexes function and then obtains

projected value vi by multiplying its value and probabil-

ity P [ni]. The projected region xmin, ymin, xmax, ymax

Algorithm 1: CUDA impelmentation of Forward of

IMP

Input: (C,P,M,B): Mask R-CNN Results, Class

C:[N], Probability P :[N ], Mask

M :[N ,28,28], and BBox B:[N ], where N is

the number of detections

Output: (F ):The projected feature map denoted by

F :[D,H ,W ], where D is the Class, and

H ,W are the height and width of the feature

map

Function IMP(C,P,M,B):

for cell ci ∈ Mask : [N, 28, 28] do in parallel

ni,maskhi,maskwi ← DecodeIndexes(ci);
vi = M [ni,maskhi,maskwi] ∗ P [ni];
xmin, ymin, xmax, ymax ←

ProjectRegion(B[ni],maskhi,maskwi);
foreach pixel

pj ∈ F [C[ni], ymin : ymax, xmin : xmax] do

pj ← atomicMax(pj , vi);

return F ;

can be calculated using BBox location B[ni] and its in-

dexes maskhi,maskwiin Mask. In the projected region

F [C[ni], ymin : ymax, xmin : xmax], we use the atomicMax

operation to update the value of each pixel. Each cell runs

concurrently in the CUDA kernel and the atomicMax op-

eration guarantees only the max value will be kept when

multiple cells project to the same pixel.

We concatenate the IMP canvas with the feature layer(s)

(either P2 or P2-5) to let the network use this as a strong

prior for object location, allowing the semantic segmenta-

tion part of the model to focus on making improvements to

the instance predictions during learning.

3.2. Adding IMP to Base Models

Mask R-CNN-IMP

Figure 3a illustrates Mask R-CNN-IMP which uses Mask

R-CNN as a base model and adds IMP to project the in-

stance masks to a canvas, used as an approximate semantic

segmentation. This does not involve any learning or addi-

tional processing for semantic segmentation after projection

and already performs well for some objects.

Panoptic-P2, Panoptic-P2-IMP, Semantic-P2

Next we consider lightweight versions of Panoptic FPN [21]

as the base model. Panoptic FPN extends the Mask R-CNN

network architecture to predict both instance segmentation

and semantic segmentation. The added semantic segmen-

tation head takes input from multiple layers of the Feature

Pyramid Network (FPN) [24] used in Mask R-CNN. We

perform some experiments with a lightweight version we
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Figure 4: Architecture: Panoptic-FPN-IMP: Our full model contains four parts. The first part is FPN + Mask R-CNN which

is used for detecting and predicting an instance mask for objects. The Instance Mask Projection Module projects the instance

mask to generate a new feature layer(1xCx1/4). For the Semantic Segmentation Module, we adopt Panoptic FPN [21] which

up-samples and transforms {P2, P3, P4, P5} to 1x128x1/4 and sums them. Then, we concatenate the results of Instance Mask

Projection and the semantic segmentation module and use these are features for the final semantic segmentation prediction.

See Figure 3 for other models.

call Panoptic-P2 that only takes features from the P2 layer

of the FPN for use by the semantic prediction head (and

does not use GroupNorm), shown in Figure 3b. When we

also remove the RPN and bounding box prediction heads

from Panoptic-P2, leaving just the semantic head attached

to P2 we call the network Semantic-P2. We experiment

with adding Instance Mask Projection to Panoptic-P2, and

call this Panoptic-P2-IMP (illustrated in Figure 3c).

Panoptic-FPN, Panoptic-FPN-IMP, Semantic-FPN
Next, we experiment with adding IMP to the full Panop-

tic FPN [21], calling this Panoptic-FPN-IMP, shown in

Figure 4. We also experiment with two ablated versions,

Panoptic-FPN alone (see Figure 3d ) and Semantic-

FPN which drops the RPN and bounding box heads from

Panoptic-FPN.

Figure 4 illustrates Panoptic-FPN-IMP which uses the

conv3x3(128) + GroupNorm [37] + ReLU + Bilinear up-

sampling(2x). For P3(scale/8), P4(scale/16), P5(scale/32)

layers, we first upsample each to (1/4) scale. For the P2

layer, we apply conv3x3 to reduce the dimension from 256

to 128. Then, we sum these 4 layers to (128× H/4 ×
W/4)

and concatenate with the Instance Mask Projection layer to

form the feature layer((128 + C)×H/4×
W/4). Finally, we

apply 4 conv3x3 and 1 conv1x1 layers to generate semantic

segmentation predictions. In contrast to FPN-P2 networks,

all conv3x3 use GroupNorm.

3.3. Training

We adopt a two-stage training solution, first training a

Mask R-CNN detection/instance segmentation model then

using this as an initial prediction for training our full model.

Pre-training is incorporated for practical reasons to reduce

training time (without pre-training the IMP will vary signif-

icantly over training iterations, making convergence slow).

In the first stage, we follow the Mask R-CNN training set-

tings but adjust the parameters for 4 GPU machines (Nvidia

1080 Ti) by following the Linear Scaling Rule [17]. For im-

plementation we use PyTorch v1.0.0 [31] and base our code

on the Maskrcnn-benchmark repository [29].

4. Experiments

We evaluate our proposed model on two different tasks:

clothing parsing and street scene segmentation.

4.1. Varied Clothing Dataset

The Varied Clothing Dataset evaluates clothing pars-

ing – where the goal is to assign an apparel category la-

bel (e.g. shirt, skirt, sweater, coat, etc) to each pixel in

a picture containing clothing. This is an extremely chal-

lenging segmentation problem due to clothing deformations

and heavy occlusions due to layering. The dataset depicts

25 clothing categories, plus skin, hair, and background la-

bels, with pixel-accurate polygon segmentations, hand la-

beled on 6k images. The dataset covers a wide range of

depictions, including: real-world pictures of people, layflat

images (clothing items arranged on a flat surface), fashion-

runway photos, and movie stills. Special care is taken to

sample clothing photos from around the world, across var-

ied body shapes, in widely varied poses, and with full or

partial-bodies visible.

Since this dataset was initially collected for clothing

parsing, a single garment may be split into multiple seg-

ments (e.g. a shirt worn under a buttoned blazer may ap-

pear as a segment at the neck, plus 2 shirt cuff segments

at each wrist). To convert the semantic segmentations into

instance annotations, each segment (connected component)

is treated as an instance with corresponding bounding box.

This definition is slightly different than COCO [26] or
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Model BBox Mask
Semantic

mIOU mAcc

1 Mask R-CNN-IMP 29.9 26.7 43.91 56.93

Pure Semantic Segmentation

2 Semantic-P2 NA NA 37.00 48.57

3 Semantic-FPN NA NA 42.66 55.19

+Multitasking Training

4 Panoptic-P2 29.8 26.4 37.14 48.82

5 Panoptic-P2-IMP 30.6 26.8 46.59 59.24

+Adding IMP

6 Panoptic-FPN 29.6 26.7 45.01 57.08

7 Panoptic-FPN-IMP 30.4 26.8 47.03 61.52

Table 1: Ablation Study on Varied Clothing Datasetwith

ResNet-50 as the backbone network. We train the model

with different settings, Panoptic-P2 vs Panoptic-FPN, w/wo

Instance Mask Projection(IMP), w/wo BBox/Mask predic-

tion head. For the BBox, and Mask, we use the COCO

evaluation metric. For the semantic segmentation metric,

we use mean IOU and mean Accuracy.

Cityscapes [9] and produces more small instances. How-

ever, we experimentally observe benefits to this approach

over combining all segments from a garment into a single

instance/BBox because it doesn’t require the model to make

long range predictions across large occlusions.

In our experiments, the train and validation sets con-

tain 5493 and 500 images respectively and all images are

1280×720 pixels or higher. For training the first stage, we

use an ImageNet Classification pre-trained model, with pre-

diction layer weights initialized according to a normal dis-

tribution(mean=0, standard derivation=0.01). We set batch

size to 8, learning rate to 0.01, and train for 70,000 itera-

tions, dropping the learning rate by 0.1 at 40,000 and 60,000

iterations. We also use this setting for training the second

stage (including the semantic segmentation branch). For the

input image, we resize the short side to 800 pixels and limit

the long side to 1333.

Ablation Study:Effectiveness of different settings: Ta-

ble 1 shows the performance of our models under dif-

ferent settings with ResNet-50 as the backbone network.

PanopticFirst, we report the performance of baseline in-

stance (row 1) and semantic segmentation models (rows

2-3). Next, we show results on Panoptic models that in-

tegrate instance and semantic segmentation (Panoptic-P2

and Panoptic-FPN, rows 4 and 5). Adding our proposed

IMP operator significantly increases semantic segmenta-

tion performance when incorporated into each of these base

models (rows 6 and 7), improving absolute performance of

Panoptic-P2 by 9.45 mIOU and 1.42 in mAcc, and improv-

ing Panoptic-FPN by 2.02 mIOU and 4.44 in mAcc. For

reference, we also experiment with adding IMP to the base

Mask R-CNN model (row 1), and achieve semantic segmen-

tation performance better than Semantic-FPN and Panoptic-

P2, and comparable to Panoptic-FPN without requiring a

dedicated semantic segmentation branch.

Semantic-FPNMask R-CNN-IMP

Panoptic-FPNPanoptic-FPN-IMP

10 20 50 100200400
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(a) mIOU vs distance
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Figure 5: Analysis of mask accuracy for pixels within vary-

ing distances to the ground truth object boundary. In this

Figure, we use Panoptic FPN as the backbone network

and show 4 models, Semantic-FPN, Mask R-CNN-IMP,

Panoptic-FPN, and Panoptic-FPN-IMP to show mIOU and

mAccuracy with respect to L2 distance to boundary in pix-

els (X Axes).

Ablation Study:Accuracy near the boundary: Another

question we consider is how much this method helps refine

object boundaries, since producing an accurate object con-

tour may be necessary for applications like visual search

or virtual clothing try-on. In Figure 5, we analyze the

mIOU/mAccuracy of pixels within 10-400 L2 distance from

the boundary. Generally, we observe that for pixels close

to the boundary, semantic and instance/semantic methods

all perform much better than Mask-R-CNN-IMP and this

gap decreases for larger distances. This is because Mask R-

CNN generates 28×28 instance masks. Therefore, once we

project the instance segmentation results on the canvas, the

boundary will not be sharp, but pixels near the center of the

object will be labeled correctly. We also generally observe

larger improvements of the IMP operator on pixels near the

boundary, with benefits dropping off for central pixels.

Qualitative results:In Figure 2, we show some qualita-

tive examples. In some cases, 2b, 2d, Mask R-CNN-IMP

already produces a better semantic segmentation than the

Panoptic-FPN architecture. We also observe that often,

when an object is small (tie, watch), or plain and cover-

ing a large area, IMP enhanced methods generally perform

better. In Figure 2a, by combining the semantic segmenta-

tion features and IMP, our model fixes category confusions

occurring on different regions of an object. Although most

training images in the Varied Clothing Datasetonly contain

one person per image, we see that our model generalizes

well to complicated examples containing multiple people
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Model mean bag belt boots foot- outer dress sun- pants top shorts skirts head scarf&
wear glasses wear tie

FCN-32 [36] 35 27 12 32 33 36 28 25 51 38 40 28 33 17

FCN-16 [36] 37 26 19 32 38 35 25 37 51 38 40 23 41 16

FCN-8 [36] 38 24 21 32 40 35 28 41 51 38 40 24 44 18

FCN-8satonce [36] 38 26 20 31 40 35 29 36 50 39 38 26 44 16

CRFasRNN [42] 41 30 18 41 39 43 32 36 56 40 44 26 45 22

DeepLabV3+ [8] 51 42 28 40 51 56 52 46 68 55 53 41 55 31

Ours:

R50 Panoptic-P2-IMP 69.7 74.8 57.4 59.7 59.4 69.2 64.2 68.5 77.2 67.7 71.9 62.7 75.3 97.5

R50 Panoptic-FPN-IMP 71.1 77.1 58.1 57.9 59.1 72.2 68.2 68.4 80.4 68.7 72.5 67.9 76.2 97.9

R101 Panoptic-FPN-IMP 71.4 77.9 59.0 58.8 59.4 72.0 68.3 68.6 79.3 69.1 74.1 67.8 76.4 97.9

Table 2: Comparison to the baseline models provided by ModaNet. Our model shows 20.4% absolute improvement for mean

IOU. For certain categories, especially those whose size is quite small such as belt, sunglasses, headwear and scarf & tie, our

models show dramatic improvement. For simplicity, we use R50 and R101 to represent ResNet0-50 and ResNet-101.

(Figure 2c).

4.2. ModaNet

ModaNet [43] is a large clothing parsing dataset, con-

taining annotations for BBox, instance-level masks, and se-

mantic segmentations. It contains 55k images (52,377 im-

ages in training and 2,799 images in validation), sampled

on an existing fashion focused dataset of images from the

Chictopia website. The ModaNet data is relatively low res-

olution (640x480 or smaller) compared to the Varied Cloth-

ing Dataset data, sampled to generally contain a single

full-body depiction of a standing person, centrally located

in the image. 13 clothing categories are labeled (without

skin, hair, or background) at relatively high fidelity (but less

pixel-accuracy than the Varied Clothing Dataset).

We use a similar two-stage ImageNet classification pre-

training method as for the Varied Clothing Dataset, training

for 90k iterations, dropping the learning rate at 60k and 80k

iterations. Here, we resize the input image to limit its short

side to 600 and long side to 1000. During training, we use

multi-scale training by randomly changing the short side to

{400, 500, 600, 700, 800}.

Model BBox Mask Semantic

(mIOU)

Semantic-P2 NA NA 64.60

Panoptic-P2 57.2 55.5 65.93

Mask R-CNN-IMP 57.2 55.5 66.23

Panoptic-P2-IMP 58.0 55.9 69.65

Panoptic-FPN-IMP 57.8 55.6 71.41

Table 3: Results on ModaNet with ResNet-50 as the back-

bone model. Panoptic-P2-IMP and Mask R-CNN-IMP both

provide improvements on semantic segmentation compared

to Semantic-P2 and Panoptic-P2.
Table 3 shows experimental results demonstrating the

addition of the IMP operator. We evaluate baseline models,

Semantic-P2 and Panoptic-P2, 64.60% and 65.93% mIOU,

respectively. Compared to these models, we see that Mask

R-CNN-IMP can generate better results on semantic seg-

mentation without a dedicated semantic segmentation head.

This also matches our previous experiments on the Varied

Clothing Dataset. Adding IMP to Panoptic-P2, Panoptic-

P2-IMP achieves a semantic performance of 69.65%, out-

performing Panoptic-P2 by 3.72% mIOU, and Panoptic-

FPN-IMP even further improves mIOU to 71.41%.

In Table 2, we also train our final model, Panoptic-

FPN-IMP with ResNet-101 and compare to the baseline

results provided by ModaNet [43]. First, our model

achieves 20.4% absolute mIOU improvement compared

to the best performing semantic segmentation algorithm,

DeepLabV3+, provided by ModaNet. Plus, we achieve

more consistent results, scoring over 50% IOU for each

class. Compared to the baseline results, our model does

extremely well on small objects, e.g. belt, sunglasses, head-

wear, scarf&tie (on scarf&tie we achieve 97.9% mIOU). We

have some speculations about these improvements. Com-

pared to semantic segmentation methods which tend to base

their predictions on fixed scale local regions, object detec-

tion takes context from a dynamically chosen region around

the object, providing an advantage for segmentation. We

also observe improvements on confusing classes, e.g. the

bottom part of a dress is visually similar to a skirt. Purely

semantic segmentation methods may not be able to differen-

tiate ambiguous cases as well as methods that exploit con-

text determined by object detection.

4.3. Cityscapes

We also experiment on Cityscapes [9], an ego-centric

self-driving car dataset. All images are high-resolution

(1024×2048) with 19 semantic segmentation classes, and

instance-level masks for 8 thing-type categories. The

collection contains two sets, fine-annotation and coarse-

annotation sets. We focus our experiments on fine-

annotation, containing 2975/500/1525 train/val/test images.

For Cityscapes, we use the COCO model as the pre-

trained model, reusing the weights in the prediction layer

for all classes except “Rider” which does not exist in

COCO (weights are randomly initialized). Then, the in-
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Type Stuff class Things class

Model road side-

walk

build-

ing

wall fence pole traffic

light

traffic

sign

vegeta-

tion

terrain sky person rider car truck bus train motor-

cycle

bicycle

Without all the Data Augmentation

97.7 81.7 91.2 41.2 51.7 58.8 67.3 74.6 91.6 59.3 93.8 81.2 60.3 93.6 61.4 80.4 63.2 57.0 76.1

IMP 97.6 81.5 91.2 39.6 52.0 59.2 66.6 74.9 91.5 59.7 93.8 81.9 64.7 93.8 63.9 81.6 74.0 63.5 76.7

With all the Data Augmentation

97.7 82.5 91.7 45.0 56.4 61.4 69.6 77.1 91.7 60.1 94.3 82.4 64.0 94.7 74.5 84.5 77.6 62.9 77.9

IMP 97.9 83.6 91.4 38.3 55.9 62.0 69.9 77.5 91.9 59.8 94.5 83.5 69.1 95.1 83.9 91.4 83.1 67.2 78.7

Table 4: Comparisons of per Class IOU with and without IMP on Cityscapes. We show two scenarios without (top) and with

(bottom) data augmentation. We see Instance Mask Projection(IMP) improves both scenarios. For Thing classes, we see

4.2/3.2 mIOU improvement with/without all data augmentation.

put is resized to 1024×2048 , or 800×1600 randomly.

We follow Panoptic FPN [21] to add three data augmen-

tations: multi-scaling, color distortion, and hard boostrap-

ping. For multi-scaling, the short side of the input image

is resized to {512, 724, 1024, 1448, 2048} randomly and

cropped to 512×1024. The color distortion randomly in-

creases/decreases brightness, contrast, and saturation 40%,

and shifts the Hue {-0.4, 0.4}. Hard boostrapping selects

the top 10, 25, 50 percent of pixels for the loss function.

In contrast to Varied Clothing Dataset and ModaNet, we

skip the first-stage training, since the pretrained model from

COCO already provides strong enough performance. We

set batch size to 16, learning rate to 0.005, and train for

130,000 iterations, dropping the learning rate by 0.1 at

80,000 and 110,000 iterations. For Cityscapes, we focus

evaluations on the FPN-Panoptic network. A detailed abla-

tion study of parameter choice can be found in Table 1 in

Appendix.

Compared to the Varied Clothing Dataset and ModaNet,

we observe less dramatic overall improvement from IMP.

One reason is that only 8 of 19 classes are ”thing” like cat-

egories where we expect our method to be most helpful. In

Table 4, we show two comparison sets (with and without

data augmentation) for each Cityscapes class. For the Stuff

classes, the difference are minor, except ‘Wall‘ (-1.6/-6.7).

For the Thing classes, certain classes are improved dramat-

ically, especially those that have fewer training instances or

that are smaller, i.e. Rider, Truck, Bus, Train, Motorcycle.

In fact, over all Thing classes we observe a mIOU increase

of 4.2/3.2, with and without data augmentation respectively.

Besides ResNet-50, we also train our final model,

Panoptic-FPN-IMP with ResNet-101 and ResNeXt-

101-FPN to compare with state-of-the-art methods on

Cityscapes val set (Table 5). Our method is still better

than Panoptic FPN [21], though the improvements are

reduced when using more complex models. Overall, we

observe our simple model can achieve similar performance

to those models using heavily engineering methods.

Method Backbone mIOU

PSANet101 [41] ResNet-101-D8 77.9

Mapillary [3] WideResNet-38-D8 79.4

DeeplabV3+ [8] X-71-D16 79.6

Panoptic FPN [21] ResNet-101-FPN 77.7

ResNeXt-101-FPN 79.1

Ours:Panoptic-FPN-IMP ResNet-50-FPN 77.5

ResNet-101-FPN 78.3

ResNeXt-101-FPN 79.4

Table 5: Comparisons on Cityscapes val set. Our mod-

els obtain 0.6 and 0.3 mIOU improvement over Panoptic-

FPN [21] on the same backbone architectures.

4.4. Inference Speed Analysis

Due to the different number of instance classes and in-

put resolutions, the speed performance of models can vary.

In experiments, we find the results are quite consistent and

very efficient, adding IMP only costs ∼1-2 ms in inference

on top of each baseline model. The inference time of all the

models used in the experiments can be found in Table 6 in

the Appendix.

5. Conclusion
In this work, we propose a new operator, Instance Mask

Projection, which projects the results of instance segmenta-

tion as a feature representation for semantic segmentation.

It easily combines top-down and bottom-up information for

semantic segmentation. This operator is simple but power-

ful. Experiments adding IMP to Panoptic-P2/Panotpic-FPN

show consistent improvements, with negligible increases in

inference time. Although we only apply it to Panoptic-

P2/Panoptic-FPN, this operator can generally be applied to

other architectures as well.
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