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Abstract

To effectively reduce JPEG compression artifacts, we

propose a deep convolutional sparse coding (DCSC) net-

work architecture. We design our DCSC in the framework

of classic learned iterative shrinkage-threshold algorithm

[16]. To focus on recognizing and separating artifacts only,

we sparsely code the feature maps instead of the raw image.

The final de-blocked image is directly reconstructed from

the coded features. We use dilated convolution to extract

multi-scale image features, which allows our single model

to simultaneously handle multiple JPEG compression level-

s. Since our method integrates model-based convolutional

sparse coding with a learning-based deep neural network,

the entire network structure is compact and more explain-

able. The resulting lightweight model generates compara-

ble or better de-blocking results when compared with state-

of-the-art methods.

1. Introduction

Image compression methods such as JPEG, WebP and

HEVC-MSP, allow for efficient image storage and transmis-

sion. However, their possibly coarse quantization can result

in visible artifacts. These artifacts severely degrade both

perceptual quality and subsequent computer vision system-

s. Reducing the artifacts of lossy compression is an impor-

tant computer vision task, most notably for the most widely

used JPEG format.

JPEG compression is achieved by applying a discrete

cosine transformation (DCT) on 8×8 pixel blocks. The

DCT coefficients are further coarsely quantized to save s-

torage space. However, this scheme results in image dis-

continuities at the boundaries of blocks, which generate
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blocking and blurring artifacts. To improve the quality of

JPEG compressed images, different methods have been ex-

plored. In general, JPEG artifacts reduction methods are

either model-based [31, 46, 11, 33, 29] or learning-based

[8, 41, 53, 6, 14, 55]. The former is usually designed using

domain knowledge while the latter aims to learn a nonlinear

mapping function directly from training data.

Though learning-based methods have achieved compet-

itive performance compared with model-based methods for

JPEG artifacts reduction, these two methods have comple-

mentary merits. Model-based methods usually have clear

physical meaning, but suffer from time-consuming opti-

mization, while learning-based methods have fast testing

speed, but the learned model has insufficient explainabil-

ity. Recent work has shown the advantage of combining

powerful deep learning modeling approaches with model-

based sparse coding (SC) for JPEG artifacts reduction vi-

a a dual-domain network [41]. In this paper, we develop

this initial line of work based on shallow, fully connect-

ed layers by using ideas from convolutional sparse coding

[4, 22, 36]. Since convolutional sparse coding (CSC) is spa-

tially invariant and can directly process the whole image, it

is suitable for various low-level vision tasks, such as image

super-resolution [18] and layer decomposition [50, 17, 51].

Our main contribution is to propose a deep model for

JPEG artifacts reduction that has increased explainabili-

ty. Using the framework of learned iterative shrinkage-

threshold algorithm (LISTA) for CSC, we construct a recur-

sive deep model that isolates artifacts from the latent feature

maps. We utilize dilated convolutions for multi-scale im-

age features extraction, allowing our single model to han-

dle multiple JPEG qualities. Since we follow the classical

optimization algorithm in building our deep convolutional

sparse coding, each module is specifically designed rather

than simply stacked, making our model compact and easy

to implement. Compared with several state-of-the-art meth-

ods, our model achieves comparable or better de-blocking

performance based on both qualitative and quantitative e-

valuations.

2501



Figure 1. The framework of the proposed DCSC network for JPEG artifacts reduction. Each component of our network is designed to

complete a specific task. First, dilated convolutions are performed on the JPEG compressed image J to obtain multi-scale features X.

Then, a convolutional and iterative LISTA is constructed to sparsely code X to recognize and separate artifacts. The learned sparse codes

UR are finally used to generate the residual H for predicting the de-blocked image O. Note that S is shared across iterations according to

the feed-forward unrolling form of ISTA (3).

1.1. Related work

Early JPEG artifacts reduction methods depended heav-

ily on design, such as filtering in the image domain [31, 7,

46] or the transform domain [30]; for example, [11] use a

shape-adaptive DCT-based image filter and [49] use a join-

t image/DCT domain filtering algorithm. Another direc-

tion is to formulate artifacts removal as an ill-posed inverse

problem and solve via optimization, for example by pro-

jecting onto convex sets [43], using regression trees [24],

image decomposition [29] or the non-local self-similarity

property [52, 54, 28]. Sparsity has been fully explored as

a technique for effectively regularize this ill-posed problem

[5, 33, 34, 32].

In the past few years, notable progress has been made for

this problem by deep learning-based methods using deep

convolutional neural networks (CNNs). These methods aim

at learning a nonlinear mapping from uncompressed image

paired with its corresponding JPEG compressed version.

The first deep CNNs-based method for JPEG artifacts re-

duction was introduced by [8], where the authors design a

relatively shallow network structure on the basis of the pop-

ular super-resolution network [9]. In [6], a trainable nonlin-

ear reaction diffusion model for general image restoration

was proposed. Inspired by the success of residual learning

[21] and dense connection [23] in high-level vision tasks,

two very deep networks were introduced for general image

restoration, including JPEG artifacts reduction, image de-

noising and super-resolution [53, 39].

Since increasing network depth can increase the recep-

tive field, excellent performance is achieved by [53, 39].

Based on the JPEG-related priors in both image and DCT

domains [34], two different dual-domain networks [19, 41]

for the de-blocking are respectively proposed. In [19], the

authors design a 20-layer dual-domain network to elimi-

nate complex artifacts. In [41], to obtain speed and per-

formance gains, the authors build a cascaded network to

perform LISTA [16] in dual-domain. In [45], to effective-

ly recover high frequency details, the authors formulate the

de-blocking problem as a classification problem in the DC-

T domain. Inspired by the attractive generative adversarial

networks [15, 27], some de-blocking methods [14, 20] are

proposed to generate photo-realistic details to further im-

prove the visual quality. More recently, a decouple learn-

ing framework [10] is proposed to incorporate different pa-

rameterized image operators for image filtering and restora-

tion tasks. Our network architecture shares the similar spir-

it with method [41] by combining domain knowledge and

deep learning for JPEG artifacts reduction.

2. Methodology

We show the framework of the proposed DCSC in Fig-

ure 1. As illustrated, our model contains three components:

multi-scale feature extraction, convolutional LISTA on the

extracted features, followed by image reconstruction. The

entire network is an end-to-end system which takes a JPEG

compressed image J as input and directly generates the out-

put image O. The network is fairly straightforward, with

each component designed to achieve a specific task. Below

we describe our network architecture and training strategy.

2.1. Network architecture

2.1.1 Multi-scale feature extraction

Because JPEG compression quality can vary as desired, ar-

tifacts due to compression can vary in their spatial extent,

e.g., a lower JPEG quality causes larger scale artifacts in s-

mooth areas. To handle different JPEG qualities, existing

deep learning-based methods either train individual models

on each specific JPEG quality [9] or construct deep models

to the increase receptive field at the cost of a larger param-

eter burden [53, 39]. To address this problem, we instead

adopt dilated convolutions [47] to extract multi-scale fea-
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tures. By dilating the same filter to different scales, dilated

convolutions can increase the contextual area without intro-

ducing extra parameters. Specifically, we first generate a

series of features using different dilation factors, and then

concatenate these features,

XDF = WDF ∗J+bDF ,

X = concat(XDF ), (1)

where DF is the dilation factor, XDF is the output feature

of dilated convolution, ∗ indicates the convolution opera-

tion, WDF and bDF are the kernels and biases in the dilat-

ed convolution, concat(·) denotes the concatenation.

In this work, we use three dilation factors, i.e., DF ∈
{1, 2, 4}, which we empirically noticed was sufficient for

our problem. Figures 2(d)-(e) show visual examples of d-

ifferent XDF of a JPEG compressed image (quality = 10).

Clearly, as the dilation factor increases, the corresponding

feature map captures larger scale structure and content. S-

ince the concatenated X contains multi-scale JPEG com-

pression features, our single network can handle different

JPEG qualities.

(a) JPEG image J (b) Our result O (c) Estimated H

(d) XDF=1 (e) XDF=2 (f) XDF=4

Figure 2. Visualization of multi-scale features XDF . We only

show 4 feature maps for each dilation factor for visualization.

2.1.2 Convolutional LISTA

To combine the advantages of model-based and learning-

based methods for JPEG artifacts reduction, we design the

second component of our network by integrating classic C-

SC approach [4, 51] with LISTA [16]. The problem of origi-

nal sparse coding is to find the optimal sparse code that min-

imizes following objective function (2) with ℓ1-regularized

code u,

argmin
u

‖x−Φu‖F + λ‖u‖
1
, (2)

where x is the input signal, Φ is an over-complete dictio-

nary, u is the corresponding sparse code, F is the Frobe-

nius norm, and λ is a positive parameter. To solve the SC

problem (2), the original ISTA was introduced to find sparse

codes with the following iterative equation,

ur = σθ(ur−1 +
1

L
Φ

T (x−Φur−1))

= σθ(
1

L
Φ

T
x+ (I−

1

L
Φ

T
Φ)ur−1)

= σθ(Gx+ Sur−1),

u0 = σθ(Gx), (3)

where r is the current iteration, L is a constant that must be

an upper bound on the largest eigenvalue of ΦT
Φ, σθ(·) is

the shrinkage function with a threshold θ [13]. To speed up

ISTA for real-time applications, LISTA [16] was proposed

to approximate the sparse coding of ISTA by learning pa-

rameters from data.

Even though conventional SC has been extended to var-

ious image restoration tasks [2, 42, 5], these methods learn

multiple features that are in fact shifted versions of the same

feature. To address this issue, convolutional sparse coding

methods have been introduced to build the objective func-

tion in a shift invariant way [51], which is achieved by

argmin
w,U

∥

∥

∥
X−

M
∑

m=1

w(m) ∗U(m)
∥

∥

∥

F
+ λ

M
∑

m=1

‖U(m)‖
1
.

(4)

When M sparse coefficients U are convolved with M con-

volutional dictionaries w, it can be used to approximate

the input image X. To solve (4), several algorithms have

been proposed [17, 51] with time-consuming optimization.

However, the convolution operation can be performed as a

matrix multiplication by transforming the kernel into a cir-

culant matrix [35]. Therefore, the CSC model (4) can be

seen as a special case of the general SC model (2). This

motivates us to modify the form of ISTA (3) as the second

component of our network, where matrix multiplication was

replaced by the convolutional operation.

At this time, the convolutional dictionaries in classical

CSC are embedded into learnable convolutional kernels G

and S, the sparse feature coefficients become the feature

maps Ur. We choose the widely used Rectified Linear U-

nit (ReLU) [26] as the non-linear activation function σθ(·)
since ReLU is able to introduce sparsity into the model.

Note that S is shared according to the iterative form. In

fact, there is a coupling relationship between G and S, i.e.,

S = I −GΦ according to Equation (3). However, this re-

lationship limits the model flexibility and capacity. To take

full advantages of deep learning, we use independent ker-

nels to individually model G and S.
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Figure 3 shows an example of the learned sparse features

UR. It is clear that JPEG artifacts (top row) and object

structures (bottom row) are recognized and separated. This

indicates that by combining a model-based convolutional

LISTA with deep learning, a simple network structure is

able to learn effective and discriminative features.

Figure 3. Visualization of learned sparse features UR of Figure 2.

Top row shows separated blocking artifacts and bottom row shows

clear structure. Due to space limitations, we only show 6 features.

To demonstrate the explainability, below we visualize t-

wo sparse feature maps (after ReLU) during iterations. As

shown in Figure 4, as the iteration progresses, the content

becomes stable. This is consistent with traditional optimiza-

tion methods, i.e., with many iterations the sparse code con-

verges to the optimal solution. Since we can clearly ob-

serve the changing state of the feature maps, our deep CSC

allows a kind of explainability to take place during infer-

ence. Meanwhile, the sparsity can also be observed in fea-

ture maps since a certain number of pixel values equals 0

after ReLU.

Figure 4. Examples of two sparse feature maps during iterations.

2.1.3 Image reconstruction

After R iterations, the sparse feature maps UR are finally

fed into a convolutional layer to generate the output image.

Inspired by the methods of [53, 12], in which residual in-

formation is used to simplify the learning problem, we map

UR to the residual image H,

H=WR∗UR+bR, (5)

where WR and bR are the parameters in the convolution.

As shown in Figure 2(c), the estimated residual H mainly

contains blocking artifacts and high-frequency information.

The final de-blocked image O is obtained by calculating

O = J+H. (6)

2.2. Loss function

The most widely used loss function for image restoration

tasks is mean squared error (MSE) [8, 53]. However, MSE

usually generates over-smoothed results due to the squared

penalty that works poorly at edges within an image. In-

stead, we use the mean absolute error (MAE) for network

training. MAE does not over-penalize larger errors and thus

can preserve structures and edges, as is well known in total

variation minimization applications. Given N training im-

age pairs {Oi,Ji}Ni=1
, the goal is to minimize the following

objective function,

L(Θ)=
1

N

N
∑

i=1

∥

∥f(Ji;Θ)−O
i
∥

∥

1
, (7)

where f(·) denotes our DCSC network and Θ represents all

trainable parameters.

2.3. Parameters setting

In our network architecture, all convolutional kernel

sizes are 3 × 3 and the number of iterations R is set to 40.

To keep the resolution of all the feature maps unchanged,

we zero pad prior to all convolutions. The number of fea-

ture maps of each dilated convolutional layer is 32, and we

set this number to 64 for the remaining convolutional layers.

2.4. Training details

We use the disjoint training set and testing set from BS-

D500 [3] as our training data. We use the Matlab JPEG en-

coder to generate JPEG compressed images by setting the

input quality value to 10, 20 and 30. We emphasize that

we only train one model to handle all three JPEG quali-

ties. The training process is conducted on the Y channel

image of YCrCb space. We randomly generate one mil-

lion 80×80 patch pairs for training and use TensorFlow [1]

to implement our end-to-end DCSC network. We use the

Adam solver [25] with a mini-batch size of 10 and fix the

learning rate to 10−4.
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(a) GT: PSNR|SSIM|PSNR-B (b) JPEG: 34.69|0.921|34.66 (c) LD: 36.69|0.951|36.87 (d) ARCNN: 37.52|0.966|37.45

(e) TNRD: 37.81|0.968|37.74 (f) DnCNN: 38.19|0.970|38.11 (g) LPIO: 38.10|0.970|38.02 (h) Ours: 38.17|0.971|38.14

Figure 5. Visual comparison on a JPEG compressed image (quality = 10) from the BSD500 dataset. Please zoom in for better visualization.

(a) GT: PSNR|SSIM|PSNR-B (b) JPEG: 30.47|0.827|30.47 (c) LD : 31.25|0.836|31.14 (d) ARCNN: 31.57|0.847|31.54

(e) TNRD: 31.68|0.850|31.62 (f) DnCNN: 31.75|0.853|31.67 (g) LPIO: 31.33|0.853|31.33 (h) Ours: 31.72|0.853|31.70

Figure 6. Visual comparison on a JPEG compressed image (quality = 20) from the LIVE1 dataset. Please zoom in for better visualization.

3. Experiments

3.1. Comparison with stateoftheart methods

We compare our network with one model-based method,

Layer Decomposition-based (LD) [29], and four learning-

based methods, Artifacts Reduction Convolutional Neural

Network (ARCNN) [8], Trainable Nonlinear Reaction Dif-

fusion (TNRD) [6], Denoising Convolutional Neural Net-

work (DnCNN) [53] and Learning Parameterized Image

Operators (LPIO) [10]. For testing we adopt the Classic5

[48] (5 images), LIVE1 [38] (29 images) and the valida-

tion set of BSD500 [3] (100 images) as data sets. Figures 5

and 6 show visual results of two JPEG compressed images

with quality = 10 and 20, respectively. As can be seen, our

DCSC has comparable visual results with DnCNN and LPI-

O while outperforming other methods. Moreover, DnCNN

and LPIO contain slight artifacts around the edges, as shown

in the red rectangles. In terms of computation, to process a

1024 × 1024 image, our DCSC needs 1.4 seconds on CPU

and 0.3 seconds on GPU. All experiment were run on a PC

with 2 Intel i7-8700 CPUs and 1 GTX 1080Ti GPU.

We also calculate the PSNR, structural similarity (SSIM)

[40], and PSNR-B [44] for quantitative assessment. PSNR-

B is recommended [8] for use in this problem since it is de-

signed to be more sensitive to blocking artifacts than SSIM.

The quantitative results are shown in Table 1. Our method

has comparable PSNR and SSIM values with DnCNN [53]

and the best PSNR-B results on all JPEG qualities. The
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Table 1. PSNR|SSIM|PSNR-B values and parameter numbers comparisons. The best and the second best results are boldfaced and under-

lined. Note that our DCSC achieves promising results on PSNR and SSIM and best results on PSNR-B, which is specifically designed for

evaluating this de-blocking task, with relative less parameter numbers.

Dataset Quality LD [29] ARCNN [8] TNRD [6] DnCNN [53] LPIO [10] Our DCSC

Classic5

10 28.39|0.800|27.59 29.03|0.793|28.78 29.28|0.799|29.04 29.40|0.803|29.10 29.35|0.801|29.04 29.25| 0.803|29.24

20 30.30|0.858|29.98 31.15|0.852|30.60 31.47|0.858|31.05 31.63|0.861|31.19 31.58|0.856|31.12 31.43| 0.860|31.41

30 31.50|0.882|31.31 32.51|0.881|32.00 32.78|0.884|32.24 32.91|0.886|32.36 32.86|0.883|32.28 32.68|0.885|32.66

LIVE1

10 28.26|0.805|27.68 28.96|0.808|28.77 29.15|0.811|28.88 29.19|0.812|28.91 29.17|0.811|28.89 29.17|0.815|29.17

20 30.19|0.871|30.08 31.29|0.873|30.79 31.46|0.877|31.04 31.59|0.880|31.08 31.52|0.876|31.07 31.48|0.880|31.47

30 31.32|0.898|31.27 32.67|0.904|32.22 32.84|0.906|32.28 32.98|0.909| 32.35 32.99|0.907|32.31 32.83|0.909|32.81

BSD500

10 28.03|0.782|27.29 28.56|0.783|28.54 28.42|0.781|28.30 28.84|0.783|28.44 28.81|0.781|28.39 28.81|0.784|28.79

20 29.82|0.851|29.57 30.42|0.852|30.39 30.35|0.854|30.16 31.05|0.857|30.29 30.92|0.855|30.07 30.96|0.857|30.92

30 30.89|0.883|30.83 31.51|0.884|31.47 31.36|0.887|31.12 32.36|0.891|31.43 32.31|0.886|31.27 32.24|0.890|32.19

# Params (×105) — 1.06 0.21 6.69 13.94 0.94

(a) GT: PSNR|SSIM|PSNR-B (b) JPEG: 33.76|0.938|33.74 (c) LD: 33.97|0.940|33.94 (d) ARCNN: 34.03|0.940|34.01

(e) TNRD: 34.76|0.948|34.73 (f) DnCNN: 36.53|0.965|36.41 (g) LPIO: 36.12|0.962|36.08 (h) Ours: 36.51|0.965|36.49

Figure 7. Visual comparison on a JPEG compressed image from the Twitter dataset [8].

PSNR-B results indicate our model is more suitable for this

JPEG artifacts reduction task. Moreover, compared with

DnCNN, our model achieves comparable results while the

parameter number is reduced by 86.49%. This is because

our DCSC is derived from the classical LISTA, which im-

proves the explainability. This explainability can guide us

to improve performance by better designing the network ar-

chitecture, rather than by simply stacking network layers.

3.2. Use case on Twitter

To further demonstrate the generalization ability of our

DCSC model for real use cases, we make a comparison-

s on the Twitter dataset provided by ARCNN [8]. This

dataset contains 114 high-quality images and their Twitter-

compressed versions. For this task we do not retrain any of

the deep learning-based methods. Figure 7 shows one ex-

ample, where we see that our model generates a compara-

ble overall visual quality with DnCNN [53] and LPIO [10],

while the edges and structures, shown in the red rectangles,

are sharper than other methods in our result. Table 2 shows

quantitative evaluation, where we again see our model con-

sistently generates the best PSNR-B values. This indicates

that our model has a good generalization ability and poten-

tial values for practical applications.

3.3. Ablation study

We next consider different model configurations to study

their impact on performance.

3.3.1 Multi-scale features

We first assess our multi-scale features extraction strategy

by training another network with the same structure, but

without using dilated convolutions. Figure 8 shows one vi-

sual comparison on a JPEG compressed image with quality
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Table 2. PSNR|SSIM|PSNR-B comparisons on the Twitter dataset [8].

LD [29] ARCNN [8] TNRD [6] DnCNN [53] LPIO [10] Our DCSC

24.18|0.693|24.17 28.12|0.752|28.11 28.46|0.761|28.43 28.65|0.770|28.43 25.84|0.758|25.80 28.55|0.770|28.54

(a) Ground truth (b) JPEG compressed image

(c) w/o dilated convolution (d) w/ dilated convolution

Figure 8. Effect of dilated convolution on a JPEG compressed im-

age with quality = 10.

Table 3. PSNR|SSIM|PSNR-B comparisons on LIVE1 dataset by

using dilated convolution.

Quality w/o dilated convolution w/ dilated convolution

10 29.10|0.812|29.08 29.17|0.815|29.17

20 31.41|0.878|31.39 31.48|0.880|31.47

30 32.79|0.906|32.78 32.83|0.909|32.81

= 10. As can be seen in Figure 8(a), without using dilated

convolution the de-blocked image retains obvious blocking

artifacts, since multi-scale information is not modeled. This

problem can be solved by stacking more convolution layers

[39] to increase the receptive field at the expense of more

parameters and memory requirements. As shown in Figure

8(b), using dilated convolutions can significantly reduce the

blocking artifacts without increasing parameter number. A

quantitative comparison on the LIVE1 dataset is also shown

in Table 3, where we see that using multi-scale features im-

proves the result.

3.3.2 Number of filters and iterations

Intuitively, the performance can be improved by increasing

the network in two dimensions, either the number of fil-

ters or the depth (or in our case, iterations). We test the

impact of these two factors on the LIVE1 dataset with qual-

ity = 10. Specifically, we test for depth R ∈ {20, 40, 60}
and filter numbers ∈ {32, 64, 128}. As shown in Table 4,

adding more iterations achieves more obvious improvemen-

Table 4. PSNR|SSIM|PSNR-B comparisons on LIVE1 dataset by

using different numbers of filters and iterations (quality = 10).

filters # =32 filters # =64 filters # =128

R = 20 28.34|0.801|28.32 28.46|0.806|28.41 28.67|0.809|28.64

R = 40 29.14|0.813|29.10 29.17|0.815|29.17 29.19|0.815|29.17

R = 60 29.19|0.814|29.16 29.21|0.815|29.18 29.25|0.817|29.23

Params # 0.38×105 0.94×105 2.60×105

(a) JPEG image (b) MSE loss (c) MAE loss

Figure 9. Comparison on different loss functions. Using MAE loss

generates a sharper result.

Table 5. PSNR|SSIM|PSNR-B comparisons on LIVE1 dataset us-

ing different losses.

Quality DnCNN [53] Ours (MSE loss) Ours (MAE loss)

10 29.19|0.812|28.91 29.13| 0.806|29.15 29.17|0.815|29.17

20 31.59|0.880|31.08 31.34| 0.876|31.33 31.48|0.880|31.47

30 32.98|0.909| 32.35 32.70| 0.905|32.41 32.83|0.909|32.81

t, in agreement with in LISTA [16]. Increasing the number

of filters can improve the linear representation of the net-

work, which has limited help in solving nonlinear learning

problems. To balance the trade-off between effectiveness

and efficiency, we choose R = 40 and filter number = 64
as a default setting.

3.3.3 Loss function

We use the MAE loss since it does not over-penalize larg-

er errors and thus can preserves structure and edges. On

the contrary, the widely used MSE loss, on which PSNR

is based, often generates over-smoothed results because it

penalizes larger errors and tolerates small errors. There-

fore, MSE struggles to preserve image structures compared

to MAE. Figure 9 shows two results generated by MSE and

MAE, respectively. As can be seen, using MAE can pre-

serve more details. A quantitative comparison on LIVE1

dataset is also conducted and shown in Table 5. Note that

our model achieves better PSNR-B results when both our

method and DnCNN use MSE loss.
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(a) JPEG compressed image (b) Enhanced (a)

(c) LD [29] (d) (b) + our post-processing

Figure 10. Post-processing for image enhancement. Our model si-

multaneously achieves artifacts removal and content preservation.

3.4. Applications

Our DCSC model can also be trained on color images

and applied to other vision tasks, which we discuss below.

3.4.1 Post-processing for image enhancement

Image enhancement is useful for edge detection, object seg-

mentation and many other vision tasks. However, enhance-

ment algorithms usually boost not only image appearance

but also JPEG artifacts, which affects both performance and

perception. In this case, we found that applying our method

as a post-processing is useful. In Figure 10, we show an

example by comparing with LD [29], which is designed for

joint image enhancement and artifacts reduction. As can

be seen, using our DCSC improves the visual quality of an

enhanced JPEG image. Moreover, compared with LD, our

model can preserve sharper edges and more content, e.g.,

the cloud, shown in the red rectangles.

3.4.2 Pre-processing for high-level vision tasks

Most existing models for high-level vision tasks are trained

using high quality images. These learned models will have

degraded performance when applied to JPEG compressed

images, even if the problem is no more difficult to the hu-

man eye. In this case, a JPEG artifacts reduction model can

be useful for these high-level vision applications. To test

whether using our model can improve the detection per-

formance, we adopt the YOLO [37] algorithm on JPEG-

compressed images. Figure 11 shows two visual results in

which the dog and some cars are not detected in the JPEG

compressed images. On the contrary, using our DCSC as

pre-processing the detection is improved by detecting the

(a) JPEG (b) Our result (c) JPEG (d) Our result

Figure 11. Pre-processing for object detection (threshold = 0.5).

dog and more cars, having higher confidence scores, and

having more accurate positions of the bounding box.

4. Analysis

Our network architecture is constructed by following E-

quations (1), (3), (5) and (6), and is therefore compact.

Moreover, our DCSC has obvious differences with other re-

lated methods. For example, in [41], the authors build a

dual-domain network, which contains two modules for the

DCT and pixel domains, by combining model-based and

learning-based methods. However, this model only uses a

one-step shallow SC inference for each module and directly

maps JPEG images to de-blocked images. In contrast, our

approach iteratively performs CSC inference on multi-scale

features. Compared with [41], our deep model is able to

capture greater contextual information.

Interestingly, as shown in Figure 1, adding (G ∗X) can

be seen as an identity connection, which coincides with the

network structure of ResNet [21]. Adding (G ∗ X) repre-

sents the data fidelity term while using the identity connec-

tion of ResNet aims to train very deep network. For deep

models, both can effectively propagate information during

the feed-forward process and address gradient vanishing

during back-propagation. Meanwhile, If the input X is se-

quential or changed during inference, our model becomes

the standard RNN form. In other words, RNN can be seen

as a special case of the classical LISTA with sequential in-

puts. This may provide new ideas for exploring the internal

link between model-based methods and deep learning.

5. Conclusion

In this work, based on a combination of convolutional

sparse coding and deep learning, we design a explainable

network to reduce JPEG artifacts from single image. We al-

so use dilated convolution to allow our single model to han-

dle artifacts at different scales resulting from different JPEG

compression levels. The network architecture is simple, s-

mall in scale, and we believe intuitive, while still achieving

competitive de-blocking performance. Finally, our DCSC

approach has potential value for other vision tasks. In future

work, we will explore integration of JPEG-related penalties,

e.g., in both image and DCT domains, into our model.
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