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Abstract

Typical methods for supervised sequence modeling are

built upon the recurrent neural networks to capture tempo-

ral dependencies. One potential limitation of these meth-

ods is that they only model explicitly information inter-

actions between adjacent time steps in a sequence, hence

the high-order interactions between nonadjacent time steps

are not fully exploited. It greatly limits the capability of

modeling the long-range temporal dependencies since one-

order interactions cannot be maintained for a long term due

to information dilution and gradient vanishing. To tackle

this limitation, we propose the Non-local Recurrent Neural

Memory (NRNM) for supervised sequence modeling, which

performs non-local operations to learn full-order interac-

tions within a sliding temporal block and models global

interactions between blocks in a gated recurrent manner.

Consequently, our model is able to capture the long-range

dependencies. Besides, the latent high-level features con-

tained in high-order interactions can be distilled by our

model. We demonstrate the merits of our NRNM on two

different tasks: action recognition and sentiment analysis.

1. Introduction

Supervised sequence modeling aims to build models to

extract effective features from variety of sequence data such

as video data or text data via supervised learning. It has ex-

tensive applications ranging from computer vision [26, 35]

to natural language processing [8, 42]. The key challenge in

supervised sequence modeling is to capture the long-range

temporal dependencies, which are used to further learn the

high-level feature for the whole sequence.

Most state-of-the-art methods for supervised sequence

modeling are built upon the recurrent neural networks

(RNN) [32], which has been validated its effectiveness [33,

52]. One crucial limitation of the vanila-RNNs is the

gradient-vanishing problem along the temporal domain,

which results in the inability to model long-term dependen-
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Figure 1. Given a video sample for action recognition, our pro-

posed model (NRNM) performs non-local operations within each

memory block to learn high-order interactions between hidden

states of different time steps. Meanwhile, the global interactions

between memory blocks are modeled in a gated recurrent man-

ner. The learned memory states are in turn leveraged to refine the

hidden states in future time steps. Thus, the long-range dependen-

cies can be captured. The model predicts the action based on the

hidden state (hT ) in the last time step.

cies. This limitation is then substantially mitigated by gated

recurrent networks such as GRU [4] and LSTM [11], which

employ learnable gates to selectively retain information in

the memory or hidden states. The memory-based methods

for sequence modeling [34, 39, 45] are further proposed to

address the issue of limited memory of recurrent networks.

However, a potential drawback of these methods is that they

only model explicitly the information interactions between

adjacent time steps in the sequence, hence the high-order

interactions between nonadjacent time steps are not fully

exploited. This drawback gives rise to two negative conse-

quences: 1) the high-level features contained in the inter-

actions between nonadjacent time steps cannot be distilled;

2) it greatly limits the modeling of long-range temporal de-

pendencies since one-order interaction information cannot

be maintained in a long term due to the information dilution

and gradient vanishing along with recurrent operations.

Inspired by non-local methods [3, 44] which aim to ex-

plore potential interactions between all pairs of feature por-

tions, we propose to perform non-local operations to model
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the high-order interactions between non-adjacent time steps

in a sequence. The captured high-order interactions are

able to not only help to distill latent high-level features

which are hardly learned by typical sequence modeling

methods focusing on one-order interactions, but also con-

tribute to modeling long-range temporal dependencies since

the non-local operations strength the latent feature propaga-

tion and thus substantially alleviate the vanishing-gradient

problem. Since exploring full-order interactions between all

time steps for a long sequence is computationally expensive

and also not necessary due to information redundancy, we

model full-order interactions by non-local operations within

a temporal block (a segment of sequence) and slide the

block to recurrently update the extracted information. More

specifically, we propose the Non-local Recurrent Neural

Memory (NRNM) to perform the blockwise non-local op-

erations to learn full-order interactions within each mem-

ory block and capture the local but high-resolution temporal

dependencies. Meanwhile, the global interactions between

adjacent blocks are captured by updating the memory states

in a gated recurrent manner when sliding the memory cell.

Consequently, the long-range dependencies can be main-

tained. Figure 1 illustrates our method by an example of

action recognition.

Compared to typical supervised sequence modeling

methods, especially recurrent networks with memory mech-

anism, our NRNM benefits from following advantages:

• It is able to model 1) the local full-order interactions

between all time steps within a segment of sequence

(memory block) and 2) the global interactions between

memory blocks. Thus, It can capture much longer tem-

poral dependencies.

• The proposed NRNM is able to learn latent high-level

features contained in high-order interactions between

non-adjacent time steps, which may be missed by con-

ventional methods.

• The NRNM cell can be seamlessly integrated into any

existing sequence models with recurrent structure to

enhance the power of sequence modeling. The inte-

grated model can be trained in an end-to-end manner.

2. Related work

Graphical sequence models. The conventional graphical

models for sequence modeling can be roughly divided into

two categories: generative and discriminative models. A

well-known example of generative model is Hidden Markov

Model (HMM) [30], which models sequence data in a chain

of latent k-nomial features. Discriminative graphical mod-

els model the distribution over all class labels conditioned

on the input data. Conditional Random Fields (CRF) [19] is

a discriminative model for sequential predictions by mod-

eling the linear mapping between observations and labels.

To tackle its limitation of linear mapping, many nonlinear

CRF-variants are proposed [25, 27, 28, 41]. The disadvan-

tages of graphical model compared to recurrent networks

lie in the hard optimization and limited capability of tem-

poral modeling. Our model is designed based on recurrent

networks.

Recurrent Networks. Recurrent Neural Network [32]

learns a hidden representation for each time step by taking

into account both current and previous information. Bene-

fited from its advantages such as easy training and tempo-

ral modeling, it has been successfully applied to, amongst

others, handwriting recognition [2] and speech recogni-

tion [33]. However, the key limitation of vanila-RNN is the

gradient vanishing problem during training [10] and thus

cannot model long-range temporal dependencies. This lim-

itation is alleviated by gated recurrent networks such as

Long Shot-Term Memory (LSTM) [11] and Gate Recur-

rent Unit (GRU) [4], which selectively retain information by

learnable gates. Nevertheless, a potential limitation of these

models is that they only model explicitly one-order inter-

actions between adjacent time steps, hence the high-order

interactions between nonadjacent time steps are not fully

captured. Our model is proposed to circumvent this draw-

back by employing non-local operations to model full-order

interactions in a block-wise manner. Meanwhile, the global

interactions between blocks are modeled by a gated recur-

rent mechanism. Thus, our model is able to model long-

range temporal dependencies and distill high-level features

that are contained in high-order interactions.

Memory-based recurrent networks. Memory networks

are first proposed to rectify the drawback of limited mem-

ory of recurrent networks [39, 45], which are then extended

for various tasks, especially in natural language processing.

Most of these models build external memory units upon a

basis model to augment its memory [9, 34, 39, 45]. In par-

ticular, attention mechanism [1] is employed to filter the in-

formation flow from memory [8, 18, 39, 47]. The primary

difference between these memory-based recurrent networks

and our model is that these models focus on augmenting the

memory size to memorize more information for reference

while our model aims to model high-order interactions be-

tween different time steps in a sequence, which is not con-

cerned by existing memory-based networks.

3. Non-local Recurrent Neural Memory

Given as input a sequence, our Non-local Recurrent Neu-

ral Memory (NRNM) is designed as a memory module to

capture the long-range temporal dependencies in a non-

local manner. It can be seamlessly integrated into any ex-

isting sequential models with recurrent structure to enhance

sequence modeling. As illustrated in Figure 2, we build our

NRNM upon a LSTM backbone as an instantiation. We will

first elaborate on the cell structure of our NRNM and then

describe how NRNM and the LSTM backbone perform se-

quence modeling collaboratively.
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Figure 2. The architecture of our method. Our proposed NRNM is built upon the LSTM backbone to learn high-order interactions between

LSTM hidden states of different time steps within each memory block. Meanwhile, the global interactions between memory blocks are

modeled in a gated recurrent manner. The learned memory states are in turn used to refine the LSTM hidden states in future time steps.

3.1. NRNM Cell

Residing on a basis sequence model (a standard LSTM

backbone), the proposed Non-local Recurrent Neural Mem-

ory (NRNM) aims to maintain a memory cell along the tem-

poral dimension which can not only distill the underlying

information contained in past time steps of the input se-

quence but also capture the temporal dependencies, both op-

erating in the long temporal range. To this end, the NRNM

cell performs non-local operations on a segment of the se-

quence (termed as non-local memory block) sliding along

the temporal domain, as shown in Figure 2. This block-

ing design is analogous to DenseNet [12] which performs

dense connection (a form of non-local operation) in blocks.

The obtained memory embeddings are further leveraged to

refine the hidden embeddings which are used for the final

prediction. The memory state is updated recurrently when

sliding the memory block, which is consistent with update

of the basis LSTM backbone.

Consider an input sequence x1,...,T = {x1, . . . ,xT } of

length T in which xt ∈ R
D denotes the observation at the

t-th time step. The hidden representation of the input se-

quence at time step t learned by the LSTM backbone is

denoted as ht. NRNM learns the memory embedding M̃t

for a block (a segment of time steps) with blocking size

k covering the temporal interval [t − k + 1, t] by refining

the underlying information contained in this time interval.

Specifically, we consider two types of source information

for NRNM cell: 1) the learned hidden representations in

this time interval [ht−k+1, . . . ,ht] by the LSTM backbone;

2) the original input features [xt−k+1, . . . ,xt]. Hence the

memory embedding M̃t at time step t is formulated as:

M̃t = f([ht−k+1, . . . ,ht], [xt−k+1, . . . ,xt]), (1)

where f is the nonlinear transformation function performed

by NRNM cell. Here we incorporate the input feature x

which is already assimilated in the hidden representation

h of the basis LSTM backbone since we aim to explore the

latent interactions between hidden representations and input

features in the current block (i.e., the interval [t− k+1, t]).
Next we elaborate on the transformation function f of

NRNM cell presented in Figure 3. To distill information

in current block that is worth to retain in memory, we apply

Self-Attention mechanism implemented with multi-head at-

tention [42] to model latent full-order interactions among

source informations: original input features and the hidden

representations by LSTM in the current block:

C = Concat([ht−k+1, . . . ,ht], [xt−k+1, . . . ,xt]),

Q,K,V = (Wq,Wk,Wv)C,

Watt = softmax(QK⊤/
√
m),

Matt = WattV.

(2)

Herein, Q,K,V are queries, keys and values of Self-

Attention transformed by parameters Wq,Wk,Wv from

the source information C respectively. Watt is the de-

rived attention weights calculated by dot-product attention

scheme scaled by the memory hidden size m. The ob-

tained attention embeddings Matt is then fed into two skip-

connection layers and one fully-connected layer to achieve

the memory embedding M̃t.

The physical interpretation of this design is that the

source information is composed of 2k information units: k
LSTM hidden states and k input features. Each informa-

tion unit of the obtained memory embedding M̃t is con-

structed by attending into each of these 2k source informa-

tion units while the size of memory embedding M̃t can be
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Figure 3. The structure of NRNM cell.

customized via the parametric transformation. As such, the

full-order latent interactions between the source informa-

tion units are explored in a non-local way. Another benefit

of such non-local operations is that it strengths latent fea-

ture propagation and thus alleviates the vanishing-gradient

problem, which is always suffered by recurrent networks.

Since LSTM hidden states already contain history infor-

mation by recurrent structure, in practice we use a strid-

ing scheme to select hidden states as the source information

for NRNM cell to avoid potential information redundancy

and improve the modeling efficiency. For instance, we pick

hidden states every s time steps in the temporal interval

[t− k + 1, t] for the source information, given stride = s.

Gated recurrent update of memory state. M̃t only con-

tains information within current temporal block ([t − k +
1, t]). To model the temporal consistency between adjacent

memory blocks, we also update the memory state in a gated

recurrent manner, which is similar to the recurrent scheme

of LSTM. Specifically, the final memory state Mt for cur-

rent memory block is obtained by:

Mt = Gi ⊙ tanh(M̃t) +Gf ⊙Mt−win, (3)

where win is the sliding window size of NRNM cell which

controls the updating frequency of memory state. Gi and

Gf are input gate and forget gate respectively to balance

the memory information flow from current time step M̃t

and previous memory state Mt−win. They are modeled by

measuring the compatibility between current input feature

and previous memory state:

Gi = sigmoid(Wim · [xt−k+1, . . . ,xt,Mt−win] +Bim),

Gf = sigmoid(Wfm · [xt−k+1, . . . ,xt,Mt−win] +Bfm),

(4)
wherein, Wim and Wfm are transformation matrices while

Bim and Bfm are bias terms.

Modeling long-range dependencies. We aim to capture

underlying long-range dependencies in a sequence by a

two-pronged strategy:

⨀⨀ ⨀
௧࢞௧࢞

௧࢞ ௧࢞

௧࢞
௧ିଵࢎ௧ିଵࢎ ௧ିଵࢎ
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݃௙ ݃௢
Figure 4. The LSTM cell is updated by incorporating the memory

state.

• We perform non-local operations within each temporal

block by NRNM cell to capture the full-order interac-

tions locally between different time steps and distill the

high-quality memory state. Hence, the local but high-

resolution temporal information can be captured.

• We update the memory state in a gated recurrent man-

ner smoothly when sliding the window of memory

block along the temporal domain. It is designed to cap-

ture the global temporal dependencies between mem-

ory blocks in low resolution considering the potential

information redundancy and computational efficiency.

3.2. Sequence Modeling

Our NRNM can be seamlessly integrated into the LSTM

backbone to enhance the power of sequence modeling.

Specifically, we incorporate the obtained memory state into

the recurrent update of LSTM cell states to help refine its

quality as shown in Figure 4:

vm = flatten(Mt−win)

Ct = gf ⊙Ct−1 + gi ⊙ C̃t + gm ⊙ vm,
(5)

where Ct−1, Ct and C̃t are previous LSTM cell state,

current cell state and candidate cell state respectively. vm is

the vector flattened from the memory state Mt−win. gf and

gi are the routine forget gate and input gate of LSTM cell

to balance the information flow between the current time

step and previous step. All C̃t, gf and gi are modeled in a

similar nonlinear way as a function of input feature xt and

previous hidden state ht−1. For instance, the input gate gi

is modeled as:

gi = sigmoid(Wi · xt +Ui · ht−1 + bi). (6)

In Equation 5, we enrich the modeling of the LSTM cell

state Ct by incorporating our NRNM cell state Mt via a

memory gate gm. The memory gate is constructed as a ma-

trix to control the information flow from the memory state

Mt, which is derived by measuring the relevance (compati-

bility) between current input feature and the memory state:

gm = sigmoid(Wm · xt +Um · flatten(Mt−win) + bm),
(7)

where Wm and Um are transformation matrices and bm is

the bias term.
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The newly constructed cell state Ct are further used to

derive the hidden state ht of the whole sequence model pre-

pared for the final prediction:

ht = go ⊙ tanh(Ct), (8)

where go is the output gate which is modeled in a similar

way to the input gate in Equation 6.

3.3. End­to­end Parameter Learning

The memory state of our NRNM for current block is

learned based on the hidden states within this block of the

LSTM backbone while the obtained memory state is in turn

leveraged to refine the hidden states in future time steps.

Hence, our NRNM and the LSTM backbone are integrated

seamlessly and refine each other alternately.

The learned hidden representations {ht}t=1,...,T in

Equation 8 for a sequence with length T can be used for any

sequence prediction task such as step-wise prediction (like

language modeling) or sequence classification (like action

classification). In subsequent experiments, we validate our

model in two tasks of sequence classification with different

modalities: action recognition and sentiment analysis. Be-

low we present the loss function for training our model for

sequence classification, but it is straightforward to substi-

tute the loss function to adapt our model to tasks of step-

wise prediction.

Given a training set D = {xn
1,...,Tn , yn}n=1,...,N con-

taining N sequences of length Tn and their associated la-

bels yn. We learn our NRNM and the LSTM backbone

jointly in an end-to-end manner by minimizing the condi-

tional negative log-likelihood of the training data with re-

spect to the parameters:

L = −
N∑

n=1

logP (yn|xn
1,...,Tn), (9)

where the probability of the predicted label yn among K
classes is calculated by the hidden state in the last time step:

P (yn|xn
1,...,Tn) =

exp(W⊤

ynhTn + b)
∑K

i=1
exp(W⊤

i hTn + bi)
. (10)

Herein, W⊤ and b is the parameters for linear transforma-

tion and bias term.

4. Experiments on Action Recognition

To evaluate the performance of our proposed NRNM

model, we first consider the task of action recognition in

which the temporal dependencies between frames in a video

are the most discriminative cues.

4.1. Dataset and Evaluation Protocol

We evaluate our method on the NTU dataset[35] which

is currently the largest action recoginition dataset. It is a

RGB+D-based dataset containing 56,880 video sequences

and 4 million frames collected from 40 distinct subjects.

The dataset includes 60 action categories. 3D skeleton data

(i.e. 3D coordinates of 25 body joints) is provided using

Microsoft Kinect.

In our experiments, we opt for NTU dataset using only

3D skeleton joint information rather than Kinetics [15]

based on RGB information for action recognition since

single-frame RGB information already provides much im-

plication for action recognition and weakens the importance

of temporal dependencies [29]. Dropping RGB-D informa-

tion enforces our model to recognize actions relying on tem-

poral information of joints.

Two standard evaluation metrics are provided in [35]:

Cross-Subject (CS) and Cross-View (CV). CS evaluation

splits 40 subjects equally into training and test sets con-

sisting of 40,320 and 16,560 samples respectively. In CV

evaluation, samples of camera 1 are used for testing and

samples from cameras 2 and 3 for training. We report both

metrics for performance evaluation.

4.2. Implementation

Our NRNM is built on a 3-layer LSTM backbone. The

number of hidden units of all recurrent networks mentioned

in this work (vanila-RNN, GRU, LSTM) is tuned on a

validation set by selecting the best configuration from the

option set {128, 256, 512}. We employ 4-head attention

scheme in practice. The size of memory state is set to be

same as the combined size of input hidden states, i.e., the di-

mensions are [block size (k)/stride (s), dim(ht)]. Follow-

ing Tu et al. [40], Zoneout [17] is employed for network

regularization. The dropout value is set to 0.5 to prevent po-

tential overfitting. Adam [16] is used with the initial learn-

ing rate of 0.001 for gradient descent optimization.

4.3. Investigation on NRNM

We first perform experiments to investigate our proposed

NRNM systematically.

Effect of the block size k. We first conduct experiments

on NTU dataset to investigate the performance of NRNM as

a function of the block size. Concretely, we evaluate our

method using an increasing number of block sizes: 4, 6, 8,

10, and 12 while fixing the other hyper-parameters.

Figure 5(a) shows that the accuracy initially increases

as the increase of the block size, which is reasonable since

larger block size allows NRNM to incorporate information

of more time steps in memory and thus enables NRNM to

capture longer temporal dependencies. As the block size

increases further after the saturated state at the block size of

8, the performance starts to decrease. We surmise that the

non-local operations on a long block of sequence result in

overfitting on the training data and information redundancy.

Effect of the integrated location of NRNM on the LSTM

backbone. We next study the effect of integrating the

NRNM into different layers of the 3-layer LSTM backbone.
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Figure 5. Ablation study of NRNM on NTU dataset by exploring the effect of (a) the block size k , (b) the integrated location of NRNM on

the LSTM backbone and (c) the sliding window size win. The performance of the baseline (a standard LSTM) is presented for reference.
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Figure 6. Comparison of our model with other basic recurrent

models in terms of classification accuracy (%) on NTU dataset

in both Cross-Subject (CS) and Cross-View (CV) metrics.

Figure 5(b) presents the results, from which we can con-

clude: 1) Integrating NRNM at any layer of LSTM outper-

forms the standard LSTM; 2) Only integrating NRNM once

at one layer performs better than applying NRNM at mul-

tiple layers which would lead to information redundancy

and overfitting; 3) Integrating NRNM at the middle layer

achieves the best performance, which is probably because

the layer-2 hidden states of LSTM are more suitable for

NRNM to distill information than the low-level and high-

level features learned by layer-1 and layer-3 hidden states.

Effect of sliding window size win. Then we investigate

the effect of sliding window size, which is used to control

the updating frequency of memory state. Theoretically, too

small sliding window size implies much overlap between

two adjacent memory blocks and thus tends to lead to in-

formation redundancy. On the other hand, too large sliding

window size results in large non-accessed temporal interval

between two adjacent memory blocks and would potentially

miss information in the interval.

In this set of experiments, we set block size to 8 time

steps, and consider different sliding window size. Fig-

ure 5(c) reports that the model performs well when the slid-

ing window is around 4 to 8 while the performance de-

creases at other values, which validates our analysis.

Comparison with LSTM baselines. To investigate the ef-

fectiveness of our NRNM, we compare our model to the ba-

sic recurrent models including vanila-RNN, GRU, LSTM

and high-order RNN on NTU dataset in two evaluation met-

rics: Cross-Subject (CS) and Cross-View (CV). Figure 6

shows 1) all RNNs with memory or gated structure outper-

forms vanila-RNN and high-order RNN by a large margin,

which indicates the advantages of memory and gated struc-

ture for controlling information flow; 2) high-order RNN

performs better than vanila-RNN which implies the neces-

sary of the non-local operations since high-order connec-

tions can be considered as a simple non-local operation in

a local area. It is also consistent with the existing conclu-

sions [37, 50]; 3) our NRNM outperforms LSTM signifi-

cantly which demonstrates the superiority of our model over

standard LSTM.

4.4. Comparison with State­of­the­arts

In this set of experiments, we compare our model with

the state-of-the-art methods for action recognition on NTU

dataset in both Cross-Subject (CS) and Cross-View (CV)

metrics. It should be noted that we do not compare with

methods which employ extra information or prior knowl-

edge such as joint connections for each part of body or hu-

man body structure modeling [36, 48].

Table 1 reports the experimental results. Our model

achieves the best performance in both CS and CV met-

rics, which demonstrates the superiority of our model over

other recurrent networks, especially those with memory or

gated structures. While our model outperforms the stan-

dard LSTM model substantially, the methods based on

LSTM [38, 52] boost the performance over LSTM by in-

troducing extra attention mechanisms.

Analysis on model complexity. To compare the model

complexity between our model and other recurrent base-

lines and investigate whether the performance gain of our

model is boosted by the augmented model complexity, we

evaluate the performance of the recurrent baselines with dif-

ferent model complexities (configurations) in Table 2. Our

model substantially outperforms other baselines under op-

timized configurations, which demonstrates that the perfor-

mance superiority of our model is not resulted from the in-

creased capacity by the extra parameters.

43266316



𝐌௧𝐌௧ି௪௜௡
… …

… … … …

Predicted Action:

walking towards 
each other

𝐖௔௧௧𝐖௔௧௧𝐱௜
𝐡௜

𝐱௜
𝐡௜

Figure 7. Visualization of an example with labeled action “walking towards each other”. Our model is able to correctly recognize it while

LSTM misclassifies it as “punching/slapping other person”. The temporal variations of relative distance between two persons are key to

recognize the action. Our model can successfully capture it while LSTM fails. Two blocks of memory states and the attention weights

Watt in Equation 2 are visualized.

CS CV

HBRNN-L[7] 59.1 64.0

Part-aware LSTM[35] 62.9 70.3

Trust Gate ST-LSTM[21] 69.2 77.7

Two-stream RNN[43] 71.3 79.5

Ensemble TS-LSTM[20] 74.6 81.3

VA-LSTM[51] 79.4 87.6

STA-LSTM[38] 73.4 81.2

EleAtt-LSTM[52] 78.4 85.0

EleAtt-GRU[52] 79.8 87.1

LSTM (baseline) 70.3 84.0

NRNM (ours) 80.8 89.2

Table 1. Classification accuracy (%) on NTU by different methods

in both Cross-Subject (CS) and Cross-View (CV) metrics.

CV(%) #Parameters

3-LSTM (256) 83.9 1.5M

3-LSTM (512) 84.0 5.6M

5-LSTM (512) 83.1 9.8M

3-EleAtt-LSTM (256) 85.5 1.8M

6-EleAtt-LSTM (256) 82.7 3.8M

4-EleAtt-LSTM (512) 83.4 8.9M

3-EleAtt-GRU (100) 87.1 0.3M

3-EleAtt-GRU (256) 85.4 1.4M

5-EleAtt-GRU (256) 85.0 2.5M

NRNM (ours) 89.2 3.6M

Table 2. Classification accuracy (%) on NTU by different meth-

ods with different model complexities in Cross-View (CV) met-

rics. Here 3-LSTM (256) denotes the LSTM equipped with 3 hid-

den layers comprising 256 hidden units. Note that all results are

reported from our implementations.

4.5. Qualitative Analysis

To qualitatively illustrate the advantages of the proposed

NRNM, figure 7 presents a concrete video example with the

action label “walking towards each other” (groundtruth). In

this example, it is quite challenging to recognize the ac-

tion since it can only be inferred by the temporal variations

of the relative distance between two persons in the scene.

Hence, capturing the long-range dependencies is crucial to

recognize it. The standard LSTM misclassifies it as “punch-

ing/slapping other person” while our model is able to cor-

rectly classify it due to the capability to model long-range

temporal information by our designed NRNM.

Figure 7 visualizes two blocks of memory states, each

of which is learned by NRNM cell via incorporating infor-

mation of multiple frames including input features xi and

the hidden states hi of LSTM backbone. To obtain more in-

sights into the non-local operations of NRNM, we visualize

the attention weights Watt in Equation 2 to show that each

unit of memory state is calculated by attending to all units

of source information (xi and hi).

5. Experiments on Sentiment Analysis
Next we perform experiments on task of sentiment anal-

ysis to evaluate our model on the text modality. Specifically,

we aim to identify online movie reviews as positive or neg-

ative, which is a sequence classification problem.

5.1. Dataset and Evaluation Protocol

We use the IMDB Review dataset [22] which is a star-

dard benchmark for sentiment analysis. It contains 50,000

labeled reviews among which 25,000 samples are used for

training and the rest for testing. The average length of

reviews is 241 words and the maximum length is 2526

words[5]. Note that the IMDB dataset also provides addi-

tional 50,000 unlabeled reviews, which are used by several

customized semi-supervised learning methods [5, 6, 14, 24,

31]. Since we only use labeled data for supervised training,

we compare our methods with those methods based on su-

pervised learning using the same set of training data for a

fair comparison.

The torchtext 1 is used for data preprocessing. Following

the training strategy in Dai et al. [5], we pretrain a language

model for extracting word embeddings.

1https://github.com/pytorch/text
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I'm trying to find something of value here. The best I can muster is that Truffaut wanted to make a movie as tedious, 
painful, puerile, annoying, illogical, and brainless as the experience of being in love. If that was his goal, then he
succeeded, but the solution to his exercise is really a drag to watch.There is one scene that screams for a spoof:
Belmondo compares the features of Deneuve's face to the features in a landscape . All I could think the whole time was
"glacier," "ice floe," "two lonely fishermen wearing Army surplus on a frozen lake in Minnesota.“The only other point
of interest was the resurrection of Buffoon's theory of climatic determinism. The tropics are presented as paradise, and 
things get progressively worse as they get colder, hell being Calvinist French Switzerland. That was kind of funny.

Sentiment:

Negative…

𝐖௔௧௧ 𝐖௔௧௧ 𝐖௔௧௧ 𝐖௔௧௧

𝐡௜ 𝐡௜
Figure 8. Visualization of an example of movie review with the groundtruth label “negative”. Our model is able to correctly classify it

while LSTM fails. The last sentence (in green color) which seems positive tends to misguide models. The first sentence is an important

cue for negative sentiment, which is hardly captured by LSTM since it is easily forgotten by the hidden state hT in the last time step.

5.2. Comparison with LSTM Baselines

We first conduct a set of experiments to compare our

model to the basic recurrent networks including vanila-

RNN, GRU, LSTM and high-order RNN. Figure 9 shows

that our model outperforms all other baselines significantly

which reveals the remarkable advantages of our NRNM. Be-

sides, while LSTM and GRU perform much better than

vanila-RNN, high-order RNN also boosts the performance

by a large margin compared to vanila-RNN. It again demon-

strates the benefits of high-order connections which are a

simple form of non-local operations in local area.

Page 1 of 1

2019/3/22file:///F:/youtu/face/TrainCode/LSTM/TCN/TCN/imdb/result/imdb_base.svg

Figure 9. Comparison of our model with other basic recurrent

models in terms of classification accuracy (%) on IMDB dataset.

5.3. Comparison with the State­of­the­arts

Next we compare our NRNM with the state-of-the-

art methods including LSTM[46], oh-CNN [13] and oh-

2LSTMp[14] which learn the word embeddings by cus-

tomized CNN or LSTM instead of using existing pretrained

word embedding vocabulary, DSL [46] and MLDL[46]

which perform a dual learning between language model-

ing and sentiment analysis, GLoMo[49] which is a trans-

fer learning framework, and BCN+Char+CoVe[23] which

trains a machine translation model to encode the word em-

beddings to improve the performance of sentiment analysis.

Table 3 shows that our model achieves the best per-

formance among all methods. It is worth mentioning

that our model even performs better than GLoMo[49] and

BCN+Char+CoVe[23], which employ additional data for

either transfer learning or training a individual machine

translation model.

Methods Accuracy

LSTM [46] 89.9

MLDL [46] 92.6

GLoMo [49] 89.2

oh-2LSTMp [14] 91.9

DSL [46] 90.8

oh-CNN [13] 91.6

BCN+Char+CoVe [23] 92.1

LSTM (baseline) 89.8

NRNM (ours) 93.1

Table 3. Classification accuracy (%) on IMDB dataset by different

methods.

5.4. Qualitative Analysis

Figure 8 illustrates an example of sentiment analysis

from IMDB dataset. This example of movie review is fairly

challenging since the last sentence of the review seems to

be positive which is prone to misguide models, especially

when we use the hidden state of last time step hT for predic-

tion. Our model is able to correctly classify it as “negative”

while LSTM fails. We also visualize the attention weights

of non-local operations (Watt Equation 2) in two blocks

of NRNM states to show the attendance of each informa-

tion units of source information for calculating the NRNM

states. The first memory block corresponds to the first sen-

tence which is an important cue of negative sentiment while

the second memory block corresponds to the last sentence.

6. Conclusion

In this work, we have presented the Non-local Recurrent

Neural Memory (NRNM) for supervised sequence model-

ing. We perform non-local operations within each memory

block to model full-order interactions between non-adjacent

time steps and model the global interactions between mem-

ory blocks in a gated recurrent manner. Thus, the long-

range temporal dependencies are captured. Our method

achieves the state-of-the-art performance for tasks of action

recognition and sentiment analysis.
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