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Abstract

We investigate the problem of reconstructing shapes from
noisy and incomplete projections in the presence of view-
point uncertainties. The problem is cast as an optimization
over the shape given measurements obtained by a projection
operator and a prior. We present differentiable projection
operators for a number of reconstruction problems which
when combined with the deep image prior or shape prior al-
lows efficient inference through gradient descent. We apply
our method on a variety of reconstruction problems, such
as tomographic reconstruction from a few samples, visual
hull reconstruction incorporating view uncertainties, and
3D shape reconstruction from noisy depth maps. Experi-
mental results show that our approach is effective for such
shape reconstruction problems, without requiring any task-
specific training.

1. Introduction

Consider the problem of reconstructing a 3D shape from
silhouettes. The classic visual hull algorithm that inter-
sects the visible volumes from each viewpoint is easy to
implement but is sensitive to errors in viewpoint estimation
and silhouette noise. A Bayesian approach for this prob-
lem would be to add appropriate priors over the shape and
viewpoint estimates and perform posterior inference. This
is challenging for two reasons. First, the search space of
3D shape is large since there is no compact shape basis to
search over for general shapes. Second, Bayesian inference
is typically expensive for high-dimensional data.

To this end we present differentiable projection opera-
tors T and deep shape priors for which Bayesian inference
can be performed via stochastic gradient descent and their
variants [23]. While many priors exist, of interest is the
“deep shape prior” of Ulyanov et al. [21] which showed that
the space of natural images @ can represented as a paramet-
ric family fg(7) where f is a convolutional network, 6 its
parameters, and 7 is a fixed input. Their work showed that
search over natural images can be replaced by a search over
the parameters of the network @, which can be efficiently
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Figure 1: Shape reconstruction from binary images with un-
certain viewpoints. We propose to use deep networks together
with differentiable projection operators for shape reconstruction.
Our approach leverages the shape prior induced by neural net-
works to reconstruct shapes from projections without any learning
procedure. Additionally, our approach can use differentiable oper-
ators to reconstruct shapes under noisy projection measurements,
like perturbed viewpoint information.

done via gradient descent.

Our work takes this idea further. First, we endow the
deep image prior with 3D convolutions resulting in a deep
shape prior. Second, we incorporate differentiable projec-
tion operators 7 that model projection measurements, such
as silhouettes, given projection parameters ¢ such as view-
points. Thus inferring a shape a given noisy projection
measurements y reduces to the following optimization over
network parameters 6 and projection parameters ¢:

min E (y, T (fo(n),¢)) + P(), (1)

¢,0€RP

where P(¢) is a prior over projection parameters, which
is often a simple function. We show that for a number of
shape construction problems such as tomographic recon-
struction, shape from silhouettes or depth maps, it is pos-
sible to construct projection operators using existing neural
network building blocks that are differentiable with respect
to both the input and projection parameters. Thus the objec-
tive can be minimized using “backpropagation” machinery,
which is generally much faster than Bayesian inference us-
ing Markov Chain Monte Carlo (MCMC) techniques.
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Apart from choosing the network architecture and the
projection operator, the approach does not require any task-
specific training. Nevertheless, it yields compelling results
for tomographic reconstruction in the low sampling regime,
where it outperforms a state-of-the-art approach based on
iterative BM3D [13]. Our work also shows that the deep
image prior generalized to 3D volumes is effective at mod-
eling 3D shapes. In problems such as visual hull reconstruc-
tions, or reconstruction from depth maps, we can accurately
estimate the 3D shape of an object from only a few views,
even when there are uncertainties in the view estimates, or
when depth maps are corrupted by noise. The reconstruc-
tion results are significantly better than handcrafted priors.
These tasks are illustrated in Figures 3-9.

2. Related work

In this section we briefly summarize techniques for solv-
ing inverse problems for image and volumetric reconstruc-
tion of the form:

min P(x) + E(y, T (x)). 2)

rcX
The data term E and the projection operator 7 are applica-
tion specific, but there is considerable flexibility on model-
ing the prior term P. These include smoothness priors such
as total variation (TV) [17] and Lo gradients [25], Gaus-
sian mixture models over patches [29], denoising autoen-
coders [22]. The deep image prior [21] represents images
as the output convolutional network with random parame-
ters from a fixed (random) input. The authors showed that
outputs of networks consisting of several convolutional and
pooling layers, followed by several deconvolutional layers
with few or no skip connections in between tend to generate
natural images. Recently, an extension to the deep image
prior shows that it is asymptotically equivalent to a Gaus-
sian Process [5]. This suggests a Bayesian approach to the
problem: conducting posterior inference through Langevin
dynamics avoids the need for early stopping and improves
results for denoising and inpainting tasks. The deep image
prior is also related to procedural priors such as bilateral
filtering [20], non-local means [3], or block matching 3D
(BM3D) [7]. These models use non-local self-similarity of
patches in images to collectively denoise them.

For complex projection operators 7 involving noisy and
incomplete measurements y, applying procedural priors is
non-trivial. Suppose y and z denote the observed and
unobserved projection measurements corrupted by noise:
(y,z) = T(x) + 0. For example y could denote the sub-
set of frequencies in the Fourier transform, or projections
of data in a compressed sensing application. Maggioni et
al. [13] proposed the following iterative scheme:

1. Estimate & by inverting the measurement z(*) =

T_l(% Z(k)) starting from 21 = (.

2. Denoise z¥) using BM3D to obtain * 1),

3. Re-estimate (.,z(**Y) = T(x+1) 4+ 5. Note
that only the unobserved part of projection is estimated
keeping y fixed across iterations.

The iterative BM3D can be applied to problems where
the support of ) is small. This procedure is related to
the alternating direction method of multipliers (ADMM) [2]
which has been applied for solving linear inverse problems
of the form: miny, ||y — Az||2 -+ A\P(x). ADMM solves the
augmented Lagrangian £(x, z, u):

Li@, zu) = ly - Az| + \P(2) + Slle — = + ul}

over auxiliary variables z and u for p > 0 by alternatively
optimizing @, z, and u as:

2D argmin \P(x) + g||m — 20 ™2

2D argmin ||y — Az||2 + g||w(k+1) —z4+u®||2
z

wF+D) gkt (kD) g (k)

The optimization decouples the reconstruction and the
prior. The first involves inference with an image prior and
squared-loss term. The second objective is quadratic in z
can be solved with conjugate gradient decent. The decou-
pling allows use of explicit or implicit priors, as well as
learned proximal projection operators [4,26] proj(z —u, p)
that map a vector z — w to x in the manifold of natural
images within a distance p from it, similar to a denoising
autoencoder, to solve the inverse problem.

Finally, a class of approaches directly learn the inverse
mapping G : Y — X using rich parametric models such as a
neural network in a fully-supervised manner. These models
amortize inference during training and enable efficient in-
ference given noisy measurements. Such models have been
successfully applied for various inverse problems such as
super resolution [8], denoising [24], colorization [12, 28],
and estimating depth and normals from images [9]. How-
ever a disadvantage is the architecture and parameters of the
model are likely to be specific to the noise and projection
operators, which require separate training for each task.

Closely related to this work, recent approaches have em-
ployed geometric transformations on deep features to gen-
erate novel views of a 3D object [14, 19]. In contrast to our
approach, those techniques do not explicitly define the pro-
jection operators — they are parameterized by a deep neu-
ral network. As a consequence, the inferred representation
does not directly correspond to a 3D shape, but to a higher
lever representation learned by the model.

3. Method

Our approach for Bayesian inference will be to optimize
the objective in Equation | using Stochastic Gradient De-
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scent (SGD). This corresponds to a Maximum Likelihood
Estimate (MLE), or Maximum A-Posteriori (MAP) esti-
mate if priors over parameters 6 are added. Although more
sophisticated schemes for SGD based posterior sampling
exist [5, 23], we find that SGD works reasonably well for
the problems we consider.

Solving reconstruction problems with SGD requires for-
mulating differentiable projection operators and differen-
tiable priors over the shapes. We use the deep image prior
for image-based reconstruction tasks, and a 3D convolu-
tional version for shape reconstruction tasks. In earlier work
the deep image prior was used to solve a number of recon-
struction problems with linear measurements [21]. For ex-
ample in denoising the projection operator is the identity
transformation, while in inpainting the projection operator
is a mask indicating which pixels are present and absent. In
this section, we present three differentiable projection oper-
ators that can be combined with deep neural networks for
reconstructing shapes from partial and noisy observations.

3.1. Radon Projection (73)

In [15], Radon proposed the utilization of the inverse of
an integral transform to reconstruct images from a CT scan.
The forward version of this transform is known as Radon
transform R and can be described by the following:

R(g,r) = /L s(@,y)dl, L = {(z,y)|asinp—ycos ¢ = r}
3)

where s represents a density function, ¢ is the angle of
projection, and this transform represents data obtained as
the output of a CT scan. Let T (s) be an operator that
rotates s by ¢ degrees, i.e. Ty(s)(z,y) = s(xcosyp —
ysiny, xsiny 4+ ycosv). Plugging this in Equation (3)
we have:

R(o,r) =
L =

| T
{(z,y)lzsin(¢ + ¥) —ycos(¢ + ¢) =r}
Taking ¥ = —¢:

R(p.r) = / T o(s)(@)dl. L= {(z)ly=r} @

R(é.r) = /}R T_y(s)(, r)da )

In practice, s is represented by image and T_4(s) is com-
puted by rotating a regular grid and resampling the image as
described in [11]. Specifically, let I l(f) be the value of the
pixel ¢, 7 in the image formed by s rotated by —¢ degrees,
the discrete version of the Radon transform is:

S
R(p,r) =Y 1.7, ©6)
=1

where S is the size of the image. Notice that the result of the
Radon transform R is also an image (called sinogram and is
parametrized by ¢ and 7) as can be seen in Figure 3. Finally,
our operator T receives an image [ of size S x S, a set of
values ¢ representing the projection angles and outputs an
image of size S x |¢|. The process is differentiable and can
be implemented as a sum over one dimension of multiple
rotated images.

3.2. Silhouette Projection (75)

Shape reconstruction from silhouettes consists in the fol-
lowing problem: given a set of silhouette images of the
same object from different views, estimate the 3D shape
of the object. Silhouette projection can be formulated as
a differentiable operator 7g(V, ¢). To do so, we represent
3D shape as a voxel grid V, and the projection Tg(V, ¢)
generates a silhouette of the shape V captured from a view
¢. The formulation of Tg follows [10]. Specifically, let
V : 72 — [0,1] € R be the voxel grid, representing the oc-
cupancy value at a given integer 3D coordinate ¢ = (i, j, k).
The rotated version of the voxel grid V(c) is defined as
Vy(c) = ®(V,Ty(c)), where Ty(c) is the coordinate ob-
tained by rotating ¢ around the origin according to ¢ and
®(V, ¢) is a procedure that samples a value of V' in a posi-
tion ¢ — trilinear or nearest neighbor sampling.

The next step consists in performing the projection to
create an image from the rotated voxel grid. This is
done by applying the projection operator P(V); ; = 1 —
e~7 2k V(53:F) The intuition behind this operator is similar
to the idea of the Radon transform: compute a line inte-
gral of the occupancy function V' along each line of sight
(assuming othographic projection), with the difference that
here we apply an exponential falloff to create a smooth and
differentiable function. The smoothness can be controlled
by the parameter 7: bigger values result in binary images.
If there all voxels along the line of sight are empty, the pro-
jection results in a value of 0; as the number of non-empty
voxels increases, the value approaches 1. Combined with
the rotated version of the voxel grid, we define our final
projection operator as: Ts(V,¢);; = 1 — e 2 Vo(1:3:k)
where ¢, j is the pixel coordinate of the resulting image.

3.3. Depth Image Projection (7p)

Given a 3D shape represented as a voxel occupancy grid
V' and a view ¢, the depth image captures the distance val-
ues from the viewpoint to the visible points on the shape.
This is useful in practical applications as depth images are
frequently captured by LiDAR and similar depth sensors.
Here, we demonstrate that the depth projection operator can
be built upon the silhouette projection operator. To do so,
we first define a visibility function A(V, ¢, ¢) that describes
whether a given voxel c inside the grid V' is visible, when
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seen from a view ¢:

k
A(V, 8,1, 4, k) = exp { -y V¢(z’,jJ)} 7

=1

Intuitively, this is the complement of the silhouette projec-
tion, the difference is that we are incrementally accumulat-
ing the occupancy (from the first voxel on the line of sight)
as we traverse the voxel grid, instead of summing all voxels
on entire the line of sight. If voxels on the path from the
first to the current voxel are all empty, the value of A is 1
(indicating the current voxel is ‘visible’ to the view ¢). If
there is at least one non-empty voxel on the path, the value
of A will be close to 0 (indicating this voxel is not visible).

Now that we have the visibility value of each voxel,
the depth value of a pixel in the projected image is sim-
ply the line integral of A along the line of sight: D(i,j) =
> A(V,¢,14,7,k). This accumulates the number of vox-
els along the entire line of sight that are visible, therefore it
gives the depth value. Refer to Figure 2 for illustrations.

While using this operator along with a neural network,
we found that it works better if we apply an exponential
decay. Thus, we can define the depth projection operator
Tp as follows:

To(V,¢)i;=1- eXp{ - ZA(V b, 1,7, k)} (3
%

This smoothly maps the depth value to the range between
[0,1]. Specifically, it maps a depth value of O to 0, and in-
finity to 1, while still remaining a differentiable operator.

4. Experiments

This section presents the results of applying our shape
projection operators along with deep shape priors for three
reconstruction tasks.

Network Architecture. In the volumetric reconstruction
experiments (i.e. reconstructing 3D shapes from silhouette
images and depth images respectively), the network archi-
tecture is a fully convolutional UNet [ | 6] where the encoder
has 5 layers with 8, 16, 32, 64 and 128 filters. The decoder
is a mirrored version of the encoder and skip connections
are applied just in the 2 innermost layers. The upsampling
is done through bilinear/trilinear interpolation followed by
a convolution. All convolutions have filter size 3 and are
followed by batch normalization and ReLU activation func-
tion. The input to the network is a tensor of the same size
as the output, and its values sampled from N(0,1). In all
the experiments, we used Adam optimizer with learning
rate=10"2.

For the image reconstruction (i.e. tomography) we dou-
bled the number of filters in each layer keeping the rest of

the network architecture identical to account for higher spa-
tial frequency of the underlying signal. The only other dif-
ference between the network that produces images and the
one that produces voxel grids is that the convolutional oper-
ations are performed in 2D instead of 3D. Even though the
network can be used to generate data of any size (since it
is fully convolutional), in our experiments we set our image
resolutions to 256 x 256 and voxel resolution to 1283.

4.1. Tomography Reconstruction

In tomographic reconstruction our goal is to invert the
sinograms as described in Section 3. With deep image prior
the reconstruction involves solving the following optimiza-
tion problem:

Jnin I|R = Tr(fo(m))ll1, ©)

where f is our neural network described above, 7 is its noise
input, and R is the input sinogram (which may have low an-
gular sampling rate and/or be corrupted by noise). To test
the ability of our algorithm when handling challenging in-
put, we use a low angular sample rate (n = 30) and simulate
noisy sinograms by adding a Gaussian noise of o = 1. Fig-
ure 3 shows the reconstruction results of the Shepp-Logan
phantom image [!8] and two separate slices of a sample
from the BrainWeb database [0]. These images have been
commonly used to evaluate CT reconstruction algorithms.
For each reconstruction we compute the structured simi-
larity (SSIM) index and PSNR values with respect to the
groundtruth image (higher is better).

The standard solution for tomography is Filtered Back
Projection (FBP): it inverts the Radon transform using the
Fourier slice theorem. When angular sampling rate is low,
the reconstruction using FBP turns out to have severe alias-
ing artifacts as seen in Figure 3 third column. The TV prior
significantly improves the reconstructions for all three im-
ages. The iterative BM3D approach [13] described in Sec-
tion 2 was run for 100 iterations. We noticed that the PSNR
values converged after 100 iterations with the largest gains
in PSNR in the first 20 iterations. Note that running BM3D
on the FBP reconstruction corresponds to one iteration of
this approach. For the deep prior we obtain results by run-
ning 2000 gradient steps. Compared to iterative BM3D, the
deep prior produces reconstructions with significantly bet-
ter SSIM values and comparable or better PSNR values (last
two columns in Figure 3). The relatively poor performance
of BM3D may be because the aliasing noise in CT recon-
structions tends to be more structured and less like natural
image noise when compared to the noise observed in image
denoising applications. It takes many iterations for the it-
erative BM3D algorithm to get rid of the artifacts produced
by the inverse radon transform but this causes smoothing of
the underlying structures leading to lower SSIM scores.
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Figure 2: A example 2D shape to depth projection. On the left is a 2D shape visualized as a binary occﬁesgncy (white is occupied). The
visibility map for each pixel from the top and right views are shown next — a pixel is white (value=1) if it is visible. The depth maps are
obtained by summing the visibility maps along the vertical and horizontal directions for the top and right views receptively.

Image

Sinogram FBP

0.701, 26.0

0.718, 26.5

0.834, 27.6

TV prior Iterative BM3D Deep prior

Figure 3: Tomographic reconstruction results from sinograms (radon transforms) sampled with n = 30 angles and noise (¢ = 1).
The sinogram is rescaled to the image size with nearest neighbor interpolation for visibility. From left to right in each row is the noise free
image, the noisy sinogram, reconstruction with the filtered backprojection (FBP), TV prior, BM3D, and deep image prior. The SSIM and
PSNR are shown for each approach on top of the corresponding figure. Our approach outperforms the other learning free baselines by a

significant margin. Zoom in for details.

4.2. Shape-from-Silhouette 3D Reconstruction

For 3D shape reconstruction from silhouette images, we
employ the 3D convolutional neural network described as
before to generate a voxel grid V' where each voxel rep-
resents an occupancy value. The output of the network
is then passed to the projection operator Tg along with
a view direction ¢. Given a set of N viewpoints ¢ =
{¢1, 92, ..., ¢} and its associated images I, our problem
is described by the following optimization:

N
min 7 |1Zo, = Ts(fo(m). 60l (10)
=1

where f is our neural network and 7 its noise input. We
solve this minimization using gradient descent and then use
fe(n) to generate our final reconstruction. The results can
be seen in Figure 4. Even with a small number of silhou-
ette images, our method is able to reconstruct reasonable
3D shapes. The viewpoints for this example are chosen

by evenly rotating the object along the horizontal axis (e.g.
with 4 views, each view is 90 degrees apart; with 8 views,
each is 45 degrees apart and so on). A baseline approach
for this problem is space carving, which takes the intersec-
tion of all the projected views to generate the occupancy
grid. We show a qualitative comparison with space carving
in Figure 5. Space carving provides reasonable reconstruc-
tions for most of the shapes, but some of the objects contain
artifacts like creases or even missing parts. On the other
hand, the deep shape prior tends to create overly smooth
shapes, which sometimes means removing some parts of the
object (chairs in Figure 5) or adding content where should
exist a sharp boundary (lamp in Figure 5).

View uncertainties. In the previous formulation, we as-
sume that the set viewpoints ¢ corresponds exactly to the
observed views. However, a more realistic scenario is to
assume that we are given a set of noisy viewpoint measure-
ments. In this case, besides estimating the parameters of the
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Figure 4: Effect of the number of views in the reconstruction from silhouettes. 3D shape reconstructed from silhouette images of the
same object. Even without having access to enough 3D information, our method is still capable of generating plausible shapes.
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Figure 5: Reconstruction from silhouettes without viewpoint noise. 3D shapes reconstructed from 8 silhouette images of the same
object. Viewing angles were sampled uniformly at random. Top row using space carving baseline, middle row using the deep image prior,

bottom row is ground-truth.

network predicting the shape, we are also looking to esti-
mate viewpoints 4’3 We assume that the noisy viewpoints ¢
are sampled independently from VonMises(¢*, k), where
K is the dispersion of the VonMises distribution with mean
¢ (the ground-truth viewpoints). This leads to adding an
extra term to Equation 10 and also optimizing over the pre-
dicted viewpoints (;Z):

N
n}inz [Tg: = Ts(fo(n), i)l + Acos(d; — ), (11)
i=1

3.6 =

where )\ is the weight of the viewpoint regularization term.
We use A = 0.1 in our experiments. Notice that our pro-
jection operator is fully differentiable with respect to the
viewpoint parameters and can be easily implemented using
automatic differentiation packages.

Evaluation To evaluate our approach we selected twelve
meshes from standard benchmarks. Three of them are well
know 3D shapes (Stanford bunny, dragon and Utah teapot)
while the others were selected from 9 different categories
of the ModelNet40 dataset [27]. We voxelize those shapes
filling their interior to generate binary occupancy grids of
resolution 1083, Those voxel grids will correspond to our
ground-truth data. Our network generates 128% occupancy
grids, but we use data in a smaller resolution to zero-pad
the volume and avoid artifacts in the boundaries. Next, we
randomly sample 8 viewpoints and render a binary image
I, from each sampled view. Since we want to evaluate the
ability of the methods to reconstruct the 3D shape while
dealing with view uncertainty, we sample views ql; from
VonMises(¢, r) and associate them with the correspond-
ing binary images. We use x = 100 for all the experiments.
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Figure 6: Shape-from-silhouette reconstruction using captured images. For this glass object, we photographed 4 views, with 45°
angle apart, against a uniform background color. We then applied background-color removal and converted each image to binary silhouette
image. The first reconstructed model is the result using our deep prior, whereas the second is the result using the space carving baseline.

plane | bunny | car | desk | dragon | guitar | lamp | piano | plant | sofa | table | teapot || mean

Ours 035 | 0.88 |0.72 | 0.81 | 0.59 064 | 062 | 0.86 | 0.79 | 0.78 | 0.82 | 0.84 0.72

Carving | 049 | 0.77 | 0.59 | 0.41 0.55 0.51 | 0.26 | 0.64 | 0.58 | 0.51 | 0.44 | 0.83 0.55

Carving* | 0.51 | 0.85 | 0.72 | 0.50 | 0.62 0.71 | 0.28 | 0.60 | 0.61 | 0.57 | 0.55 | 0.81 0.61
Table 1: 3D reconstruction from silhouettes with uncertain viewpoints. Intersection over union of the reconstructed

occupancy from 12 different shapes. We randomly sample viewpoints to generate 8 binary images for each shape. Those
viewpoints are slightly perturbed before being used by the methods, except for the last (Carving®) which corresponds to using
space carving without noisy viewpoints. Our approach significantly outperforms the space carving baseline in all scenarios.

In other words, even though an image I, was rendered from
a viewpoint ¢, we assign a slightly perturbed viewpoint q?)
to this image . Finally, we use the binary images I and
the perturbed viewpoints qg to reconstruct the 3D shape by
minimizing the objective described in Equation 11. This is
done through 500 steps of gradient descent. We compare
our approach with a space carving baseline and report the
intersection over union of the estimated occupancy grids in
Table 1.

Our method outperforms vanilla space carving even
when the viewpoints given are not perturbed, which demon-
strates the robustness of our method to viewpoint perturba-
tions. Figure 7 shows a qualitative comparison of the re-
constructed shapes. Our approach reconstructs the shapes
with high fidelity, preserving details and thin structures. On
the other hand, space carving ends up reconstructing ob-
jects with missing parts and and rough structures as we can
observe in Figure 7.

Reconstructions using captured images. We have also
evaluated our method using images captured from a camera.
Results are presented in Figure 6. The subject is a glass ob-
ject, for which we photographed 4 views evenly spaced with
45° horizontal rotation angle apart from each other, against
a uniform background color. We then use [I] to remove
background and convert each image to a binary silhouette

image. We compare results using our method with stan-
dard visual hull (i.e. space carving). As can be observed,
our method leads to smooth reconstructions and the result-
ing objects look more natural. In contrast, the visual hull
results contain artifacts and sharp transitions around chang-
ing views, which would require significantly more number
of views to eliminate.

4.3. Shape-from-Depth Images 3D Reconstruction

The setup for 3D reconstruction from depth images is
the same for the binary images except for the use of the
projection 7p instead of 7g. All the input depth images
have their range scaled to be in [0, 1] using the exponential
map in Equation (8). We analyzed the ability of the method
to reconstruct 3D shapes from depth images perturbed by
different levels of Gaussian noise while using 4 views. Re-
sults can be seen in Figure 8. Additionally, we analyzed the
reconstruction quality while varying the number of views.
Results are presented in Figure 9. For these experiments,
we kept the noise level very high (o = 0.1). We notice that
even when dealing with very noisy projections, our method
is able to reconstruct high quality shapes if enough views
are given.

5. Conclusion

We showed that by combining the deep image or volu-
metric prior with differentiable projection operators, signals
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Figure 7: Shape-from-silhouette reconstruction with perturbed viewpoints. Results for the space carving baseline in the first row, our
method in the second row, ground-truth shapes in the third row. Our results are computed minimizing Equation 11 through 500 gradient
descent steps. Our method is capable of updating the initial viewpoint parameters and is capable to recover from imprecise viewpoint
assignment. The space carving baseline is not robust to viewpoint perturbations which means it ends up carving the wrong regions of the
volume, leading to poor reconstructions and eliminating thin object structures.

113

= 0=001 0=002 0=005 o0=0
Figure 8: Effect of noise in the reconstruction. 3D shape re-
constructed from 4 noisy depth images of the same object. The
variance of the Gaussian noise increases from left to right. Shape
prior can reconstruct high quality shapes even with considerable
amount of noise.

11311
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Input

Figure 9: Effect of the number of views in the reconstruction
from depth images. 3D shape reconstructed from very noisy (o =
0.1) depth images of the same object. On the left, example of the
input depth images. If provided enough views, our method is able
to reconstruct high quality shapes even from highly noisy inputs.

can be reconstructed from a few noisy projection measure-
ments using stochastic gradient descent. The approach is
learning free and can be used as a generic prior. Never-
theless, with a relatively simple network architecture our
approach outperformed several handcrafted and procedu-
ral priors for image based and volumetric reconstruction
tasks. Although we presented results for tomography and
for shape reconstruction from silhouettes and depth maps,
the approach can be used whenever the rendering or mea-
surement process is differentiable. These include problems
such as estimating shape from shading and geometry from
multiple shaded images.

A potential issue is the use of volumetric representa-
tions for shapes which incurs high memory requirements
and longer running times. A possible line of research is to
investigate shape priors for more compact 3D representa-
tions like point clouds or multi-view. Combining deep pri-
ors with work on differentiable computer graphics pipelines
opens up the possibility of applying this approach for solv-
ing inverse problems in many applications.
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