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Abstract

Deep learning techniques have enabled rapid progress

in monocular depth estimation, but their quality is limited

by the ill-posed nature of the problem and the scarcity of

high quality datasets. We estimate depth from a single cam-

era by leveraging the dual-pixel auto-focus hardware that is

increasingly common on modern camera sensors. Classic

stereo algorithms and prior learning-based depth estima-

tion techniques underperform when applied on this dual-

pixel data, the former due to too-strong assumptions about

RGB image matching, and the latter due to not leveraging

the understanding of optics of dual-pixel image formation.

To allow learning based methods to work well on dual-pixel

imagery, we identify an inherent ambiguity in the depth es-

timated from dual-pixel cues, and develop an approach to

estimate depth up to this ambiguity. Using our approach,

existing monocular depth estimation techniques can be ef-

fectively applied to dual-pixel data, and much smaller mod-

els can be constructed that still infer high quality depth. To

demonstrate this, we capture a large dataset of in-the-wild

5-viewpoint RGB images paired with corresponding dual-

pixel data, and show how view supervision with this data

can be used to learn depth up to the unknown ambiguity.

On our new task, our model is 30% more accurate than any

prior work on learning-based monocular or stereoscopic

depth estimation.

1. Introduction

Depth estimation has long been a central problem in

computer vision, both as a basic component of visual per-

ception, and in service to various graphics, recognition, and

robotics tasks. Depth can be acquired via dedicated hard-

ware that directly senses depth (time-of-flight, structured

light, etc) but these sensors are often expensive, power-

hungry, or limited to certain environments (such as indoors).

Depth can be inferred from multiple cameras through the

use of multi-view geometry, but building a stereo camera

requires significant complexity in the form of calibration,

rectification, and synchronization. Machine learning tech-

niques can be used to estimate depth from a single image,

but the under-constrained nature of image formation often

results in inaccurate estimation.

Recent developments in consumer hardware may pro-

vide an opportunity for a new approach in depth estima-

tion. Cameras have recently become available that allow

a single camera to simultaneously capture two images that

resemble a stereo pair with a tiny baseline (Fig. 1), through

the use of dense dual-pixel (DP) sensors (Fig. 2). Though

this technology was originally developed in service of cam-

era auto-focus, dual-pixel images can also be exploited to

recover dense depth maps from a single camera, thereby

obviating any need for additional hardware, calibration, or

synchronization. For example, Wadhwa et al. [50] used

classical stereo techniques (block matching and edge aware

smoothing) to recover depth from DP data. But as shown

in Fig. 1, the quality of depth maps that can be produced by

conventional stereo techniques is limited, because the inter-

play between disparity and focus in DP imagery can cause

classic stereo-matching techniques to fail. Existing monoc-

ular learning-based techniques also perform poorly on this
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Figure 1. Here we have an RGB image (a) containing dual-pixel

data. Crops of the left and right dual-pixel images corresponding

to the marked rectangle in (a) are shown in (d), (e), and their in-

tensity profiles along the marked scanline are shown in (f). While

the profiles matches for the in-focus flower, they are considerably

different for the out of focus background. Because [50] uses tradi-

tional stereo matching that assumes that intensity values differ by

only a scale factor and a local displacement, it fails to match the

background accurately, and produces the depth shown in (b). Our

technique learns the correlation between depth and differences in

dual-pixel data thereby estimates an accurate depth map (c).
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(a) Traditional Bayer Sensor (b) Dual-Pixel Sensor

Figure 2. A modern Bayer sensor consists of interleaved red,

green, and blue pixels underneath a microlens array. (a). In dual-

pixel sensors, the green pixel under each microlens is split in half

(b), resulting in two green images that act as a narrow-baseline

stereo camera, much like a reduced light field camera.

task. In this paper, we analyze the optics of image forma-

tion for dual-pixel imagery and demonstrate that DP images

have a fundamentally ambiguous relationship with respect

to scene depth — depth can only be recovered up to some

unknown affine transformation. With this observation, we

analytically derive training procedures and loss functions

that incorporate prior knowledge of this ambiguity, and are

therefore capable of learning effective models for affine-

invariant depth estimation. We then use these tools to train

deep neural networks that estimate high-quality depth maps

from DP imagery, thereby producing detailed and accurate

depth maps using just a single camera. Though the output

of our learned model suffers from the same affine ambigu-

ity that our training data does, the affine-transformed depths

estimated by our model can be of great value in certain con-

texts, such as depth ordering or defocus rendering.

Training and evaluating our model requires large

amounts of dual-pixel imagery that has been paired with

ground-truth depth maps. Because no such dataset exists,

in this work we also design a capture procedure for collect-

ing “in the wild” dual-pixel imagery where each image is

paired with multiple alternate views of the scene. These ad-

ditional views allow us to train our model using view super-

vision, and allow us to use multi-view geometry to recover

ground-truth estimates of the depth of the scene for use in

evaluation. When comparing against the state-of-the-art in

depth estimation, our proposed model produces error rates

that are 30% lower than previous dual-pixel and monocular

depth estimation approaches.

2. Related Work

Historically, depth estimation has seen the most attention

and progress in the context of stereo [44] or multi-view ge-

ometry [24], in which multiple views of a scene are used to

partially constrain its depth, thereby reducing the inherent

ambiguity of the problem. Estimating the depth of a scene

from a single image is significantly more underconstrained,

and though it has also been an active research area, progress

has happened more slowly. Classic monocular depth ap-

proaches relied on singular cues, such as shading [29], tex-

ture [7], and contours [12] to inform depth, with some

success in constrained scenarios. Later work attempted

to use learning to explicitly consolidate these bottom-up

cues into more robust monocular depth estimation tech-

niques [10, 27, 43], but progress on this problem acceler-

ated rapidly with the rise of deep learning models trained

end-to-end for monocular depth estimation [16, 18], them-

selves enabled by the rise of affordable consumer depth

sensors which allowed collection of large RGBD datasets

[31, 39, 46]. The rise of deep learning also yielded progress

in stereoscopic depth estimation [51] and in the related

problem of motion estimation [15]. The need for RGBD

data in training monocular depth estimation models was

lessened by the discovery that the overconstraining nature

of multi-view geometry could be used as a supervisory cue

for training such systems [17, 19, 21, 34, 38, 52], thereby

allowing “self-supervised” training using only video se-

quences or stereo pairs as input. Our work builds on these

monocular and stereo depth prediction algorithms, as we

construct a learning-based “stereo” technique, but using the

impoverished dual-pixel data present within a single image.

An alternative strategy to constraining the geometry of

the scene is to vary the camera’s focus. Using this “depth

from (de)focus” [23] approach, depth can be estimated from

focal stacks using classic vision techniques [48] or deep

learning approaches[25]. Focus can be made more infor-

mative in depth estimation by manually “coding” the aper-

ture of a camera [36], thereby causing the camera’s circle

of confusion to more explicitly encode scene depth. Focus

cues can also be used as supervision in training a monocular

depth estimation model [47]. Reasoning about the relation-

ship between depth and the apparent focus of an image is

critical when considering dual-pixel cameras, as the effec-

tive point spread functions of the “left” and “right” views

are different. By using a flexible learning framework, our

model is able to leverage the focus cues present in dual-

pixel imagery in addition to the complementary stereo cues.

Stereo cameras and focal stacks are ways of sampling

what Adelson and Bergen called “the plenoptic function”: a

complete record of the angle and position of all light pass-

ing through space [3]. An alternative way of sampling the

plenoptic function is a light field [37], a 4D function that

contains conventional images as 2D slices. Light fields can

be use to directly synthesize images from different positions

or with different aperture settings [40], and light field cam-

eras can be made by placing a microlens array on the sensor

of a conventional camera [4, 41]. Light fields provide a con-

venient framework for analyzing the equivalence of corre-

spondence and focus cues [49]. While light fields have been

used to recover depth [32, 33], constructing a light field

camera requires sacrificing spatial resolution in favor of an-

gular resolution, and as such light field cameras have not
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Figure 3. Dual-pixel views see different halves of the aperture,

which provides a depth cue. However, due to a fundamental am-

biguity, different scenes can yield the same dual-pixel images if

the focus distance (or the aperture size, or the focal length) of the

camera changes. In (a), a camera with focus distance g1 images an

in-focus blue point and an out-of-focus orange point a distance Z1

away. Light refracting through the left half of the aperture (dark

blue and orange rays) arrives at the right half of each dual-pixel,

and vice versa. This results in a dual-pixel image in which the

out-of-focus orange point is displaced by d pixels (a, “DP Data”)

and blurred by b pixels (a, “Image”). In (b), a different focus dis-

tance and set of scene depths yields the same dual-pixel and RGB

images. However, as shown in the text, this scene is related to the

one in (a) by an affine transformation on inverse depth.

seen rapid consumer adoption. Dual-pixel cameras appear

to represent a promising compromise between more ambi-

tious light field cameras and conventional cameras — DP

cameras sacrifice a negligible amount of spatial resolution

to sample two angles in a light field, while true monocular

cameras sample only a single angle, and light field cameras

such as the Lytro Illum sample 196 angles at the cost of sig-

nificant spatial resolution. As a result, they have seen wider

adoption in consumer cameras and in space-constrained ap-

plications like endoscopy [6].

3. Dual-Pixel Geometry and Ambiguity

Dual-pixel (DP) sensors work by splitting each pixel in

half, such that the left half integrates light over the right

half aperture and vice versa (Fig. 3). Because each half of

a dual-pixel integrates light over one half of the aperture,

the two halves of a pixel together form a kind of stereo

pair, in which nearby objects exhibit some horizontal dis-

parity between the two views in accordance with their dis-

tance. This effect interacts with the optical blur induced

by the lens of the camera, such that when image content

is far from the focal plane, the effects of optical blur are

spread across the two “views” of each dual-pixel (Fig. 3(a,

DP data)). The sum of the two views accounts for all the

light going through the aperture and is equal to the ordinary

full-pixel image that would be captured by a non dual-pixel

sensor. As a result, the disparity d between the two views in

a dual-pixel image is proportional to what the defocus blur

size b would be in an equivalent full-pixel image. Dual-

pixel sensors are commonly used within consumer cameras

to aid in auto-focus: the camera iteratively estimates dis-

parity from the dual-pixels in some focus region and moves

the lens until that disparity is zero, resulting in an image in

which the focus region is in focus.

While dual-pixel imagery can be thought of as a stereo

pair with a tiny baseline, it differs from stereo in several

ways. The views are perfectly synchronized (both spatially

and temporally) and have the same exposure and white bal-

ance. In addition, the two views in DP images have different

point-spread functions that can encode additional depth in-

formation. Traditional stereo matching techniques applied

to dual-pixel data will not only ignore the additional depth

information provided by focus cues, but may even fail in

out-of-focus regions due to the effective PSFs of the two

views being so different that conventional image matching

fails (Figs. 1(d)-1(f)). As an additional complication, the re-

lationship between depth and disparity in dual-pixel views

depends not only on the baseline between the two views, but

also on the focus distance. Thus, unlike depth from stereo,

which has only a scale ambiguity if the extrinsics are un-

known, depth from dual-pixel data has both scale and offset

ambiguities if the camera’s focus distance is unknown (as is

the case for most current consumer cameras, such as those

we use). Addressing the ambiguity caused by this unknown

scale and offset is critical when learning to estimate depth

from dual-pixel imagery, and is a core contribution of this

work. As we will demonstrate, for a network to success-

fully learn from dual-pixel imagery, it will need to be made

aware of this affine ambiguity.

We will now derive the relationship between depth, dis-

parity, and blur size according to the paraxial and thin-lens

approximations. Consider a scene consisting of point light

sources located at coordinates (x, y, Z(x, y)) in camera

space. As stated previously, the disparity of one such point

on the image plane d(x, y) is proportional to the (signed)

blur size b̄(x, y), where the sign is determined by whether

the light source is in front or behind the focal plane. There-

fore, from the paraxial and thin-lens approximations:

d(x, y) = αb̄(x, y) (1)

≈ α
Lf

1− f/g

(

1

g
−

1

Z(x, y)

)

(2)

, A(L, f, g) +
B(L, f, g)

Z(x, y)
, (3)

where α is a constant of proportionality, L is the diameter of
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the aperture, f is the focal length of the lens and g is the fo-

cus distance of the camera. We make the affine relationship

between inverse depth and disparity explicit in Eqn. 3 by

defining image-wide constants A(L, f, g) and B(L, f, g).
This equation reflects our previous assertion that perfect

knowledge of disparity d and blur size b only gives enough

information to recover depth Z if the parameters L, f and g
are known. Please see the supplement for a derivation.

Eqn. 3 demonstrates the aforementioned affine ambigu-

ity in dual-pixel data. This means that different sets of cam-

era parameters and scene geometries can result in identical

dual-pixel images (Fig. 3(b)). Specifically, two sets of cam-

era parameters can result in two sets of affine coefficients

(A1, B1) and (A2, B2) such that the same image-plane dis-

parity is produced by two different scene depths

d(x, y) = A1 +
B1

Z1(x, y)
= A2 +

B2

Z2(x, y)
. (4)

Consumer smartphone cameras are not reliable in recording

camera intrinsic metadata [14], thereby eliminating the eas-

iest way that this ambiguity could be resolved. But Eqn. 3

does imply that it is possible to use DP data to estimate

some (unknown) affine transform of inverse depth. This

motivates our technique of training a CNN to estimate in-

verse depth only up to an affine transformation.

Though absolute depth would certainly be preferred over

an affine-transformed depth, the affine-transformed depth

that can be recovered from dual-pixel imagery is of sig-

nificant practical use. Because affine transformations are

monotonic, an affine-transformed depth still allows for rea-

soning about relative ordering of scene depths. Affine-

invariant depth is a natural fit for synthetic defocus (simu-

lating wide aperture images by applying a depth dependent

blur to a narrow aperture image [9, 50]) as the affine pa-

rameters naturally map to the user controls — the depth to

focus at, and the size of the aperture to simulate. Addition-

ally, this affine ambiguity can be resolved using heuristics

such as the likely sizes of known objects [28], thereby en-

abling the many uses of metric depth maps.

4. View supervision for Affine Invariant Depth

A common approach for training monocular depth esti-

mation networks from multi-view data is to use self supervi-

sion. This is typically performed by warping an image from

one viewpoint to the other according to the estimated depth

and then using the difference between the warped image and

the actual image as some loss to be minimized. Warping is

implemented using a differentiable spatial transformer layer

[30] that allows end-to-end training using only RGB views

and camera poses. Such a loss can be expressed as:

L(I0,Θ) =
∑

(x,y)

∆(I0(x, y), I1 (M (x, y;F (I0,Θ))))

(5)

Where I0 is the RGB image of interest, I1 is a corre-

sponding stereo image, F (I0,Θ) is the (inverse) depth es-

timated by a network for I0, M(x, y; D̂) is the warp in-

duced on pixel coordinates (x, y) by that estimated depth

D̂ = F (I0,Θ) and by the known camera poses, and ∆(·, ·)
is some arbitrary function that scores the per-pixel differ-

ence between two of RGB values. ∆(·, ·) will be defined in

Sec. 6.2, but for our current purposes it can be any differen-

tiable penalty. Because we seek to predict inverse depth up

to an unknown affine transform, the loss in Eqn. 5 cannot

be directly applied to our case. Hence, we introduce two

different methods of training with view supervision while

predicting inverse depth up to an affine ambiguity.

4.1. 3D Assisted Loss

If we assume that we have access to a ground truth in-

verse depth D∗ and corresponding per-pixel confidences C
for that depth, we can find the unknown affine mapping by

solving

argmin
a,b

∑

(x,y)

C(x, y) (D∗(x, y)− (aF (I0,Θ) (x, y) + b))
2

(6)

While training our model Θ, during each evaluation of our

loss we solve Eqn. 6 using a differentiable least squares

solver (such as the one included in TensorFlow) to obtain

a and b, which can be used to obtain absolute depth that

can then be used to compute a standard view supervision

loss. Note that since we only need to solve for two scalars,

a sparse ground truth depth map with a few confident depth

samples suffices.

4.2. Folded Loss

Our second strategy does not require ground truth depth

and folds the optimization required to solve the affine pa-

rameters into the overall loss function. We associate vari-

ables a and b with each training example I0 and define our

loss function as:

Lf (I0,Θ, a, b) =
∑

(x,y)

∆(I0(x, y), I1 (M (x, y; aF (I0,Θ) + b)))

(7)

and then let the gradient descent optimize for Θ, {a(i)} and

{b(i)} by solving

argmin
Θ,{a(i)},{b(i)}

∑

i

Lf (I
(i)
0 ,Θ, a(i), b(i)). (8)

To avoid degeneracies as a(i) approaches zero, we parame-

terize a(i) = ǫ + log(exp(a
(i)
ℓ ) + 1) where ǫ = 10−5. We

initialize {a
(i)
ℓ } and {b(i)} from a uniform distribution in

[−1, 1]. To train this model, we simply construct one opti-

mizer instance in which Θ, {a
(i)
ℓ }, and {b(i)} are all treated

as free variables and optimized over jointly.
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5. Data Collection

To train and evaluate our technique, we need dual-pixel

data paired with ground-truth depth information. We there-

fore collected a large dataset of dual-pixel images captured

in a custom-made capture rig in which each dual-pixel cap-

ture is accompanied by 4 simultaneous images with a mod-

erate baseline, arranged around the central camera (Fig-

ure 4(a)). We compute “ground truth” depths by applying

established multi-view geometry techniques to these 5 im-

ages. These depths are often incomplete compared to those

produced by direct depth sensors, such as the Kinect or LI-

DAR. However, such sensors can only image certain kinds

of scenes — the Kinect only works well indoors, and it

is difficult to acquire LIDAR scans of scenes that resem-

ble normal consumer photography. Synchronization and

registration of these sensors with the dual-pixel images is

also cumbersome. Additionally, the spatial resolutions of

direct depth sensors are far lower than the resolutions of

RGB cameras. Our approach allows us to capture a wide

variety of high-resolution images, captured both indoors

and outdoors, that resemble what people typically capture

with their cameras: pets, flowers, etc (we do not include

images of faces in our dataset, due to privacy concerns).

The plus-shaped arrangement means that it is unlikely that

a pixel in the center camera is not visible in at least one

other camera (barring small apertures or very nearby ob-

jects) thereby allowing us to recover accurate depths even

in partially-occluded regions. The cameras are synchro-

nized using the system of [5], thereby allowing us to take

photos from all phones at the same time (within ∼ 16 mil-

liseconds, or half a frame) which allows us to reliably image

moving subjects. Though the inherent difficulty of the aper-

ture problem means that our ground-truth depths are rarely

perfect, we are able to reliably recover high-precision par-

tial depth maps, in which high-confidence locations have

accurate depths and inaccurate depths are flagged as low-

confidence (Figures 4(b), 4(c)). To ensure that our results

are reliable and not a function of some particular stereo al-

gorithm, we compute two separate depth maps (each with

an associated confidence) using two different algorithms:

the established COLMAP stereo technique [45, 1], and a

technique we designed for this task. See the supplement for

a detailed description.

Our data is collected using a mix of two widely avail-

able consumer phones with dual-pixels: The Google Pixel

2 and the Google Pixel 3. For each capture, all 5 images

are collected using the same model of phone. We captured

3,573 scenes resulting in 3,573× 5 = 17, 865 RGB and DP

images. Our photographer captured a wide variety of im-

ages that reflect the kinds of photos people take with their

camera, with a bias towards scenes that contain interesting

nearby depth variation, such as a subject that is 0.5 - 2 me-

ters away. Though all images contain RGB and DP infor-

(a) Our capture rig (b) COLMAP depth (c) Our depth

(d) An example capture

Figure 4. Our portable capture rig with synchronized cameras (a)

can be used to capture natural in-the-wild photos, where each cen-

tral image is accompanied with 4 additional views (d). These mul-

tiple views allow us to use multi-view stereo algorithms to com-

pute “ground truth” depths and confidences, as shown in (b) and

(c) (low confidence depths are rendered as white).

mation, for this work we only use the DP signal of the center

camera. All other images are treated as conventional RGB

images. We process RGB and DP images at a resolution of

1512×2016, but compute “ground truth” depth maps at half

this resolution to reduce noise. We use inverse perspective

sampling in the range 0.2 - 100 meters to convert absolute

depth to inverse depth D∗. Please see the supplement for

more details.

Though our capture rig means that the relative positions

of our 5 cameras are largely fixed, and our synchronization

means that our sets of images are well-aligned temporally,

we were unable to produce a single fixed intrinsic and ex-

trinsic calibration of our camera rig that worked well across

all sets of images. This is likely due to the lens not be-

ing fixed in place in the commodity smartphone cameras

we use. As a result, the focus may drift due to mechani-

cal strain or temperature variation, the lens may jitter off-

axis while focusing, and optical image stabilization may

move the camera’s center of projection [14]. For this rea-

son, we use structure from motion [24] with priors provided

by the rig design to solve for the extrinsics and intrinsics of

the 5 cameras individually for each capture, which results

in an accurate calibration for all captures. This approach

introduces a variable scale ambiguity in the reconstructed

depth for each capture, but this is not problematic for us as

our training and evaluation procedures assume an unknown

scale ambiguity.
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AIWE(1) AIWE(2) 1− |ρs|
Folded Loss .0225 .0318 .195

3D Assisted Loss .0175 .0264 .139
Table 1. Accuracy of DPNet trained with two different methods.

Our “3D Assisted Loss”, which has access to ground truth depth

to fully-constrain the ambiguity, tends to outperform the alterna-

tive approach of our “Folded Loss”, which circumvents the lack of

known depth by folding an optimization problem into the compu-

tation of the loss function during training.

6. Experiments

We describe our data, evaluation metrics and method of

training our CNN for depth prediction. In addition, we com-

pare using affine-invariant losses to using scale-invariant

and ordinary losses and demonstrate that affine-invariant

losses improve baseline methods for predicting depth from

dual-pixel images.

6.1. Data Setup

Following the procedure of [50], we center crop our

dual-pixel images to 66.67% of the original resolution to

avoid spatially varying effects in dual-pixel data towards the

periphery, and to remove the need for radial distortion cor-

rection. We do not downsample the dual-pixel images, as

doing so would destroy the subtle disparity and blur cues

they contains. After cropping, the input to our network is of

resolution 1008× 1344 while the output is 504× 672, i.e.,

the same resolution as our ground truth depth. Our evalu-

ation metrics are computed on a center crop of the output

of size 384 × 512, as the center of the image is where our

additional stereo views are most likely to overlap with the

center view. We randomly split our data into train and test

sets, under the restriction that all images from each cap-

ture session are contained entirely within one of the two

sets. Our training and test sets contains 2,757 and 718 im-

ages respectively. During training we use only our own

ground-truth depth, though we evaluate on both our depth

and COLMAP’s depth. COLMAP’s SfM failed to converge

on 47 images in our test set, so we report the mean error of

the remaining 671 images.

6.2. Training a Neural Net for Depth Prediction

Now that we have defined our loss function and our

dataset, we can construct a neural network architecture for

our task for predicting depth from dual-pixel and RGB im-

ages. We use both the VGG model architecture similar to

[21] and a lightweight network (DPNet) similar to a U-Net

[42] with residual blocks [26]. While the VGG model has

∼ 19.8 million parameters and ∼ 295 billion flops per in-

ference, the DPNet has only ∼ 0.24 million parameters and

∼ 5.5 billion flops. The architectures are detailed in the

supplement.

For our difference ∆(I0, Ij) between the source image

I0 and the warped image Ij from the jth neighbor, we use

a weighted combination of a DSSIM loss and a Charbon-

nier loss with weights set to 0.8 and 0.2 respectively. Our

DSSIM loss is the same as that of [21]: a window of size

3 × 3, with c1 = 0.012 and c2 = 0.032. The Charbon-

nier loss is computed by setting α = 1 and c = 0.1 in the

parametrization described in [8]. Images are normalized to

[0, 1] range and the losses are computed on three channel

RGB images with the losses per channel averaged together.

Similar to [21, 52], we predict depths at multiple resolutions

(5 for DPNet and 3 for VGG), each scaled down a factor of

2, and aggregate losses across them.

To adapt the view supervision loss for stereo images

(Eqn. 5) to multi-view data, we use the approach of [22]

and compute ∆(I0, Ij) for each neighbor and then take per-

pixel minimum using the heuristic that a pixel must be vis-

ible in at least one other view, which applies for our case

since the neighboring views surround the center view in the

capture rig.

Our implementation is in Tensorflow [2] and trained us-

ing Adam [35] with a learning rate of 0.001 for 2 million

steps with a batch size of 4 for the lightweight model and

2 for the VGG model. Our model weights are initialized

randomly using Tensorflow’s default initialization [20]. We

perform data augmentation by applying uniformly random

translations to our imagery, limiting maximum translation

in either direction to 10 pixels.

6.3. Evaluation Metrics

The optics of dual-pixel cameras means that that we

should not expect the depth estimated from dual-pixel im-

agery to be accurate in absolute terms — at best, it should

be accurate up to some unknown affine transformation. This

ambiguity prohibits the use of conventional metrics (such

as those used by the Middlebury Stereo benchmark [44])

for evaluating the depth maps estimated from dual-pixel im-

agery, and requires that we construct metrics that are invari-

ant to this ambiguity.

Instead, we use a weighted-variant of Spearman’s rank

correlation ρs, which evaluates the ordinal correctness of

the estimated depth with ground truth depth confidences as

weight. In addition, we use affine invariant weighted ver-

sions of MAE and RMSE, denoted AIWE(1) and AIWE(2)

respectively. Please see the supplemental for details.

6.4. Folded Loss vs 3D Assisted Loss

Our first experiment is to investigate which of our two

proposed solutions for handling affine invariance during

training performs best. Training our DPNet with both ap-

proaches, as shown in Table 1, shows that the 3D assisted

loss (Sec. 4.1) converges to a better solution than the folded

loss (Sec. 4.2). We therefore use our 3D assisted loss in all
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Method Invariance
Evaluated on Our Depth Evaluated on COLMAP Depth Geometric

AIWE(1) AIWE(2) 1− |ρs| AIWE(1) AIWE(2) 1− |ρs| Mean

RGB Input

DPNet

None .0602 .0754 .631 .0607 .0760 .652 .1432

Scale .0409 .0544 .490 .0419 .0557 .514 .1047

Affine .0398 .0530 .464 .0410 .0546 .493 .1014

DORN [18] (NYUDv2 model) .0421 .0555 .407 .0426 .0557 .419 .0990

DORN [18] (KITTI model) .0490 .0631 .549 .0492 .0630 .558 .1196

RGB + DP Input

DPNet

None .0581 .0735 .827 .0587 .0742 .834 .1530

Scale .0202 .0295 .162 .0213 .0322 .178 .0477

Affine .0175 .0264 .139 .0190 .0298 .156 .0422

VGG

None .0370 .0492 .350 .0383 .0513 .360 .0876

Scale .0224 .0321 .181 .0242 .0356 .208 .0535

Affine .0186 .0275 .149 .0202 .0308 .166 .0446

Godard et al. [21]

(ResNet50)

None† .0562 .0714 .738 .0568 .0720 .745 .1442

Scale† .0260 .0367 .227 .0270 .0383 .239 .0613

Affine† .0251 .0356 .222 .0257 .0366 .232 .0592

Garg et al. [19]

(ResNet50)

None .0571 .0722 .761 .0577 .0728 .772 .1472

Scale† .0261 .0369 .228 .0267 .0382 .237 .0613

Affine† .0248 .0352 .216 .0255 .0365 .227 .0584

Wadhwa et al. [50] .0270 .0375 .236 .0276 .0388 .245 .0630
Table 2. Accuracy of different models and approaches evaluated on our depth and COLMAP depth with the right-most column containing

the geometric mean of all the metrics. For models trained with different degrees of invariance, the best-performing invariance’s score is

bolded. The overall best-performing technique is highlighted in yellow. A † indicates that we use only DP images as input to a model,

which we do if it produces better results compared to using RGB+DP input.

of the following experiments.

6.5. Comparison to Other Methods

We show that our models trained with affine invariant

loss have higher accuracy than those trained with conven-

tional losses. Our loss also improves the accuracy of ex-

isting view-supervision based monocular depth estimation

methods when applied to dual-pixel data. As benchmarks,

we compare against Fu et al. [18], the current top perform-

ing monocular depth estimation algorithm on the KITTI

[39] and ScanNet [13] benchmarks, which has been trained

on large pre-existing external RGBD datasets, and Wadhwa

et al. [50], that applies classical stereo methods to recover

depth from dual-pixels.

We evaluate our affine invariant loss against two base-

line strategies: a scale invariant loss, and no invariance.

Scale-invariance is motivated by the well-understood inher-

ent scale ambiguity in monocular depth estimation, as used

by Eigen et al. [16]. No-invariance is motivated by view-

supervised monocular depth estimation techniques that di-

rectly predict disparity [19, 21]. We implement scale invari-

ance by fixing b = 0 in Eqn. 6.

Our affine-invariant loss can also be used to enable view-

supervised monocular depth estimation techniques [19, 21]

to use dual-pixel data. Since they require stereo data for

training, we used images from the center and top cameras of

our rig as the left and right images in a stereo pair. The tech-

nique of Godard et al. [21] expects rectified stereo images

as input, which is problematic because our images are not

rectified, and rectifying them would require a resampling

operation that would act as a lowpass filter and thereby re-

move much of the depth signal in our dual-pixel data. We

circumvent this issue by replacing the one dimensional bi-

linear warp used by [21] during view supervision with a

two dimensional warp based on each camera’s intrinsics and

extrinsics. We also remove the scaled sigmoid activation

function used when computing disparities, which improved

performance due to our disparities being significantly larger

than those of the datasets used in [21]. We also decreased

the weight of the left-right consistency loss by 0.15 times to

compensate for our larger disparities. We use the ResNet50

[26] version of [21]’s model as they report it provides the

highest quality depth prediction. We also used the code-

base of [21] to implement a version of [19] by removing the

left-right consistency loss and the requirement that the right

disparity map be predicted from the left image.

We show quantitative results in Table 2, and visualiza-

tions of depth maps in Fig. 5 (see the supplement for ad-

ditional images). Using our affine-invariant loss instead of

scale-invariant or not-invariant loss improves performance
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(a) Input Image (b) GT Depth (c) DPNet (Affine) (d) DPNet (Scale) (e) DPNet (Affine) (f) DORN [18] (g) Wadhwa et al.
RGB + DP RGB + DP RGB RGB RGB + DP [50]

Figure 5. Input images (a) from the test set of our dataset, their ground-truth depth (b), the output of DPNet with RGB + DP input trained

with affine invariance (c) and scale invariance (d), output of DPNet with RGB input trained with affine invariance (e), and as baselines, the

output of [18] trained on the NYUDv2 dataset [46] (f) and the output of [50] (g). An affine transform has been applied to all visualizations

to best fit the ground truth. Results from [50] exhibit fine details due to the use of bilateral smoothing [11] as a post process but otherwise

show many depth errors, e.g., the shadow of the dog on the ground. DORN [18] lacks fine details and fails to generalize to the variety

of scenes in our dataset. For DPNet, results with RGB + DP input are better than results with RGB input. RGB + DP input with affine

invariance yields better results than scale invariance, e.g., the space between the pencils in the second image. Best seen zoomed-in in an

electronic version.

for all models where different degrees of invariance are in-

vestigated. In particular, while VGG is more accurate than

DPNet when using no invariance, affine invariance allows

the small DPNet model to achieve the best results. In com-

paring the performance of DPNet with and without DP in-

put, we see that taking advantage of dual-pixel data pro-

duces significantly improved performance over using just

RGB input. While [18] trained on external RGBD datasets

performs well on this task when compared to our model

trained on just RGB data, its accuracy is significantly lower

than our model and many baseline models trained on dual-

pixel data with our affine-invariant loss, thereby demon-

strating the value of DP imagery.

7. Conclusion

In summary, we have presented the first learning based

approach for estimating depth from dual-pixel cues. We

have identified a fundamental affine ambiguity regarding

depth as it relates to dual-pixel cues, and with this obser-

vation we have developed a technique that allows neural

networks to estimate depth from dual-pixel imagery de-

spite this ambiguity. To enable learning and experimenta-

tion for this dual-pixel depth estimation task, we have con-

structed large dataset of 5-view in-the-wild RGB images

paired with dual-pixel data. We have demonstrated that our

learning technique enables our model (and previously pub-

lished view-supervision-based depth estimation models) to

produce accurate, high-quality depth maps from dual-pixel

imagery.
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