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Abstract

Weakly-supervised instance segmentation aims to de-

tect and segment object instances precisely, given image-

level labels only. Unlike previous methods which are com-

posed of multiple offline stages, we propose Sequential La-

bel Propagation and Enhancement Networks (referred as

Label-PEnet) that progressively transforms image-level la-

bels to pixel-wise labels in a coarse-to-fine manner. We de-

sign four cascaded modules including multi-label classifi-

cation, object detection, instance refinement and instance

segmentation, which are implemented sequentially by shar-

ing the same backbone. The cascaded pipeline is trained

alternatively with a curriculum learning strategy that gen-

eralizes labels from high-level images to low-level pixels

gradually with increasing accuracy. In addition, we de-

sign a proposal calibration module to explore the ability of

classification networks to find key pixels that identify object

parts, which serves as a post validation strategy running in

the inverse order. We evaluate the efficiency of our Label-

PEnet in mining instance masks on standard benchmarks:

PASCAL VOC 2007 and 2012. Experimental results show

that Label-PEnet outperforms the state-of-art algorithms by

a clear margin, and obtains comparable performance even

with fully supervised approaches.

1. Introduction

Deep convolutional neural networks (CNNs) have made

a series of breakthroughs in computer vision by, using large-

scale manually-labeled data for training. By designing

strong network architectures, CNNs can detect object loca-

tions and segment object instances precisely. However, the

performance on object detection or segmentation will drop

considerably due to lack of strong annotation provided at

*Weilin Huang is the corresponding author.

the object level or pixel level [27, 7, 12, 43], i.e. when there

are only image-level labels available.

To investigate the ability of CNNs to estimate pixel-

wise labels by given image-level supervision only, various

weakly-supervised approaches have been developed for ob-

ject detection or instance segmentation. A number of meth-

ods [4, 36, 37] exploit a bottom-up approach to group pixels

into proposals, and then evaluate the proposals repetitively

in an effort to search exact object locations. Several algo-

rithms dissect the classification process of CNNs in a top-

down [41, 24] or bottom-up manner [42], to generate seeds

for instance segmentation [43]. There are also some hy-

brid approaches that combine both bottom-up and top-down

cues [32, 12].

Existing weakly-supervised methods can achieve com-

petitive results, but the performance is still significantly

lower than that of fully-supervised counterparts. Although

we can roughly identify an object using a classification net-

work, it is particularly challenging to precisely infer pixel-

wise labels from a classification model, even using multi-

ple post-processing methods. This inspired us to re-think

the ability of CNNs for various vision tasks, such as im-

age classification, object detection and instance segmenta-

tion. We observed that full supervision with accurate anno-

tations is the key to success. Therefore, the central issue for

weakly-supervised detection and segmentation is to transfer

image-level supervision to pixel-wise labels gradually and

smoothly, in a coarse-to-fine manner by designing multiple

cascaded modules.

The 2-D structure of convolutional kernels allows

CNNs to grasp local information accurately, and enlarge

the size of receptive fields gradually with the increase

of convolutional layers, which enable the CNN model

to memorize and classify objects accurately. Our goal

is to enable CNNs to segment objects by just providing

image-level labels. We design CNNs by introducing four

new modules: (1) multi-label classification module, (2)
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object detection module, (3) instance refinement module,

and (4) instance segmentation module, which are cascaded

and implemented sequentially.

Multi-Label Classification Module. In this module,

images are first partitioned into pieces, which are then

grouped into regions to generate a set of object proposals.

We employ unsupervised process, search [38] or edge

box [44], where pixels are organized by low-level statistics

for generating object candidates. Then a classification

branch and a class-wise weight branch are incorporated to

perform multi-label classification. We propose a proposal

refinement module able to identify exact object locations

and mine pixel-wise labels in object proposals.

Object Detection Module. The rough object locations

generated are used to train a standard object detection

with Faster-RCNN [30]. But they can be unstable with

online training we implement. Thus we explore object

scores generated from the classification module to guide

the training of current object detection, and infer object

locations with the model during online training. We further

perform proposal calibration to improve detection accuracy,

and identify pixels that belong to the corresponding objects.

Instance Refinement Module. With the generated object

locations and instance masks, we perform instance seg-

mentation using a standard Mask-RCNN [17]. However,

current supervised information is still not strong enough,

and we need to further explore object scores generated

from the detection module to guide the training of current

instance segmentation. Furthermore, a new instance branch

is explored to perform instance segmentation, because the

previous instance masks are generated based on individual

samples, and the CNNs can summarize and gradually

rectify these object masks with increasing accuracy when

the masks are used as supervision.

Instance Segmentation Module. In this module, we

obtain relatively strong supervision from the previous

modules, which are used to guide the training of current

instance segmentation, and generate final results.

The main contributions of this work are summarized as:

First, we introduce Sequential Label Propagation

and Enhancement Networks (Label-PEnet) for weakly-

supervised instance segmentation, which can be trained in

an end-to-end manner. Our framework is composed of four

modules that mine, summarize and rectify the appearance

of objects repetitively. It is an important step forward in ex-

ploiting the ability of CNNs to recognize objects from im-

age level to pixel level, and thus boost up the performance

of weakly-supervised instance segmentation.

Second, we propose a proposal calibration module to un-

cover the classification process of CNNs, and then mine the

pixel-wise labels from image level and object level. In this

module, both top-down and bottom up methods are com-

bined to identify object pixels with increased accuracy.

Third, to validate the effectiveness of the proposed

Label-PEnet, we conduct experiments on standard bench-

marks: PASCAL VOC 2007 and PASCAL VOC 2012. Ex-

perimental results show that Label-PEnet outperforms state-

of-art approaches by a clear margin, and obtains comparable

performance even compared with fully supervised methods.

2. Related Work

We briefly review related studies on weakly-supervised

object detection and segmentation, along with recent neural

attention methods and applications of curriculum learning.

Weakly-Supervised Object Detection and Segmentation.

Weakly-supervised object detection and segmentation is

very challenging but is important to image understanding,

since it aims to locate and segment objects using image-

level labels only [27, 7]. There are usually three kinds of

methods: bottom-up manner, top-down manner, and the

combination of two. For example, methods in [27, 10, 9]

treat the weakly-supervised object localization as a multi-

label classification problem, and locate objects by using

specific pooling layers. On the other hand, approaches in

[4, 36] extract and select object instances from images us-

ing selective search [38] or edge boxes [44], and solve the

weakly-supervised detection problem with multi-instance

learning [8]. The method in [43] finds peaks in the class

activation map, and then propagate the peaks to find the cor-

responding object proposals generated by MCG [28]. Since

there is no sufficient supervision to train an instance seg-

mentation network with image-level labels, in this paper, we

decompose instance segmentation task into multiple sim-

pler problems, and utilize the ability of neural networks in

identifying object pixels to solve them progressively.

Neural Attention. Neural attention aims to understand

the classification process of deep neural networks, and

learn the relationship between the pixels in the input image

and the neural activations in convolutional layers. Recent

effort has been made to explain how neural networks work

[41, 2, 24]. In [24], Lapuschkin et al. extended a layer-wise

relevance propagation (LRP) [1] to visualize inherent

structured reasoning of deep neural networks. To identify

the important regions producing final classification results,

Zhang et al. [41] proposed a positive neural attention back-

propagation scheme, called excitation back-propagation

(Excitation BP). Other related methods include Grad-

CAM [34] and network dissection [2]. Neural attention

obtains pixel-wise class probabilities using image-level
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Figure 1. The proposed Sequential Label Propagation and Enhancement Networks (Label-PEnet) for weakly-supervised instance segmen-

tation. (a) Overview: the training pipeline contains two different stages. One is curriculum learning stage which learns from image-level

labels to pixel-wise labels. The other one learns in an inverse order to validate the results generated from the previous modules. (b) Shared

backbone: the backbone is shared by all modules, and is fixed during the cascaded pre-training and recurrent mixed fine-tuning. (c) The

details of different modules for multi-label classification, object detection, instance refinement, and instance segmentation.

labels in a top-down manner on a well trained network. In

our pipeline, we propose a forward network that computes

the pixel-wise class probability map for each individual

proposal online. This allows us to transfer image-level

labels to pixel-wise ones, providing richer supervision for

subsequent object detection and instance segmentation.

Curriculum Learning. Curriculum learning [3] is set of

machine learning methods that decompose a complicated

learning task into multiple sub-tasks with gradually increas-

ing learning difficulty. In [3], Yoshua et al. described the

concept of curriculum learning, and used a toy classification

problem to show the advantage of decomposing a complex

problem into multiple simpler ones. Various machine learn-

ing algorithms [35, 14] follow a similar divide-and-conquer

strategy in curriculum learning. Recently, Sheng et al. [15]

proposed CurriculumNet for large-scale weakly-supervised

image classification. CurriculumNet is able to learn high-

performance CNNs from an image dataset constraining a

large amount of noisy images and labels, which were col-

lected rawly from the Internet without any human annota-

tion [26]. In this paper, we adopt this strategy to decompose

the instance segmentation problem into multi-label image

classification, object detection and instance segmentation

sequentially. All the learning tasks in these modules are

relatively simple by using the training data with the refined

supervision generated from the previous stage.

3. Label-PEnet: Sequential Label Propagation

and Enhancement Networks

3.1. Preliminary and Overview

Given an image I associated with an image-level label

yI = [y1, y2, ..., yC ]T , our goal is to estimate pixel-wise

labels Y I = [y
1
,y

2
, ...,yP ]

T for each object instance. C
is the number of object classes, P is the number of pixels

in I . yl is a binary value, where yl = 1 means the image

I contains the l-th object category, and otherwise, yl = 0.

The label of a pixel p is denoted by a C-dimensional binary

vector yp. In this work, we propose a weakly-supervised

learning approach for instance segmentation (Label-PEnet),

which is inspired by the divide-and-conquer idea in curricu-

lum learning [3]. This allows us to train our model with

increasingly stronger supervision which is learned automat-

ically by propagating object information from image level

to pixel level via four cascaded modules: multi-label clas-

sification module, object detection module, instance refine-

ment module, and instance segmentation module. The pro-

posed Label-PEnet is described in Fig. 1.

3.2. Multiple Cascaded Modules

Multi-Label Classification Module. This module aims

to generate a set of rough object proposals with correspond-

ing class confident values and proposal weights, by just us-
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Figure 2. The proposal calibration module. From left to right: (a) Candidate object proposals: All candidate object proposals suppressed by

NMS are taken to generate the instance attention map. (b) Feed forward classification dissection module: The excitation back-propagation

process is inversed into a feed forward manner to get online. (c) Instance attention generation: The attention of individual proposals are

added to get the instance attention. CRF [23] is used to get the final segmentation results.

ing image-level category labels. To identify rough regions

of objects, we exploit selective search [38] to generate a set

of object proposals R = (R1, R2, ..., Rn). These object

candidates are then used as input to our multi-label clas-

sification module for collecting more confident candidates,

and learning to identify pixels which paly the key role in the

classification task.

For an image I of W ×H , given a deep neural network

φd(·, ·; θ) with a convolutional stride of λs, we have convo-

lutional feature maps with a spatial size of H/λs×W/λs in

the last convolutional layer. Then ROI pooling [13] is per-

formed on the convolutional feature maps to compute the

features for each object proposals in R, resulting in |R| re-

gional features for image I . Two fully-connected layers are

applied separately to the computed regional features, gener-

ating classification results, xc,1 ∈ R
|R|×C , and weight vec-

tors, xp,1 ∈ R
|R|×C , for the |R| object proposals. The pro-

posal weights indicate the contribution of each proposal to

the C categories in image-level multi-label classification. A

softmax function is applied to normalize the weights as,

w1

ij =
ex

p,1

ij

∑|R|
i=1

ex
p,1

ij

. (1)

where w
p,1
ij stands for the weight of the i-th proposal on

the j-th class. We can have a normalized weight matrix

w1 ∈ R
|R|×C . Then the final score for each proposal on dif-

ferent classes is calculated by taking an element-wise prod-

uct, x1 = xc,1 ⊙ wp,1, and the final image-level multi-

label classification results are computed by summing over

all the proposals associated to each class, s1c =
∑|R|

i=1
x1

ic,

generating in a final score vector for the input image I ,

s1 =
[

s1
1
, s1

2
, ..., s1C

]

, indicating a confident value for each

class. A probability vector p̂1 =
[

p̂1
1
, p̂1

2
, ..., p̂1C

]

can be

computed by applying a softmax function to s1, and the

loss function for image-level multi-label classification is,

L1(I,yI) = −

C
∑

k=1

yk log p̂1k. (2)

Proposal Calibration. The generated object proposals,

with their classification scores, xc,1, are further processed

by proposal calibration which is a proposal refinement sub-

module that refines the generated proposals. The goal is to

improve the prediction accuracy on object bounding boxes

and segmentation masks, resulting in stronger and more ac-

curate supervision for next modules.

Recent work of [41] introduces a new Excitation Back-

Propagation (Excitation BP) able to generate a discrimi-

native object-based attention map by using the predicted

image-level class labels, which inspired us to compute an

attention map for each proposal. For proposal calibration,

we explore a same network architecture as the classifica-

tion module. Specifically, given a proposal Ri, we apply a

softmax function on its class prediction x
c,1
i ∈ R

C to have

a normalized vector, wc,1, and predict an object class ci
by using the highest value. Then we get a class activation

vector, a
c,1
i ∈ R

C , by setting all other elements to 0, ex-

cept for the ci-th one in wc,1. We perform the Excitation

BP [41] in a feed forward manner from the classification

layer to the ROI pooling layer by using the activation vec-

tor, and generate an attention map, Ai, for each proposal,

as shown in Fig. 2. Then for the label c in the ground

truth of image I , we perform non-maximum suppression

(NMS), and generate an object candidate Rc with the high-

est confidence. For those proposals which are suppressed by

Rc, we add their proposal attention maps to the correspond-

ing locations in the image, and generate a class-specific

attention map Ac. Finally, we can compute a set of ob-

ject attention maps of A = [A1,A2, ...,AC ] ∈ R
C×H×W ,

with a background map, A0 = max(0, 1 − ΣC
l=1

ylAl).
We further perform a conditional random field (CRF [23])

to segment object regions more accurately from the corre-

sponding attentional maps, resulting in a set of segmenta-

tion masks, S1 ∈ R
K×H×W , with corresponding object

bounding boxes, B1 ∈ R
K×4. Meanwhile, for each pair of

bounding box and segmentation mask, we simply use the

classification score in wc,1 as a weight W 1 ∈ R
K to guide

the training of next object detection module.
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Object Detection Module. With the generated proposal

bounding boxes B1 ∈ R
K×4 and the corresponding

weights W 1 ∈ R
K, we train a standard object detection

model by using them as ground truth. The main differ-

ence is that we provide a learned weight for each generated

proposal during training. By following Faster-RCNN [31],

we sample positive and negative proposals around a ground

truth bounding box, and each proposal sampled has a same

weight with the corresponding ground truth. Then the opti-

mization objective of region proposal network (RPN) is,

L (wi, ti)rpn =
1

Nrpn

∑

i

Lobj(wi, w
∗
i )

+ λ
1

Nrpn

∑

i

w∗
iLreg(ti, t

∗
i ),

(3)

where Nrpn is the number of candidate proposals, wi is the

predicted object score, ti is the predicted location offset, w∗
i

is the proposal weight, t∗i is the pseudo object location, λ is

a constant value. Lobj , Lcls and Lreg are the object or non-

object loss, classification loss, and bounding boxes regres-

sion loss respectively. For the RCNN part, the optimization

objective is computed as,

L (pi, ti)rcnn =
1

Nrcnn

∑

i

w∗
iLcls(pi, p

∗
i )

+ λ
1

Nrcnn

∑

i

w∗
iLreg(ti, t

∗
i ).

(4)

where pi is the classification score, and p∗i indicates the ob-

ject class. Nrcnn is the number of proposals generated by

RPN, and Lcls is the classification loss. On the head of

Faster-RCNN architecture, we perform proposal calibration

sub-module to refine the object proposals, which is similar

to that of multi-label classification module. This enables the

model to generate dense proposal attention maps. In infer-

ence, multiple object candidates can be generated for multi-

ple labels, which are different from the proposal calibration

in classification module that outputs multiple candidates for

each label. Finally, we can obtain multiple instance marks,

S2, with corresponding object bounding boxes, T 2, and

weights, W 2 ∈ R
J , where J is the number of object in-

stances.

Instance Refinement Module. With the generated in-

stance masks S2 and object bounding boxes T 2, we can

train an instance segmentation task having a joint detection

branch and mask branch similar to that of Mask R-CNN

[17]. In this module, we implement instance inference for

dense pixel-wise prediction rather than proposal calibration,

by following the feed forward inference as [17]. Object in-

stances are learnt and modeled in the module by collecting

part of the information hidden in the results generated from

previous modules. We perform object instance segmenta-

tion with the learned weights W 2, and our training process

follows that of Mask-RCNN [17]. As in the proposal cal-

ibration, object masks affiliated with the predicted object

location are summed together to generate an instance atten-

tion map. Similarly, we perform CRF [23] to obtain more

accurate results of instance segmentation.

Instance Segmentation Module. In this module, image-

level labels have been successfully transferred into dense

pixel-wise labels. Then we perform standard instance seg-

mentation in a fully supervised manner, by simply follow-

ing the training strategies as implemented in the instance

refinement module. Final results can be generated during

inference.

3.3. Training with Label Propagation

To better train multiple sequential models and avoid

local minima, we initialize the backbone network with

an ImageNet pre-trained model. The training is imple-

mented sequentially by using the output of previous mod-

ule, with gradually enhanced supervision. We develop a

two-stage training process containing cascaded pre-training

and forward-backward learning with curriculum.

Cascaded Pre-Training. The parameters of backbone

network are fixed during cascaded pre-training stage. We

pre-train the four cascaded modules in sequence, from

multi-label classification to instance segmentation. When

the training of current module is converged, the model out-

puts are regularized and refined, and then are used as su-

pervision of the next module. By this way, we decompose

a weakly-supervised instance segmentation task into four

sequential sub-tasks where image-level supervision is prop-

agated gradually and efficiently.

Forward-Backward Learning with Curriculum Train-

ing four sequential models is difficult. The network will get

into local minima easily with sequential label propagation.

To overcome this problem, we propose a forward-backward

learning method by leveraging curriculum learning. It con-

tains two sub-stages: a forward curriculum learning phase

and backward validation phase, as shown in Fig. 1. In the

forward curriculum learning, the four modules are trained in

one direction where the supervised information is enhanced

gradually. While in the backward validation, training is per-

formed in an inverse order. The backward validation starts

from instance segmentation module, where we just perform

inference at the module, and generate object locations and

instance masks for instance refinement module. Then the

instance refinement module is trained in a fully supervised

manner, and provide object locations for object detection

module. In multi-label classification module, we set the

proposals, which have an overlap of > β (= 0.5) with the

objects detected by the detection module, with a label of
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Figure 3. Instance detection and segmentation results on Pascal VOC 2012 (the first row) and Pascal VOC 2007 (the second row). The

proposals with the highest confidence are selected and visualized. The segmentation results are post-processed by CRF [23].

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

OM+MIL+FRCNN[25] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

HCP+DSD+OSSH3[20] 54.2 52.0 35.2 25.9 15.0 59.6 67.9 58.7 10.1 67.4 27.3 37.8 54.8 67.3 5.1 19.7 52.6 43.5 56.9 62.5 43.7

OICR-Ens+FRCNN[36] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

MEFF+FRCNN[12] 64.3 68.0 56.2 36.4 23.1 68.5 67.2 64.9 7.1 54.1 47.0 57.0 69.3 65.4 20.8 23.2 50.7 59.6 65.2 57.0 51.2

Multi-label Cls Module† 41.2 42.0 6.5 17.1 7.1 54.1 40.5 8.5 17.3 33.0 13.2 10.3 24.4 54.0 5.5 7.5 20.0 39.2 49.9 47.3 26.9

Object Det Module† 49.1 61.3 24.8 15.9 46.9 58.9 25.3 17.7 23.3 41.8 28.9 42.4 67.1 25.3 6.7 50.4 40.9 62.4 50.4 42.3 39.1

Instance Ref Module† 62.3 68.3 47.2 27.9 53.8 69.1 39.9 41.9 25.9 56.5 40.1 53.0 70.0 44.9 13.3 53.5 51.1 68.6 60.9 45.2 49.7

Instance Seg Module† 63.8 69.0 47.9 35.3 56.1 68.9 41.5 42.7 25.9 58.3 44.3 52.5 70.3 44.4 13.8 56.9 52.9 70.0 62.3 49.9 51.3

Multi-label Cls Module‡ 42.4 43.8 8.9 18.7 6.5 55.7 42.0 10.0 18.3 34.3 14.5 11.4 24.8 56.2 3.7 9.1 22.1 40.5 51.1 46.5 28.0

Object Det Module‡ 51.2 63.0 28.8 17.5 51.1 60.3 28.9 20.7 25.9 41.0 31.2 46.4 68.1 27.1 6.0 50.9 43.6 65.8 50.6 40.3 40.3

Instance Ref Module‡ 63.2 67.5 48.3 29.8 54.8 70.4 40.9 42.6 27.9 55.0 41.5 54.3 70.0 43.2 15.3 55.4 52.4 69.0 62.2 46.8 50.5

Instance Seg Module‡ 65.7 69.4 50.6 35.8 55.5 71.9 43.6 45.3 27.5 58.5 45.4 55.4 71.7 45.8 18.2 56.6 56.1 72.0 64.6 51.4 53.1

Table 1. Average precision (in %) of weakly-supervised methods on PASCAL VOC 2007 detection test set. † stands for the results of the

cascaded pre-training. ‡ stands for the results of the recurrent mixed fine-tuning.

the corresponding objects or background. Then we per-

form single-label classification on these proposals, and at

the same time, keep training multi-label classification task.

4. Experimental Results

Our methods were implemented using Caffe [19] and run

on an NVIDIA TITAN RTX GPU with 24GB memory. The

parameters of object detection and instance segmentation

modules are the same with Faster R-CNN [30] and Mask

R-CNN [17]. Several examples are illustrated in Fig. 3.

4.1. Network Structures

Backbone Network. The backbone network is based on

VGG-16, where the layers after relu4 3 are removed. As

shown in Fig 1, only the first four convolutional stages are

preserved. All the parameters are initialized from an Ima-

geNet pre-trained model.

Multi-label Classification Module. Following the back-

bone network, the fifth convolution stage contains conv5 1,

conv5 2, and conv5 3. Dilations in these three layers are

set to 2. The feature stride λs at layer relu5 3 is 8. A ROI

pooling [13] is added to generate a set of 512×7×7 feature

volumes. Then there are fc6 and fc7 layers followed. The

classification branch and the proposal weight branch are ini-

tialized randomly using a Gaussian initializer as in [18].

Object Detection Module. As in multi-label classifica-

tion module, dilations in conv5 1, conv5 2, and conv5 3
are set to 2. The RPN [30] contains three convolutional

layers which are all initialized with Gaussian distributions

with 0 mean and standard deviation of 0.01. It generates

proposals where ROI pooling [13] is conducted on the fea-

ture maps relu5 3. A proposal classification branch and a

bounding box regression branch are presented by following

two fully-connected layers fc6 and fc7.

Instance Refinement Module and Instance Segmenta-

tion Module. The two module have the same network ar-

chitecture. They contain an object detection part and an in-

stance segmentation part. The object detection part is simi-

lar to that in object detection module. The only difference is

that the RPN and the subsequent ROI pooling take the fea-

ture maps of the layer pool4 as input (not relu5 3). For the

instance segmentation part, we adopt the atrous spatial pyra-

mid pooling as that of DeepLab V3 [5] after layer relu5 3.

The dilations in our atrous spatial pyramid pooling layers

are [1, 2, 4, 6].
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method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

OICR-VGG16[36] 67.7 61.2 41.5 25.6 22.2 54.6 49.7 25.4 19.9 47.0 18.1 26.0 38.9 67.7 2.0 22.6 41.1 34.3 37.9 55.3 37.9

WSDDN+context[7] 64.0 54.9 36.4 8.1 12.6 53.1 40.5 28.4 6.6 35.3 34.4 49.1 42.6 62.4 19.8 15.2 27.0 33.1 33.0 50.0 35.3

HCP+DSD+OSSH3+NR[20] 60.8 54.2 34.1 14.9 13.1 54.3 53.4 58.6 3.7 53.1 8.3 43.4 49.8 69.2 4.1 17.5 43.8 25.6 55.0 50.1 38.3

OICR-Ens+FRCNN[36] 71.4 69.4 55.1 29.8 28.1 55.0 57.9 24.4 17.2 59.1 21.8 26.6 57.8 71.3 1.0 23.1 52.7 37.5 33.5 56.6 42.5

MEFF+FRCNN[12] 71.0 66.9 55.9 33.8 24.0 57.6 58.0 61.4 22.5 58.4 19.2 58.7 61.9 75.0 11.2 23.9 50.3 44.9 41.3 54.3 47.5

Multi-label Cls Module‡ 37.1 40.0 5.9 11.7 5.5 48.3 40.5 7.0 16.3 29.2 9.9 8.3 19.3 51.1 3.0 6.1 17.0 36.3 46.4 39.1 23.9

Object Det Module‡ 49.2 57.0 25.1 13.9 49.5 53.3 25.3 15.9 20.0 36.5 29.1 42.1 60.9 22.9 5.5 43.5 37.8 63.4 48.7 35.8 36.8

Instance Ref Module‡ 57.9 65.5 43.9 26.9 50.9 64.7 35.9 38.7 22.8 50.9 38.9 50.9 65.5 39.5 13.6 52.9 48.9 65.7 57.9 41.9 46.7

Instance Seg Module‡ 60.8 65.4 46.2 31.4 50.3 68.3 40.7 39.9 25.3 52.8 43.4 53.9 68.2 40.8 15.9 53.1 50.0 68.1 59.8 49.0 49.2

Table 2. Average precision (in %) of weakly-supervised methods on PASCAL VOC 2012 detection test set.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mCorLoc

OICR-VGG16[36] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

WSDDN-Ens[7] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0

OM+MIL+FRCNN[25] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4

HCP+DSD+OSSH3[20] 72.2 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 74.4 54.9

OICR-Ens+FRCNN[36] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3

MEFF+FRCNN[12] 88.3 77.6 74.8 63.3 37.8 78.2 83.6 72.7 19.4 79.5 46.4 78.1 84.7 90.4 28.6 43.6 76.3 68.3 77.9 70.6 67.0

Label-PEnet 89.8 82.6 75.3 65.7 39.2 80.2 81.6 77.7 18.4 82.7 49.3 75.0 86.9 85.9 30.7 49.6 75.3 71.5 76.1 70.6 68.2

Table 3. CorLoc (in %) of weakly-supervised methods on PASCAL VOC 2007 detection trainval set.

4.2. Implementation Details

Cascaded Pre-Training. In the cascaded pre-training

stage, we train the multi-label classification, object detec-

tion, instance refinement and instance segmentation in for-

ward order but keep the parameters in the backbone network

fixed. For data augmentation, we use five image scales (480,

576, 688, 864, 1024) (the shorter side is resized to one of

these scales) and horizontal flip, and cap the longer side at

1,200. The mini-batch size for SGD is set to 2, and the

learning rate is set to 0.001 in the first 40K iterations and

then decrease to 0.0001 in the following 10K iterations. The

weight decay is 0.0005, and the momenta is 0.9. These set-

tings are used in all the four modules. We start training the

next module only when the training of previous module is

finished. Selective Search (SS) [38] is adopted in the multi-

label classification module to generate about 1,600 object

proposals per image. For the RPN in the object detection

module and instance segmentation module, we follow [30]

to use 3 scales and 3 aspect ratios, yielding k = 9 anchors at

each sliding position. The sizes of the convolutional feature

maps after ROI pooling in the detection branch and segmen-

tation branch are 7× 7 and 14× 14, respectively.

Forward-Backward Learning with Curriculum. As

shown in Fig 1, there are two training graphs: a curricu-

lum learning graph and an inverse validation graph. In the

recurrent mixed fine-tuning stage, we perform the forward

curriculum training and backward validation training alter-

natively at each iteration. All layers with learnable parame-

ters are trained in an end-to-end manner. The training starts

from the cascaded pre-trained model. The learning rate are

kept at 0.0001 in the following 80K iterations. During test-

ing, we use the original size of input image.

4.3. Weakly Supervised Object Detection

Datasets and Performance Measurements. We evaluate

the performance of the object detector in different mod-

ules in Section 3.2 on Pascal VOC 2007 and Pascal VOC

2012 [11]. Each of the two datasets is divided into train,

val and test sets. The trainval sets (5011 images for 2007

and 11540 images for 2012) are used for training, and only

image tags are used. In our experiments, only image-level

labels are used, without any bounding boxes information or

pixel-wise annotation. We test our model with two measure-

ments: mAP and CorLoc. Following the standard Pascal

VOC protocol, the mAP is used for testing our models on

the test sets, and the correct localization (CorLoc) is used

for measuring the object localization accuracy [6] on the

trainval sets whose image tags are already used as training

data.

Result Comparison. Object detection results measured by

mAP on Pascal VOC 2007 test set (Table 1) and Pascal VOC

2012 test set (Table 2) are reported. Object localization re-

sults measured by CorLoc on Pascal VOC 2007 trainval set

and Pascal VOC 2012 trainval set are presented in Table

3 and Table 4. On Pascal VOC 2007 test set, our method

achieves the highest mAP (53.1%), with at least 1.9%

higher than the latest state-of-the-art algorithms includ-

ing MEFF [12], OICR[36] and HCP+DSD+OSSH3[20].

Our trained model also achieves the highest mAP (49.2%)

among all weakly-supervised algorithms on Pascal VOC

2012 test set, with 1.7% higher than the latest result

from [12]. When compare the object localization accuracy

(CorLoc), our results are also very competitive among the

state-of-art results. Our trained models on Pascal VOC 2007

trainval set and Pascal VOC 2012 trainval set achieve 68.2%

and 71.3% respectively, which are 1.2% and 1.9% higher

than the previous best results.

3351



method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mCorLoc

OICR-VGG16[36] 86.2 84.2 68.7 55.4 46.5 82.8 74.9 32.2 46.7 82.8 42.9 41.0 68.1 89.6 9.2 53.9 81.0 52.9 59.5 83.2 62.1

WSDDN+context[7] 78.3 70.8 52.5 34.7 36.6 80.0 58.7 38.6 27.7 71.2 32.3 48.7 76.2 77.4 16.0 48.4 69.9 47.5 66.9 62.9 54.8

HCP+DSD+OSSH3+NR[20] 82.4 68.1 54.5 38.9 35.9 84.7 73.1 64.8 17.1 78.3 22.5 57.0 70.8 86.6 18.7 49.7 80.7 45.3 70.1 77.3 58.8

OICR-Ens+FRCNN[36] 89.3 86.3 75.2 57.9 53.5 84.0 79.5 35.2 47.2 87.4 43.4 43.8 77.0 91.0 10.4 60.7 86.8 55.7 62.0 84.7 65.6

MEFF+FRCNN[12] 88.0 81.6 75.8 60.9 46.2 85.3 75.3 76.5 47.2 85.4 47.7 74.3 87.8 91.4 21.6 55.3 77.9 68.8 64.9 75.0 69.4

Label-PEnet 89.1 84.3 78.8 63.2 47.9 88.7 76.8 77.2 46.3 87.2 50.4 78.9 91.8 90.1 25.7 56.3 78.5 66.3 69.9 78.3 71.3

Table 4. CorLoc (in %) of weakly-supervised methods on PASCAL VOC 2012 detection trainval set.

method bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

SEC[22] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

FCL[32] 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.0 60.4 42.8 42.2 50.6 53.7

TP-BM[21] 83.4 62.2 26.4 71.8 18.2 49.5 66.5 63.8 73.4 19.0 56.6 35.7 69.3 61.3 71.7 69.2 39.1 66.3 44.8 35.9 45.5 53.8

AE-PSL[40] - - - - - - - - - - - - - - - - - - - - - 55.7

MEFF[12] 86.6 72.0 30.6 68.0 44.8 46.2 73.4 56.6 73.0 18.9 63.3 32.0 70.1 72.2 68.2 56.1 34.5 67.5 29.6 60.2 43.6 55.6

MCOF-VGG16[39] 85.8 74.1 23.6 66.4 36.6 62.0 75.5 68.5 78.2 18.8 64.6 29.6 72.5 61.6 63.1 55.5 37.7 65.8 32.4 68.4 39.9 56.2

Label-PEnet 88.3 73.5 33.2 70.1 43.2 49.1 74.7 57.0 75.9 20.7 64.3 32.3 72.3 74.1 71.1 57.4 38.3 69.1 31.2 61.1 45.2 57.2

Table 5. Comparisons of weakly-supervised semantic segmentation methods on PASCAL VOC 2012 segmentation test set.

method mAPr

0.25 mAPr

0.5 mAPr

0.75 ABO

PRM-VGG16 [43] - 22.0 - -

PRM-ResNet50 [43] 44.3 26.8 9.0 37.6

Label-PEnet 49.1 30.2 12.9 41.4

Table 6. Comparisons of weakly-supervised instance segmentation

methods on Pascal VOC 2012 validation set.

4.4. WeaklySupervised Semantic Segmentation

Datasets and Performance Measurements. The Pascal

VOC 2012 dataset [11] serves as the most popular bench-

mark on weakly-supervised semantic segmentation. The

dataset is consisted of 21 classes with 10,582 training im-

ages (the VOC 2012 training set and additional data anno-

tated in [16]), 1,449 for validation and 1,456 for testing.

Only image tags are used as training data in our experi-

ments. We do not use any additional data annotated in[16].

We report results on the test sets in Table 5.

Result Comparisons. Table 5 lists the results of weakly-

supervised semantic segmentation on Pascal VOC 2012.

Our method achieves 57.2% mean IoU, and outperforms the

previous state-of-art AE-SPL[40] and MCOF [39] by 1.6%

and 1% respectively. Compared with the previous state-of-

art algorithms, including AE-SPL[40], F-B [33], FCL [32],

and SEC [22], our method decomposes the semantic seg-

mentation problem into three different simpler tasks which

allows us to propagate high-level image labels to pixel-wise

labels gradually with enhanced accuracy.

4.5. WeaklySupervised Instance Segmentation

Datasets and Performance Measurements. We follow the

settings in [43] by using Pascal VOC 2012 dataset [11]

as benchmark for weakly-supervised instance segmenta-

tion. Experimental results are evaluated with mAPr at IoU

threshold 0.25, 0.5 and 0.75, and the Average Best Overlap

(ABO) [29]. We report results on the test sets in Table 6.

Result Comparisons. We use the VGG16 network as

the backbone, and report the performance on mAPr
0.25,

mAPr
0.5, mAPr

0.75 and ABO. While for the previous state-

of-art, they report all the four metrics only with ResNet50.

For VGG16, they report the mAPr
0.5 with 22.0%. Our

method outperforms PRM-VGG16 by 8.2% on mAPr
0.5.

Compared even with PRM-ResNet50, our method obtains

better results at mAPr
0.25 by 4.8%, mAPr

0.5 by 3.4%,

mAPr
0.75 by 3.9% and ABO by 3.8%.

4.6. Effectiveness of Different Modules

In Table 2, we compare the performance of different

modules on Pascal VOC 2007 detection test set. In the

cascaded pre-training, the mAP of multi-label classification

is only 26.9%. When we refine the object locations with

the proposal dissection module, the object detection mod-

ule gets 39.1% mAP. In the instance module, the object de-

tection results outperform the object detection module by

10.6%. With the output of the instance refinement as the

ground truth to guide the training, the final instance seg-

mentation module achieves 51.3% mAP. This indicates that

with the better detection results as the guidance, the object

detection results can be improved significantly. When we

perform the recurrent mixed fine-tuning, the detection re-

sults have 51.3% mAP which is 1.8% higher than that of

the cascaded pre-training, and surpass previous methods.

5. Conclusions

We have presented a new pipeline for weakly-supervised

instance segmentation by introducing four new modules im-

plemented sequentially. We analyzed the classification pro-

cess of CNNs, and infer object locations and pixel labels

progressively. The performance of our method on object de-

tection, semantic segmentation, and instance segmentation

was evaluated on the PASCAL VOC 2007 and PASCAL

VOC 2012 benchmarks, where our method outperformed

current state-of-art methods in each task. In future work,

we will pursue a simplification of the training steps to im-

prove the efficiency of learning.
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