
Learning Shape Templates with Structured Implicit Functions

Kyle Genova1,2 Forrester Cole2 Daniel Vlasic2 Aaron Sarna2 William T. Freeman2 Thomas Funkhouser1, 2

1Princeton University 2Google Research

Figure 1. Shapes from the ShapeNet [8] database, fit to a structured implicit template, and arranged by template parameters using t-

SNE [51]. Similar shape classes, such as airplanes, cars, and chairs, naturally cluster by template parameters.1

Abstract

Template 3D shapes are useful for many tasks in graph-

ics and vision, including fitting observation data, analyzing

shape collections, and transferring shape attributes. Be-

cause of the variety of geometry and topology of real-world

shapes, previous methods generally use a library of hand-

made templates. In this paper, we investigate learning a

general shape template from data. To allow for widely vary-

ing geometry and topology, we choose an implicit surface

representation based on composition of local shape ele-

ments. While long known to computer graphics, this rep-

resentation has not yet been explored in the context of ma-

chine learning for vision. We show that structured implicit

functions are suitable for learning and allow a network to

smoothly and simultaneously fit multiple classes of shapes.

The learned shape template supports applications such as

shape exploration, correspondence, abstraction, interpola-

tion, and semantic segmentation from an RGB image.

1. Introduction

Fitting a 3D shape template to observations is one of

the oldest and most durable vision techniques [42]. Tem-

plates offer a concise representation of complex shapes and

a strong prior for fitting. They can be used to directly cor-

respond and compare shapes, and supervised learning ap-

proaches may be applied to correspond the template and a

photograph [53, 5]. In order to fit a wide range of shapes,

however, multiple, hand-made templates are usually re-

quired, along with a procedure for choosing the appropriate

one [13].

The goal of this paper is to construct a general shape

template that fits any shape, and to learn the parameters of

this template from data. We view a shape as a level set

of a volumetric function and approximate that function by

a collection of shape elements with local influence, a for-

mulation we term a structured implicit function. The tem-

plate itself is defined by the number of and formula for the

shape elements, and the template parameters are simply the

concatenation of the parameters of each element. An ex-

ample of this type of representation is the classic metaballs

method [3], but more sophisticated versions have been pro-

posed since [56, 4, 36].

Given a template definition, we show that a network can

be trained to fit the template to shapes with widely vary-

ing geometry and topology (Figure 1). Critically, the net-

1See templates.cs.princeton.edu for video, supplemental,

and high resolution results.

17154



Figure 2. Templates fit to a variety of geometry and topology. Mid-

dle columns: three shape templates trained across classes with 10,

25, and 100 elements, respectively. Right: surface reconstruction

of the implicit function defined by the 100 element template. Note

how the structure of each template is consistent between shapes.

work learns a fitting function that is smooth: the template

parameters of similar shapes are similar, and vary gradually

through shape-space (Figure 2). Further, we show that the

network learns to associate each shape element with simi-

lar structures in each shape: for example, the tail fin of an

aircraft may be represented by one element, while the left

wingtip may be represented by another. This consistency

allows us to interpolate shapes, estimate vertex correspon-

dences, or predict the influence region of a given element in

a 2D image, providing semantic segmentation of shapes.

The closest related work to ours is the volumetric primi-

tive approach of Tulsiani, et al. [50]. Like that work, we aim

to learn a consistent shape representation with a small num-

ber of primitives. We expand on their work by specifying

the surface as a structured implicit function, rather than as a

collection of explicit surface primitives. This change allows

for an order of magnitude increase in the number of shape

elements, allowing our template to capture fine details.

Our method is entirely self-supervised and requires only

a collection of shapes and a desired number of shape ele-

ments (N, usually 100). The output template is concise (7N

values) and can be rendered or converted to a mesh using

techniques such as raytracing or marching cubes [30].

2. Related Work

There is a long history of work on shape analysis aimed

at extracting templates or abstract structural representations

for classes of shapes [18, 17, 24, 33, 57].

Primitive Fitting: Fitting of basic primitives is perhaps

the oldest topic in 3D computer vision, beginning with

Roberts [42] and continuing to today [2, 19, 29, 27].

These methods focus on explaining individual observations

with primitives, and do not necessarily provide consistency

across different input shapes, so they cannot be used for the

correspondence, transfer, and exploration applications tar-

geted in this paper.

Part Segmentation: Others have studied how to decom-

pose mesh collections into consistent sets of semantic parts,

either through geometric [14] or learned methods [1, 12, 20,

25]. These methods differ from ours in that they depend on

labeled examples to learn the shapes and arrangements of

semantic parts within specific classes. In contrast, we aim

to learn a structural template shape for any class without

human input.

Template Fitting: The most related techniques to ours are

methods that explicitly fit templates to shapes [7]. The

templates can be provided by a person [13, 37], derived

from part segmentations [59, 26, 12], or learned automat-

ically [23, 50, 58, 59]. Previous work generally assumes

an initial set of primitives or part structure is given prior to

learning. For example, Kim et al. [23] proposed an opti-

mization to fit an initial set of box-shaped primitives to a

class of 3D shapes and used them for correspondence and

segmentation. Part structure is assumed by [59].

Others have learned shape templates with a neural net-

work. In Zou et al. [60], a supervised RNN is trained to

generate sets of primitives matching those produced by a

heuristic fitting optimization. Sharma et al. [45] use rein-

forcement learning to decompose input shapes into a CSG

parse tree. Like our approach, this approach does not re-

quire additional training data, but CSG trees are unsuitable

for many template applications.

Tulsiani et al. [50] proposed a neural network that

learned placements for a small number (3 to 6) of box prim-

itives from image or shape inputs, without additional su-

pervision. Our method builds on this approach, but greatly

expands the number and detail of the shape elements, al-

lowing for the precise shape associations required for cor-

respondence and semantic segmentation applications.

Implicit Shape Representations: Decades ago, research-

ers in computer graphics proposed representing shapes with

sets of local shape functions [41, 3]. The most common

form is a summation of polynomial or Gaussian basis func-

tions centered at arbitrary 3D positions, sometimes called

metaballs [3], blobby models [34], or soft objects [56].

7155



Property Voxel Octree Point Mesh Deep Ours

Interpret + + + + - +

Concise - + + + - +

Surface + + - + - +

Volume + + - - + +

Topology + + - - + +

Deform - - + + - +

Table 1. Comparison of desirable properties of various 3D repre-

sentations, rated as suitable (+) or unsuitable (-). From top to bot-

tom: is the representation interpretable to humans; concise in stor-

age; capable of representing surfaces and volumes; allows topo-

logical changes; and supports smooth deformation. Structured

implicit functions are suitable in all properties. “Deep” refers to

methods that represent a volumetric function as a deep neural net-

work [38, 46].

Other forms include convolution surfaces [4] and partition

of unity implicits [36]. These representations support com-

pact storage, efficient interior queries, arbitrary topology,

and smooth blends between related shapes, properties that

are particularly useful for our application of predicting tem-

plate shapes.

Shape Representations for Learning: Recently, several

deep network architectures have appeared that encode ob-

servations (color images, depth images, 3D shapes, etc.)

into a latent vector space and decode latent vectors to 3D

shapes. Our work follows this approach. We argue that our

structured implicit representation is superior for template

learning compared to decoding voxels [6, 54, 55], sparse-

voxel octrees [49], points [11], meshes [15, 21, 52], box

primitives [50], signed-distance function estimators [38], or

indicator function estimators [32].

Table 1 compares the properties of these representa-

tions. Compared to points, implicit surfaces are superior

because they provide a clearly-defined surface. Compared

to meshes, implicit surfaces can continuously adapt to arbi-

trary topology. Structured implicit functions are most sim-

ilar to voxel grids since both implicitly represent a surface.

Unlike voxel grids, they provide a sparse representation of

shape, though octree techniques can provide sparse repre-

sentations of voxels. The major difference for our work is

that our shape elements can be moved and transformed in a

smooth way to, for example, track gradual changes in air-

plane wing shape across a shape collection. By contrast,

two similar, but slightly transformed shapes will have en-

tirely different voxel representations.

Techniques have recently been proposed to directly ap-

proximate volumetric functions such as signed-distance

fields or indicator functions using deep neural networks [38,

32, 46]. Compared to these approaches, structured implicit

functions are light weight, easily interpretable, and provide

template geometry that can be modified or transformed by

later processing.

3. Structured Implicit Shape Representation

We assume each input shape can be modeled as a wa-

tertight surface bounding an interior volume (real-world

meshes usually must be processed to satisfy this assump-

tion, see Sec. 4.2). We aim to represent this surface as the

ℓ level set of a function F (x,Θ), where x is a 3D position

and Θ is a vector of template parameters. In the structured

implicit formulation, F is the sum of the contributions of

a fixed number of shape elements with local influence, la-

beled i ∈ [N ], where N is their count. Each element is a

function fi defined by its parameter vector θi (making Θ

simply the concatenation of θi):

F (x,Θ) =
∑

i∈[N ]

fi(x, θi) (1)

The specific version of shape elements we adopt are

scaled axis-aligned anisotropic 3D Gaussians. Here, θi
consists of a scale constant ci, a geometric center pi ∈ R3,

and per-axis radii ri ∈ R3.

fi(x, θi) = ci exp





∑

d∈{x,y,z}

−(pi,d − xd)
2

2r2i,d



 (2)

Intuitively, one can think of this representation as a set of

squished or stretched 3D blobs. We found this set of param-

eters to be the minimum necessary to achieve good results.

More sophisticated shape elements, such as full multivariate

Gaussians, or even windowed quadric functions [36], would

likely improve results, but we do not experiment with those

here.

Because all constants ci are negative, we have that

fi(x, θi) < 0 and thus F (x,Θ) < 0, ∀x ∈ R3. There-

fore we pick a negative isolevel ℓ and define the surface S
to be its crossing:

S =
{

x ∈ R
3 : F (x,Θ) = ℓ

}

(3)

We set ℓ := −0.07, which was chosen by grid search.

The reason that the constants are negative rather than posi-

tive is to maintain the convention that function values inside

the surface should be less than ℓ, while values outside the

surface should be greater than ℓ. This leads to a convenient

binary outside/inside test for points x:

F (x,Θ) > ℓ (4)

For most experiments presented here, we use N = 100.

Because each shape element has seven parameters, the total

dimensionality of our representation is a fixed 7N = 700
floating point values.

7156



Figure 3. An overview of our method. The input to our system is a mesh. We render a stack of depth images around the mesh, and provide

these as input to an early-fusion CNN. The output of the CNN is a vector with fixed dimensionality. This vector is interpreted as a shape

template with parameters that define an implicit surface. Next, we sample points near the ground truth surface and also uniformly in space.

A classification loss enforces that each sample point is correctly labeled as inside/outside by the surface reconstruction.

4. Template Learning

We propose a learning framework (Figure 3) to train a

neural network to fit the shape template to data. The net-

work’s goal is to find the template parameters Θ that best

fit a 3D shape, where the loss penalizes the amount of pre-

dicted shape that is on the wrong side of the ground truth

inside/outside border. We render multiple depth images of

the mesh from fixed views to provide 3D input to the net-

work. Our network has a feed-forward CNN architecture

and predicts the entire parameter vector Θ at once with a

fully connected layer. During training, we choose sparse

sample locations in 3D and evaluate our loss function at

those locations with a classification loss. The details of this

procedure are described in the rest of this section.

Note that although fitting consistency is vital to our ap-

plications, we do not directly enforce similar shapes to have

similar template parameters; the network arrives at a smooth

fitting function without intervention. We hypothesize that,

as a matter of optimization, the smooth solution is “easier”

for the network to learn, but analyzing the causes of this

behavior is an engaging direction for future work.

4.1. Architecture

In order to learn the template, we first need to encode the

input 3D shape. There are a variety of network architectures

for encoding 3D shape; options include point networks [40],

voxel encoders [31], or multi-view networks [48]. Because

voxel encoders can be computationally expensive, and point

cloud encoders discard surface information, we opt for a

multi-view encoding network. Our network takes a stack of

20 depth images rendered from the vertices of a dodecahe-

dron as input, as in [22]. The network contains 5 convolu-

tional layers followed by 4 fully connected layers.

The final fully connected layer is linear and maps to the

template parameter vector Θ, which in our experiments is

usually 700-D. Even though we use an encoder/decoder

style architecture, there is no heavy decoding stage: the

code vector is our explicit representation. We experimented

with alternative “decoding” architectures, such as an LSTM

that predicts each shape element in succession. We found

the LSTM architecture to perform better in some cases, but

it took much longer to train, and was not able to scale easily

to large numbers of shape elements.

4.2. Data Preparation

Before training, we must preprocess the input meshes

to make them watertight. This step is important primar-

ily because our loss function requires a ground truth in-

side/outside classification label.

In order to do the watertight conversion, we first con-

vert the meshes to a 3003 sparse voxel representation [35].

We flood fill the octree to determine inside/outside, then

extract the isocontour of the volume to produce the wa-

tertight mesh. We generate 100,000 random samples uni-

formly in the bounding box of the mesh, and compute 0/1

inside/outside labels. We additionally compute 100,000

samples evenly distributed on the surface of the mesh.

We also render depth maps of the watertight meshes.

For each mesh, we render 20 depth images at uniformly

sampled viewing directions as input to the network. The

(depth maps, labeled samples) pairs are the only data used

for learning.

4.3. Loss

The goal of our loss function is only to measure deviation

from the input shape; we assume that our representation will

naturally create a smooth template due to its structure. In or-

der to accurately reconstruct the surface, we employ three

individual loss functions, described in detail in the follow-

ing sections. LU and LS are classification losses ensuring

that the volume around the ground truth shape is correctly

classified as inside/outside. These losses were inspired by

recent work on implicit function learning [32, 9]. LC en-

forces that all of the shape elements contribute to the recon-

struction. The total loss function is a weighted combination

of the three losses:

L = wULU + wSLS + LC (5)

LC has no weight here because it contains two subclasses

with different weights wa and wb.

7157



As our losses compare the structured implicit value

F (x,Θ) to indicator function labels (0 inside, 1 outside),

we formulate a soft classification boundary function to bet-

ter facilitate gradient learning:

G(x,Θ) = Sigmoid (α(F (x,Θ)− ℓ)) (6)

where α controls the sharpness of the boundary, and is set

to 100 as determined by grid search.

4.3.1 Uniform Sample Loss LU

If F (x,Θ) correctly classifies every point in the volume

according to the ground truth shape boundary, then it has

perfectly reconstructed the ground truth. To measure the

classification accuracy, we choose (x, y, z) coordinates uni-

formly at random in the bounding box of the ground truth

mesh. We evaluate F (x,Θ) at these locations, and apply a

loss between the softened classification decision G, and the

ground truth class label, which is 0 inside and 1 outside:

LU (x,Θ) =

{

βG(x,Θ)2 x inside

(1−G(x,Θ))2 x outside
(7)

At each training batch we randomly select 3,000 of the

precomputed 100,000 points to evaluate the loss. β ac-

counts for the inside/outside sample count differences.

4.3.2 Near Surface Sample Loss LS

While the uniform sample loss is effective, it is problem-

atic because it prioritizes surface reconstruction based on

the fraction of the volume that is correct. The network can

easily achieve 99%+ correct volume samples and still not

visually match the observation. In particular, thin structures

are unimportant to a volumetric loss but subjectively im-

portant to the reconstruction. To improve performance, we

sample proportionally to surface area, not volume. We ad-

ditionally want to ensure that the network is not biased to

produce an offset surface, so the loss should be applied with

similar weight on both the positive and negative side of the

surface boundary.

In order to achieve these goals, we implemented the fol-

lowing algorithm. For each of the 100,000 surface samples,

a ray is cast in each of the positive and negative normal di-

rections away from the surface point. Because the mesh is

watertight, at least one of the two samples must intersect the

surface. The minimum of these two intersection distances is

chosen, and truncated to some threshold. We sample a point

along either normal direction with probability inversely pro-

portional to the squared distance from the surface and pro-

portional to the minimum intersection distance. The output

samples roughly satisfy both of our goals: no thin structures

are missed, regardless of their volume, and there is an equal

sampling density on both sides of the surface.

This loss function, LS , is identical to LU (see Equa-

tion 7) except for the sample locations where it is applied.

Note that LS and LU are not redundant with one another.

Because LS only contains samples very near the surface, it

does not on its own enforce that the network keep free space

clear of spurious shapes. We found it most effective to use

a weighted combination of both losses, using LS to do hard

example mining, and LU to ensure that free space around

the shape remains clear.

4.3.3 Shape Element Center Losses LC

One problem with the loss so far is that it is only con-

cerned with the final composite function F (x,Θ). If shape

elements do not affect F , they also don’t affect the loss.

This “death” of shape elements can easily happen over time,

since elements are randomly initialized and some are likely

to be far from the ground truth surface. Their contribution

to LU and LS is small, and there is no incentive for the net-

work to use them. Our solution to this problem is to apply

a third loss LC , the center classification loss. This loss en-

forces that all predicted centers must lie on the inside of the

predicted shape and within the ground truth bounding box:

LC(x,Θ) =

{

waG(x,Θ)2 x ∈ B

wb

∑

d max(0, BL − xd, BU − xd)
2 x /∈ B

(8)

Above, wa and wb are hyperparameters balancing the

two cases, which are in different units. B is the axis aligned

bounding box of the ground truth shape, which has a lower

coordinate BL and an upper coordinate BU . It states that

if the predicted center x is inside the ground truth bound-

ing volume (where LU will be applied, keeping free space

empty), then x must also be inside the predicted surface.

On the other hand, if x is outside the ground truth bound-

ing boxing, then it should be directly encouraged to move

inside the bounding volume because it can’t be useful to the

template from that distance.

5. Experiments

We conduct experiments to demonstrate important prop-

erties of the shape template: it accurately fits a wide variety

of shapes, fits similar shapes with similar templates, can be

used to find 3D-to-3D and 2D-to-3D correspondences, and

can be fit from RGB images alone. We train and test on

ShapeNet Core V2 [8], using the dataset split defined by

3D-R2N2 [10]. We show results trained on both the full

dataset (Sections 5.1, 5.3, 5.4) and trained per-class (Sec-

tion 5.2). Identical hyperparameters were used to train all

templates.

7158



Figure 4. t-SNE visualization of template parameters on ShapeNet

test set, colored by shape class labels. Note the clean clustering

of most classes. Mixed clusters are also intuitive, e.g. mixing

between tables, benches, and sofas.

5.1. Clustering by Template Parameters

A desirable property of a template fitting procedure is

that similar shapes are fit with similar template parameters.

Figure 4 shows a t-SNE [51] visualization of the template

parameter vectors Θ for the ShapeNet test set, colored by

ShapeNet class labels. Several classes of shapes (airplanes,

rifles, cars) are neatly clustered by their template parame-

ters. Other classes are mixed, but in intuitive ways: some

benches look like tables, other benches look like sofas, and

some sofas look like chairs. Cabinets, speakers, and dis-

plays are all essentially boxes, so they have similar template

parameters.

5.2. Comparison to Volumetric Primitives

The closest alternative approach to ours is the volumet-

ric primitives of Tulsiani, et al. [50]. We provide a detailed

comparison between our template shapes and their shape

abstractions using results generously provided by the au-

thors. For this comparison we trained one fitting network

per shape class, not one network for all classes, to match

the procedure of [50]. Figure 5 shows representative results

for examples from the ShapeNet training set, with 10, 25,

and 100 shape elements (see supplemental material for the

full set of results). In comparison to volumetric primitives

(Figure 5 a), our templates (b-d) are more detailed, have

higher consistency, and better reflect the structure of the in-

put mesh (f).

5.3. Single-View RGB Prediction and Labeling

Figure 6 shows qualitative results demonstrating predic-

tions from photographs of ShapeNet-style objects. To pre-

dict the template parameters from an RGB image, we apply

a) VP [50] b) N=10 c) N=25 d) N=100 e) Recon f) GT

Figure 5. Comparison to Volumetric Primitives [50]: (a) volumet-

ric primitives result; (b-d) templates computed with our method

for 10, 25, and 100 elements; (e) surface reconstruction from the

template in (d); (f) ground truth surface mesh. Shapes above the

line come from our training set, while the shapes below the line

are from our test set.

a similar technique to CNN purification [28] or network dis-

tillation [16] and train a second network that regresses from

RGB to the template parameters already found through our

3D-to-3D training scheme. The training data for this net-

work is synthetic OpenGL renderings of the ShapeNet train-

ing set, with camera angles chosen randomly from a band

around the equator of the shape.

Because the template is consistent, we can go further

than overall 3D shape prediction and predict correspon-

dence between pixels in the image and the influence regions

of individual shape elements (Figure 6, right). Each element

tends to produce a particular part of each shape: the ith el-

ement might produce the tail fin of an airplane, while the

jth might produce the wingtip. Because of this consistency,

7159



Figure 6. Template fitting and labeling from photographs. From

left to right: input image with background removed, fit template,

corresponding isosurface, image pixels labeled by the highest-

value shape element, corresponding 3D regions labeled by the

highest-value element. Regions in 3D not found by the image la-

beling network are black. The labeling performs well for easily

oriented shapes (top rows), and worse for shapes with rotational

symmetries (bottom rows). Note that the labeling is based entirely

on the template, without additional region or part labels.

a semantic segmentation network [44] can be trained to la-

bel pixels by the index of the shape element with maximum

weight at that pixel. The result is a segmentation of the im-

age into 3D regions, without additional region or part labels.

One limitation of this approach is that the template learning

does not take into account object symmetry. Shapes with

natural orientations, such as airplanes and chairs, are suc-

cessful, while shapes without fronts and backs, such as the

lamp and nightstand, confuse the network.

Similar techniques have been used for human body pose

prediction [53, 5] using hand-made templates, but to our

knowledge, we are the first to use a learned template.

5.4. Shape Correspondence

The learned template is consistent across shapes of the

same class, meaning that the same elements will influence

equivalent shape parts (e.g. airplane wings). This property

can be exploited to find correspondences between different

shapes. We present one automatic approach to achieve that.

First, we use our network to compute the template config-

uration Θ of each shape we want to correspond. Then,

Figure 7. Transferring per-vertex colors from source airplane (cen-

ter) to target airplanes (corners). Vertices are corresponded to

their nearest neighbor in template space. Matching colors indicate

corresponding vertices, while black regions have no correspond-

ing vertices in the source. The histograms plot the proportion of

nearest-neighbor distances that produce good matches (green) and

outliers (black, distance > 0.65). Outliers include extra wing and

tail engines, landing gear, and a radar dome, all missing on the

source airplane. Correspondences were computed for resampled

ShapeNet meshes from the training set of the multi-class network.

for each vertex v, we compute its template coordinates.

The template coordinates consist of three numbers for each

shape element. Those are computed by subtracting the el-

ement’s center from the vertex position, dividing each co-

ordinate by the corresponding element radius (improving

correspondence between elongated and squashed elements),

then scaling that vector to be of length F (v,Θ). The direc-

tion of each per-element vector helps geometrically localize

the vertex, while its length denotes the influence of that el-

ement. Finally, the cosine distance between template coor-

dinates can be used to find the closest target vertex for each

source vertex, as visualized in Figure 7.

5.5. Human Scans

The method generalizes beyond the synthetic objects in

the ShapeNet [8] dataset. In Figure 8 we show fits to

BodyShapes [39] meshes from the CAESAR dataset [43].

This dataset contains fits to real scans of approximately

3,000 humans. We split the data into train (85%), valida-

tion (5%), and test (10%) splits and show results from the

test split. Please note the consistency of the template fits.

5.6. RGB Single View 3D Reconstruction

While exact shape reconstruction is not the focus of our

work, we compared the reconstruction accuracy of the tem-

plate surface with the output of 3D-R2N2 [10], Point Set

Generation Network [11], and Pixel2Mesh [52]. The in-

puts are single RGB images of unknown camera orienta-

7160



Figure 8. Results on the MPII BodyShapes [39] meshes from the

CAESAR dataset [43]. We demonstrate correspondence on real

scans of humans, indicating the method’s ability to generalize be-

yond ShapeNet [8].

Threshold τ 2τ

Category R2N2 PSG P2M Our R2N2 PSG P2M Our

plane 41 68 71 69 63 81 81 86

bench 34 49 58 62 49 69 72 82

cabinet 50 40 60 40 65 67 77 64

car 38 51 68 47 55 78 84 70

chair 40 42 54 40 55 64 70 64

monitor 34 40 51 42 48 64 67 65

lamp 32 41 48 32 44 59 62 52

speaker 45 32 49 29 58 57 66 50

firearm 28 70 73 72 47 83 83 88

sofa 40 37 52 42 53 63 70 70

table 44 53 66 40 59 73 79 61

cellphone 42 56 70 56 61 80 83 79

watercraft 37 51 55 49 52 71 70 75

mean 39 49 60 48 55 70 74 70

Table 2. F-score (%) on the test split of ShapeNet from [10], with

τ = 10
−4 as in [52]. Higher numbers are better. R2N2 is 3D-

R2N2 [10], PSG is Point-Set Generation Network [11], and P2M

is Pixel2Mesh [52].

tion, so we use the distillation approach from Section 5.3.

The train/test split is from 3D-R2N2. Our shape repre-

sentation has only 700 degrees of freedom, compared with

323 = 32768 DoF for the 3D-R2N2 grid, 1024 ∗ 3 = 3072
DoF for PSG’s points, and 2466 ∗ 3 = 7398 DoF for the

a) Template fit b) Reconstruction c) Input mesh
Figure 9. Shapes with angled parts, sharp creases, and thin struc-

tures are difficult for our method to learn.

Pixel2Mesh vertices. Despite having many fewer degrees

of freedom, the template surface reconstruction accuracy is

similar to competing approaches (Table 2).

5.7. Limitations

Our method has several limitations apparent in Figure 9,

which exhibits several failure cases. First, since our repre-

sentation comprises of a small number of axis-aligned func-

tions, it has limited ability to represent detailed, sharp, or

angled structures (e.g., creases or corners). Second, since

it learns to classify sides of a surface boundary, it strug-

gles to reconstruct razor thin structures. Finally, since it

uses a fixed number of shape elements (e.g., 100), it does

not produce a template with 1-to-1 mapping to semantic

shape components. We believe these limitations could be

addressed with alternative (higher-order, non axis-aligned)

local functions, distance-based loss functions, supervised

training, and/or network architecture search.

6. Conclusion

This paper investigates using structured implicit func-

tions to learn a template for a diverse collection of 3D

shapes. We find that an encoder-decoder network trained

to generate shape elements learns a template that maps de-

tailed surface geometry consistently across related shapes

in a collection with large shape variations. Applications for

the learned template include shape clustering, exploration,

abstraction, correspondence, interpolation, and image seg-

mentation. Topics for future work include learning to gener-

ate higher-order and/or learned shape elements, deriving se-

mantically meaningful shape elements via supervised learn-

ing, and using structured implicit functions for other appli-

cations such as 3D reconstruction.

7. Acknowledgements

We acknowledge ShapeNet [8], 3D-R2N2 [10], MPII

BodyShapes [39], and Stanford Online Products [47] for

providing training data for our method. We also thank

the authors of Volumetric Primitives [50] for providing ex-

tended results from their method for our comparisons. We

thank Avneesh Sud for helpful discussions and comments.

7161



References

[1] Nikita Araslanov, Seongyong Koo, Juergen Gall, and Sven

Behnke. Efficient single-view 3d co-segmentation using

shape similarity and spatial part relations. In German Con-

ference on Pattern Recognition, pages 297–308. Springer,

2016. 2

[2] Irving Biederman. Recognition-by-components: a the-

ory of human image understanding. Psychological review,

94(2):115, 1987. 2

[3] James F Blinn. A generalization of algebraic surface draw-

ing. ACM Transactions on Graphics (TOG), 1(3):235–256,

1982. 1, 2

[4] Jules Bloomenthal and Ken Shoemake. Convolution sur-

faces. SIGGRAPH 1991, 25(4):251–256, 1991. 1, 3

[5] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter

Gehler, Javier Romero, and Michael J. Black. Keep it SMPL:

Automatic estimation of 3D human pose and shape from a

single image. In European Conference on Computer Vision

(ECCV), Lecture Notes in Computer Science. Springer Inter-

national Publishing, Oct. 2016. 1, 7

[6] Andrew Brock, Theodore Lim, James M Ritchie, and Nick

Weston. Generative and discriminative voxel modeling with

convolutional neural networks. arXiv:1608.04236, 2016. 3

[7] Roberto Brunelli. Template Matching Techniques in Com-

puter Vision: Theory and Practice. John Wiley & Sons,

2009. 2

[8] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and

Fisher Yu. Shapenet: An information-rich 3d model reposi-

tory. Technical Report arXiv:1512.03012, Stanford Univer-

sity — Princeton University — Toyota Technological Insti-

tute at Chicago, 2015. 1, 5, 7, 8

[9] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 5939–

5948, 2019. 4

[10] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3d-r2n2: A unified approach for

single and multi-view 3d object reconstruction. In European

Conference on Computer Vision (ECCV), 2016. 5, 7, 8

[11] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 605–613, 2017. 3, 7, 8

[12] Noa Fish, Melinos Averkiou, Oliver Van Kaick, Olga

Sorkine-Hornung, Daniel Cohen-Or, and Niloy J Mitra.

Meta-representation of shape families. ACM Transactions

on Graphics (TOG), 33(4):34, 2014. 2

[13] Vignesh Ganapathi-Subramanian, Olga Diamanti, Soeren

Pirk, Chengcheng Tang, Matthias Nießner, and Leonidas

Guibas. Parsing geometry using structure-aware shape tem-

plates. In 2018 International Conference on 3D Vision

(3DV), pages 672–681. IEEE, 2018. 1, 2

[14] Aleksey Golovinskiy and Thomas Funkhouser. Consis-

tent segmentation of 3d models. Computers & Graphics,

33(3):262–269, 2009. 2

[15] Thibault Groueix, Matthew Fisher, Vladimir G Kim,

Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-

proach to learning 3d surface generation. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 216–224, 2018. 3

[16] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling

the knowledge in a neural network. In NIPS Deep Learning

and Representation Learning Workshop, 2015. 6

[17] Ruizhen Hu, Manolis Savva, and Oliver van Kaick. Func-

tionality representations and applications for shape analysis.

In Computer Graphics Forum, volume 37, pages 603–624.

Wiley Online Library, 2018. 2

[18] Ruizhen Hu, Oliver van Kaick, Youyi Zheng, and Mano-

lis Savva. Siggraph asia 2016: course notes directions in

shape analysis towards functionality. In SIGGRAPH Asia

2016 Courses, page 8. ACM, 2016. 2

[19] Adrien Kaiser, Jose Alonso Ybanez Zepeda, and Tamy

Boubekeur. A survey of simple geometric primitives detec-

tion methods for captured 3d data. In Computer Graphics

Forum. Wiley Online Library, 2018. 2

[20] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh.

Learning 3d mesh segmentation and labeling. ACM Trans-

actions on Graphics (TOG), 29(4):102, 2010. 2

[21] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and

Jitendra Malik. Learning category-specific mesh reconstruc-

tion from image collections. In European Conference on

Computer Vision (ECCV), pages 371–386, 2018. 3

[22] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi

Nishida. Rotationnet: Joint object categorization and pose

estimation using multiviews from unsupervised viewpoints.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 5010–5019, 2018. 4

[23] Vladimir G Kim, Wilmot Li, Niloy J Mitra, Siddhartha

Chaudhuri, Stephen DiVerdi, and Thomas Funkhouser.

Learning part-based templates from large collections of 3d

shapes. ACM Transactions on Graphics (TOG), 32(4):70,

2013. 2

[24] Hamid Laga, Yulan Guo, Hedi Tabia, Robert B Fisher, and

Mohammed Bennamoun. 3D Shape Analysis: Fundamen-

tals, Theory, and Applications. John Wiley & Sons, 2018.

2

[25] Vincent Léon, Vincent Itier, Nicolas Bonneel, Guillaume

Lavoué, and Jean-Philippe Vandeborre. Semantic correspon-

dence across 3d models for example-based modeling. In Eu-

rographics Workshop on 3D Object Retrieval 2017 (3DOR

2017), 2017. 2

[26] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao

Zhang, and Leonidas Guibas. Grass: Generative recursive

autoencoders for shape structures. ACM Transactions on

Graphics (TOG), 36(4):52, 2017. 2

[27] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi,

and Leonidas J Guibas. Supervised fitting of geometric prim-

itives to 3d point clouds. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2652–2660,

2019. 2

[28] Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish,

Daniel Cohen-Or, and Leonidas J. Guibas. Joint embeddings

7162



of shapes and images via cnn image purification. ACM Trans.

Graph., 34(6):234:1–234:12, Oct. 2015. 6

[29] Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei

Sharf, Daniel Cohen-Or, and Niloy J Mitra. Globfit: Consis-

tently fitting primitives by discovering global relations. ACM

Transactions on Graphics (TOG), 30(4):52, 2011. 2

[30] William E. Lorensen and Harvey E. Cline. Marching cubes:

A high resolution 3d surface construction algorithm. In 14th

Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH 1987, pages 163–169, New York,

NY, USA, 1987. ACM. 2

[31] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition.

In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 922–928. IEEE, 2015. 4

[32] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy net-

works: Learning 3d reconstruction in function space. In

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2019. 3, 4

[33] Niloy J Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or,

Vladimir Kim, and Qi-Xing Huang. Structure-aware shape

processing. In SIGGRAPH 2014 Courses, page 13. ACM,

2014. 2

[34] Shigeru Muraki. Volumetric shape description of range data

using blobby model. SIGGRAPH 1991, 25(4):227–235,

1991. 2

[35] Ken Museth. Vdb: High-resolution sparse volumes with dy-

namic topology. ACM Trans. Graph., 32(3):27:1–27:22, July

2013. 4

[36] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk,

and Hans-Peter Seidel. Multi-level partition of unity implic-

its, volume 22. ACM, 2003. 1, 3

[37] Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and Niloy J

Mitra. Exploration of continuous variability in collections of

3d shapes. ACM Transactions on Graphics (TOG), 30(4):33,

2011. 2

[38] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representa-

tion. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 165–174, 2019. 3

[39] Leonid Pishchulin, Stefanie Wuhrer, Thomas Helten, Chris-

tian Theobalt, and Bernt Schiele. Building statistical shape

spaces for 3d human modeling. Pattern Recognition, 2017.

7, 8

[40] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 652–660, 2017. 4

[41] Antonio Ricci. A constructive geometry for computer graph-

ics. The Computer Journal, 16(2):157–160, 1973. 2

[42] Lawrence Roberts. Machine Perception of Three-

Dimensional Solids. 01 1963. 1, 2

[43] Kathleen M Robinette, Hans Daanen, and Eric Paquet. The

caesar project: a 3-d surface anthropometry survey. In Sec-

ond International Conference on 3-D Digital Imaging and

Modeling (Cat. No. PR00062), pages 380–386. IEEE, 1999.

7, 8

[44] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical Image Com-

puting and Computer-Assisted Intervention, pages 234–241.

Springer, 2015. 7

[45] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos

Kalogerakis, and Subhransu Maji. Csgnet: Neural shape

parser for constructive solid geometry. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

5515–5523, 2018. 2

[46] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-

voxels: Learning persistent 3d feature embeddings. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2437–2446, 2019. 3

[47] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured feature

embedding. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 8

[48] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and

Erik G. Learned-Miller. Multi-view convolutional neural

networks for 3d shape recognition. In IEEE International

Conference on Computer Vision (ICCV), 2015. 4

[49] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.

Octree generating networks: Efficient convolutional archi-

tectures for high-resolution 3d outputs. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

2088–2096, 2017. 3

[50] Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A

Efros, and Jitendra Malik. Learning shape abstractions

by assembling volumetric primitives. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 2635–

2643, 2017. 2, 3, 6, 8

[51] Laurens van der Maaten and Geoffrey Hinton. Visualizing

data using t-SNE. Journal of Machine Learning Research,

9:2579–2605, 2008. 1, 6

[52] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei

Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh

models from single rgb images. In European Conference on

Computer Vision (ECCV), pages 52–67, 2018. 3, 7, 8

[53] Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga,

and Hao Li. Dense human body correspondences using con-

volutional networks. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2016. 1, 7

[54] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and

Josh Tenenbaum. Learning a probabilistic latent space of

object shapes via 3d generative-adversarial modeling. In Ad-

vances in neural information processing systems, pages 82–

90, 2016. 3

[55] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1912–1920, 2015. 3

7163



[56] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data

structure for soft objects. In Advanced Computer Graphics,

pages 113–128. Springer, 1986. 1, 2

[57] Kai Xu, Vladimir G Kim, Qixing Huang, and Evangelos

Kalogerakis. Data-driven shape analysis and processing. In

Computer Graphics Forum, volume 36, pages 101–132. Wi-

ley Online Library, 2017. 2

[58] Mehmet Ersin Yumer and Levent Burak Kara. Co-

abstraction of shape collections. ACM Transactions on

Graphics (TOG), 31(6):166, 2012. 2

[59] Youyi Zheng, Daniel Cohen-Or, Melinos Averkiou, and

Niloy J Mitra. Recurring part arrangements in shape col-

lections. In Computer Graphics Forum, volume 33, pages

115–124. Wiley Online Library, 2014. 2

[60] Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and

Derek Hoiem. 3d-prnn: Generating shape primitives with

recurrent neural networks. In IEEE International Conference

on Computer Vision (ICCV), pages 900–909, 2017. 2

7164


