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Figure 1: We present a new method that matches RGB images to depth renderings of CAD models for object pose estimation.

It does not require either textured CAD models or 3D pose annotations for RGB images during training. This is achieved by

enforcing viewpoint and modality invariance for local features, and learning consistent keypoint selection across modalities.

Abstract

We consider the problem of 3D object pose estimation.

While much recent work has focused on the RGB domain,

the reliance on accurately annotated images limits gener-

alizability and scalability. On the other hand, the easily

available object CAD models are rich sources of data, pro-

viding a large number of synthetically rendered images. In

this paper, we solve this key problem of existing methods re-

quiring expensive 3D pose annotations by proposing a new

method that matches RGB images to CAD models for object

pose estimation. Our key innovations compared to existing

work include removing the need for either real-world tex-

tures for CAD models or explicit 3D pose annotations for

RGB images. We achieve this through a series of objectives

that learn how to select keypoints and enforce viewpoint and

modality invariance across RGB images and CAD model

renderings. Our experiments demonstrate that the proposed

method can reliably estimate object pose in RGB images

and generalize to object instances not seen during training.

1. Introduction

Estimating the 3D pose of objects is an important ca-

pability for enabling robots’ interaction with real environ-

ments and objects as well as augmented reality applications.

While several approaches to this problem assume RGB-D

data [17, 31], most mobile and wearable cameras are not

paired with a depth sensor, prompting recent research fo-

cus on the RGB domain. Furthermore, even though several

methods have shown promising results on 3D object pose

estimation with real RGB images, they either require accu-

rate 3D annotations [23, 26, 44, 30, 16] or 3D object mod-

els with realistic textures [5, 37, 6, 17] in the training stage.

Currently available datasets [20, 43] are not large enough to

capture real world diversity, limiting the potential of these

methods in generalizing to a variety of applications. In ad-

dition, capturing real RGB data and manual pose annotation

is an arduous procedure.

The problem of object pose estimation is an inherently

3D problem; it is the shape of the object which gives away

its pose regardless of its appearance. Instead of attempting

to learn an intrinsic decomposition of images [14], we fo-

cus on finding the association of parts of objects depicted

in RGB images with their counterparts in 3D depth images.

Ideally, we would like to learn this association in order to

establish correspondences between a query RGB image and

a rendered depth image from a CAD model, without requir-

ing any existing 3D annotations. This, however, requires us

to address the problem of the large appearance gap between
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these two modalities.

In this paper, we propose a new framework for estimat-

ing the 3D pose of objects in RGB images, using only 3D

textureless CAD models of objects instances. The easily

available CAD models can generate a large number of syn-

thetically rendered depth images from multiple viewpoints.

In order to address the aforementioned problems, we define

a quadruplet convolutional neural network to jointly learn

keypoints and their associated descriptors for robust match-

ing between different modalities and changes in viewpoint.

The general idea is to learn the keypoint locations using

a pair of rendered depth images from a CAD model from

two different poses, followed by learning how to match

keypoints across modalities using an aligned RGB-D im-

age pair. Figure 1 outlines our training constraints. At

test time, given a query RGB image, we extract keypoints

and their representations and match them with a database

of keypoints and their associated descriptors extracted from

rendered depth images. These are used to establish 2D-3D

correspondences, followed by a RANSAC and PnP algo-

rithm for pose estimation.

To summarize, our key contributions include: 1) A new

framework for 3D object pose estimation using only tex-

tureless CAD models and aligned RGB-D frames in the

training stage, without explicitly requiring 3D pose anno-

tations for the RGB images. 2) An end-to-end learning

approach for keypoint selection optimized for the relative

pose estimation objective, and transfer of keypoint predic-

tions and their representations from rendered depth to RGB

images. 3) Demonstration of the generalization capability

of our method to new (unseen during training) instances of

the same object category.

2. Related Work

There is a large body of work on 3D object pose estima-

tion. Here, we review existing methods based on the type

and the amount of used training data and its modalities.

Using 3D textured instance models. Notable effort was

devoted to the problem of pose estimation for object in-

stances from images, where 3D textured instance models

were available during the training stage [9, 5, 37]. Early

isolated approaches led to the development of more recent

benchmarks for this problem [11]. Traditional approaches

of this type included template matching [9, 48], where the

target pose is retrieved from the best matched model in

a database, and local descriptor matching [5, 37], where

hand-engineered descriptors such as SIFT [22] are used to

establish 2D-3D correspondences with a 3D object model

followed by the PnP algorithm for 6-DoF pose. Addi-

tionally, some works employed a patch-based dense voting

scheme [4, 38, 6, 17], where a function is learned to map

local representations to 3D coordinates or to pose space.

However, these approaches assume that the 3D object mod-

els were created from real images and contain realistic tex-

tures. In contrast, our work uses only textureless CAD mod-

els of object instances.

2D-to-3D alignment with CAD models. Other work

has sought to solve 3D object pose estimation as a 2D-

to-3D alignment problem by utilizing object CAD mod-

els [1, 24, 20, 13, 2, 31]. For example, Aubry et al. [1]

learned part-based exemplar classifiers from textured CAD

models and applied them on real images to establish 2D-

3D correspondences. In a similar fashion, Lim et al. [20]

trained a patch detector from edge maps for each interest

point. The work of Massa et al. [24] learned how to match

view-dependent exemplar features by adapting the repre-

sentations extracted from real images to their CAD model

counterparts. The closest work to ours in this area is Rad et

al. [31], which attempts to bridge the domain gap between

real and synthetic depth images, by learning to map color

features to real depth features and subsequently to synthetic

depth features. In their attempt to bridge the gap between

the two modalities, these approaches were required to either

learn a huge number of exemplar classifiers, or learn how to

adapt features for each specific category and viewpoint. We

avoid this problem by simply adapting keypoint predictions

and descriptors between the two modalities.

Pose estimation paired with object detection. With the re-

cent success of deep convolutional neural networks (CNN)

on object recognition and detection, many works extended

3D object instance pose estimation to object categories,

from an input RGB image [23, 25, 26, 44, 30, 16, 18, 41,

15]. In Mahendran et al. [23] a 3D pose regressor was

learned for each object category. In Mousavian et al. [26], a

discrete-continuous formulation for the pose prediction was

introduced, which first classified the orientation to a discrete

set of bins and then regressed the exact angle within the bin.

Poirson et al. [30] and Kehl et al. [16] both extended the

SSD [21] object detector to predict azimuth and elevation

or the 6-DoF pose respectively. In Kundu et al. [18], an

analysis-by-synthesis approach was introduced, in which,

given predicted pose and shape, the object was rendered and

compared to 2D instance segmentation annotations. All of

these approaches require 3D pose annotations for the RGB

images during training, as opposed to our work, which only

needs the CAD models of the objects.

Keypoint-based methods. Another popular direction in the

pose estimation literature is learning how to estimate key-

points, which can be used to infer the pose. These methods

are usually motivated by the presence of occlusions [27, 12]

and require keypoint annotations. For example, Wu et al.

[42] trained a model for 2D keypoint prediction on real im-

ages and estimated the 3D wireframes of objects using a

model trained on synthetic shapes. The 3D wireframe is

then projected to real images labeled with 2D keypoints to

enforce consistency. In Li et al. [19], the authors manually
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Figure 2: Outline of the proposed architecture depicting the

four branches, their inputs, and the training objectives. The

color coding of the CNNs signifies weight sharing.

annotated 3D keypoints on textured CAD models and gen-

erated a synthetic dataset which provides multiple layers of

supervision during training, while Tekin et al. [39] learned

to predict the 2D image locations of the projected vertices

of an object’s 3D bounding box before using the PnP al-

gorithm for pose estimation. Furthermore, Tulsiani et al.

[40] exploited the relationship between viewpoint and visi-

ble keypoints and refined an existing coarse pose estimation

using keypoint predictions. Our work, rather than relying on

existing keypoint annotations, optimizes the keypoint selec-

tion based on a relative pose estimation objective. Related

approaches also learn keypoints [36, 7, 45, 47], but either

rely on hand-crafted detectors to collect training data [45],

or do not extend to real RGB pose estimation [36, 7, 47].

Synthetic data generation. In an attempt to address the

scarcity of annotated data, some approaches rely on the

generation of large amounts of synthetic data for train-

ing [35, 34, 8]. A common technique is to render textured

CAD models and superimpose them on real backgrounds.

In order to ensure diversity in the training data, rendering

parameters such as pose, shape deformations, and illumi-

nation are randomly chosen. However, training exclusively

on synthetic data has shown to be detrimental to the learned

representations as the underlying statistics of real RGB im-

ages are usually very different.

3. Approach

We are interested in estimating the 3D pose of objects

in RGB images by matching keypoints to the object’s CAD

model. Our work does not make use of pose annotations,

but instead relies on CAD model renderings of different

poses that are easily obtained with an off-the-shelf renderer,

such as Blender [3]. These rendered depth images are used

to learn keypoints and their representations optimized for

the task of pose estimation. The learned representations

are then transferred to the RGB domain. In summary, our

work can be divided into four objectives: keypoint learn-

ing, view-invariant descriptors, modality-invariant descrip-

tors, and modality consistent keypoints.

Specifically, each training input is provided as a quadru-

plet of images, consisting of a pair of rendered depth images

sampled from the object’s view sphere and a pair of aligned

depth and RGB images (see Figure 2). For each image, we

predict a set of keypoints and their local representations, but

the optimization objectives differ for the various branches.

For the first two branches A and B, Lrel pose loss enforces

the pose consistency of the keypoints selection and the sim-

ilarity of keypoint descriptors for their matching is enforced

using a triplet loss Ltriplet. The two bottom branches C and

D are utilized to enforce consistent keypoint prediction be-

tween the depth and the RGB modalities Lconsistency and

for matching their local representations across the modali-

ties Llocal l2. The general idea of our approach is to learn

informative keypoints and their associated local descrip-

tors from abundant rendered depth images and transfer this

knowledge to the RGB data.

Architecture. Our proposed architecture is a Quadruplet

convolutional neural network (CNN), where each branch

has a backbone CNN (e.g., VGG) to learn feature repre-

sentations and a keypoint proposal network (KPN) com-

prised of two convolutional layers. The output feature maps

from the backbone’s last convolutional layer are fed as in-

put to the KPN. KPN produces a score map of dimensions
H
s
× W

s
×D, where H and W are the input image’s height

and width respectively, s is the network stride, and D = 2 is

a score whether the particular location is a keypoint or not.

Softmax is then applied on D such that each location on the

KPN output map has a 2-D probability distribution. This

output map can be seen as a keypoint confidence score for a

grid-based set of keypoint locations over the 2D image. The

density of the keypoint sampling depends on the network

stride s, which in our case was 16 (i.e. a keypoint proposal

every 16 pixels). In order to extract a descriptor (dim-2048)

for each keypoint, the backbone’s feature maps are passed

to the region-of-interest (RoI) pooling layer along with a

set of bounding boxes each centered at a keypoint location.

The first pair of branches (A, B) of the network are trained

with a triplet loss applied to local features, while a relative

pose loss is applied to the keypoint predictions. Branch D is

trained using a Euclidean loss on the local features and with

a consistency loss that attempts to align its keypoint predic-

tions and local representations to those of branch C. Note

that branches A, B, and C share their weights, while branch

D is a different network. Since branch D receives as input

a different modality than the rest and we desire branches

C and D to produce the same outputs, their weights during

training must be independent. In the following sections, we

describe the details of the loss functions and training.
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Figure 4: Local Euclidean and keypoint consistency losses.

3.1. Keypoint Learning by Relative Pose Estimation

The overall idea behind learning keypoint predictions is

to select keypoints that can be used for relative pose esti-

mation between the input depth images in branches A and

B. Specifically, given the two sets of keypoints, we estab-

lish correspondences in 3D space, estimate the rotation R

and translation t, and project the keypoints from depth im-

age A to depth image B. Any misalignment (re-projection

error) between the projected keypoints is used to penalize

the initial keypoint selections. A pictorial representation of

the relative pose objective is shown in Figure 3a.

The relative pose objective is formulated as a least

squares problem, which finds the rotation R and transla-

tion t for which the error of the weighted correspondences

is minimal. Formally, for two sets of corresponding points:

P = {p1, p2, . . . , pn} , Q = {q1, q2, . . . , qn} we wish to

estimate R and t such that:

(R, t) =R∈SO(3),t∈R3

n∑

i=1

wi||(Rpi + t)− qi||
2 (1)

where wi = sAi + sBi is the weight of correspondence i and

sAi and sBi are the predicted keypoint probabilities, as given

by KPN followed by a Softmax layer, that belong to cor-

respondence i from branches A and B respectively. Given

a set of correspondences and their weights, an SVD-based

closed-form solution for estimating R and t that depends on

w can be found in [33]. The idea behind this formulation is

that correspondences with high re-projection error should

have low weights, therefore a low predicted keypoint score,

while correspondences with low re-projection error should

have high weights, therefore high predicted keypoint score.

With this intuition, we formulate the relative pose loss as:

Lrel pose =
1

n

n∑

i=1

wig(wi) (2)

where g(wi) = ||(Rpi + t) − qi||
2. Since our objective is

to optimize the loss function with respect to estimated key-

point scores, we penalize each keypoint score separately by

estimating the gradients for each correspondence and back-

propagating them accordingly.

3.2. Learning Keypoint Descriptors

In order to match keypoint descriptors across view-

points, we apply a triplet loss on local features extracted

from branches A and B. This involves using the known

camera poses of the rendered pairs of depth images and

sampling of training keypoint triplets (anchor-positive-

negative). Specifically, for a randomly selected keypoint as

an anchor from the first image, we find the closest keypoint

in 3D from the paired image and use it as a positive, and

also select a further away point in 3D to serve as the nega-

tive. The triplet loss then optimizes the representation such

that the feature distance between the anchor and the posi-

tive points is smaller than the feature distance between the

anchor and the negative points plus a certain margin, and is

defined as follows:

Ltriplet =
1

N

N∑

i

max(0, ||fa
i − f

p
i ||

2 − ||fa
i − fn

i ||
2 +m)

(3)

where fa
i , f

p
i , and fn

i are the local features for the anchor,

positive, and negative correspondingly of the ith triplet ex-

ample and m is the margin. Traditionally, the margin hyper-

parameter is manually defined as a constant throughout the

training procedure; however, we take advantage of the 3D

information and define the margin to be equal to Dn −Dp,

where Dn is the 3D distance between the anchor and neg-

ative, and Dp is the 3D distance between the anchor and

8970



positive. Ideally, Dp should be 0, but practically due to

the sampling of the keypoints in the image space it is usu-

ally a small number close to 0. Essentially this ensures that

the learned feature distances are proportional to the 3D dis-

tances between the examples and assumes that the features

and 3D coordinates are normalized to unit vectors. Note

that the triplet loss only affects the backbone CNN during

training and not the KPN. A pictorial representation of the

triplet objective is shown in Figure 3b.

3.3. Cross­modality Representation Learning

Finally, we can transfer the learned features and key-

point proposals from branches (A, B) to branch D, us-

ing branch C as a bridge, similar to knowledge distillation

techniques [10]. To accomplish this, network parameters

in branches A, B, and C are shared, and the outputs of

branches C and D are compared and penalized according

to any misalignment. The core idea is to enforce both the

backbone and KPN in branches C and D to generate as sim-

ilar outputs as possible. This objective can be accomplished

by means of two key components that are described next.

Local Feature Alignment. In order to align local feature

representations in branches C and D (see Figure 4a), we

consider the predicted keypoints in branch C and compute

each keypoint’s feature representation, fi, i = 1, . . . , k.

Keypoint features at corresponding spatial locations from

branch D are represented as f̂i, i = 1, . . . , k,. Formally, we

optimize the following objective function:

Llocal l2 =
1

k

k∑

i=1

‖f̂i − fi‖ (4)

Since we want to align f̂i with fi, during backpropagation,

we fix fi as ground-truth and backpropagate gradients of

Llocal l2 only to the appropriate locations in branch D.

Keypoint Consistency. Enforcement of the keypoint con-

sistency constraint requires the KPN from branch D to

produce the same keypoint predictions as the KPN from

branch C. It can be achieved using a cross-entropy loss,

which is equivalent to a log loss with binary labels: L =
− 1

n

∑n

i=1 y
∗
i log yi, where y∗i is the ground-truth label and

yi is the prediction. This in our case becomes:

Lconsistency = −
1

n

n∑

i=1

yCi log yDi (5)

where yCi are the keypoint predictions from branch C,

which serve as the ground-truth, and yDi are the keypoint

predictions from branch D. This loss penalizes any mis-

alignment between the keypoint predictions of the two

branches and forces branch D to imitate the outputs of

branch C. Figure 4b illustrates inputs to Lconsistency .

Category Chair Sofa

Metric Accπ

6
↑ MedErr ↓ Accπ

6
↑ MedErr ↓

Render for CNN [34] 4.3 2.1 11.6 1.2

Vps & Kps [40] 10.3 1.7 23.3 1.2

Deep3DBox [26] 10.8 1.9 25.6 1.0

Proposed 13.4 1.6 30.2 1.1

Table 1: Comparison with supervised approaches when

trained on Pix3D and tested on Pascal3D+ on Accπ

6
(%)

and MedErr (radians).

Overall objective. Our overall training objective is the

combination of the losses described above:

Lall = λ1Ltriplet + λ2Lrel pose

+λ3Llocal l2 + λ4Lconsistency

(6)

where each λ is the weight for the corresponding loss.

4. Experiments

In order to validate our approach, we perform exper-

iments on the Pascal3D+ [43] dataset and the newly in-

troduced Pix3D [35] dataset.We conduct four key exper-

iments. First, we compare to supervised state-of-the-art

methods by training on Pix3D and testing on Pascal3D+

(sec. 4.1); second, we perform an ablation study on Pix3D

and evaluate the performance of different parts of our ap-

proach (sec. 4.2); third, we test how our model generalizes

to new object instances by training only on a subset of pro-

vided instances and testing on unseen ones (sec. 4.3); and

finally, data from an external dataset, such as NYUv2 [32]

is used to train and test on Pix3D (sec. 4.4). The motiva-

tion for the fourth experiment is to demonstrate that our

framework can utilize RGB-D pairs from another realis-

tic dataset, where the alignment between the RGB and the

depth is provided by the sensor. We use the geodesic dis-

tance for evaluation: ∆(R1, R2) =
|| log(RT

1
R2)||F√
2

, report-

ing percentage of predictions within π
6 of the ground-truth

Accπ

6
and MedErr. Additionally, we show the individ-

ual accuracy of the three Euler angles, where the distance

is the smallest difference between two angles: ∆(θ1, θ2) =
min(2π − ||θ1 − θ2||, ||θ1 − θ2||). For the last metric we

also use a threshold of π
6 .

Implementation details. We use VGGNet as each branch’s

backbone and start from ImageNet pretrained weights,

while KPN is trained from scratch. We set the learning rate

to 0.001 and all λ weights to 1. In order to regularize the

relative pose loss such that it predicts keypoints inside ob-

jects, we add a mask term, realized as a multinomial logistic

loss. The ground-truth is a binary mask of the object in the

rendered depth. This loss is only applied on branches A and

B with a smaller weight of 0.25. Finally, the bounding box

dimensions for the RoI layer are set to 32× 32.

Training data. All our experiments require a set of quadru-

plet inputs. For the first two inputs, we first sample from
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Figure 5: Keypoint prediction examples on test images from the Pix3D dataset. Top, middle, and bottom rows show results

from experiments of sections 4.2, 4.3, and 4.4 respectively. Note that we applied non-maximum suppression (NMS) on the

keypoint predictions in order to select the highest scoring keypoint from each region.

Category Bed Chair Desk

Metric Az. El. Pl. Accπ

6
↑ MedErr ↓ Az. El. Pl. Accπ

6
↑ MedErr ↓ Az. El. Pl. Accπ

6
↑ MedErr ↓

Baseline-A 51.4 39.1 35.2 7.3 1.7 30.2 43.2 20.0 3.3 2.0 28.9 30.9 20.4 2.6 2.2

Baseline-ZDDA 48.6 50.3 41.9 21.8 1.5 35.3 48.3 26.6 11.5 1.7 24.3 23.7 21.1 3.9 2.0

Proposed - joint 69.8 51.9 58.1 31.3 1.0 55.3 62.7 44.7 31.1 0.9 57.2 48.7 51.0 25.0 1.1

Proposed - alternate 83.2 67.0 70.4 50.8 0.5 54.7 60.1 47.0 31.2 1.0 65.1 55.3 58.6 34.9 0.9

Table 2: Azimuth (%), elevation (%), in-plane rotation (%) accuracy, Accπ

6
(%) & MedErr (radians) for sec 4.2 experiment.

each object’s viewsphere and render a view every 15 de-

grees in azimuth and elevation for three different distances.

Then, we sample rendered pairs such that their pose dif-

ference is between π
12 and π

3 . For the last two inputs, we

require aligned depth and RGB image pair. In order to

demonstrate our approach on the Pix3D dataset, we gen-

erate these alignments using the dataset’s annotations, how-

ever, we do not use annotations during training in any other

capacity. As we show in sec. 4.4, alternatively the aligned

depth and RGB images can be sampled from an existing

RGB-D dataset or through hand-alignment [2]. Note that

for each quadruplet, the selection of the first pair of in-

puts is agnostic to the pose of the object in the last two

inputs. We further note that, given sufficient viewsphere

sampling, what is important is how the quadruplet training

data is generated (particularly pairs for branches A & B).

If the pairs have a small pose difference (e.g., ≤ π
12 ), the

model does not adequately learn view-invariant representa-

tions. On the other hand, with larger pose differences (e.g.,
π
2 ), overlapping areas between the two views are small, so

finding correspondences across views is harder. We found

sampling pairs with a maximum pose difference of π
3 pro-

vides a good balance. A possible future extension can be

to incorporate “interesting” viewpoints [46], which are typ-

ically task-dependent, into our pipeline for further improve-

ments (e.g., reduced data requirements or training time).

Testing protocol. For every CAD model instance used in

our experiments, we first create a repository of descriptors

each assigned to a 3D coordinate. To do so, 20 rendered

views are sampled from the viewing sphere of each ob-

ject, similarly to how the training data are generated, and

keypoints are extracted from each view. Note that for this

procedure, we use the trained network that corresponds to

branch A of our architecture. Then we pass a query RGB

image through the network of branch D, generate keypoints

and their descriptors and match them to the repository of

the corresponding object instance. Finally, the established

correspondences are passed to RANSAC and PnP algorithm

to estimate the pose of the object. For every keypoint gen-

eration step we use the keypoints with the top 100 scores

during database creation and top 200 scores for the testing

RGB images. When testing on Pix3D, we have defined a

test set which contains untruncated and unoccluded exam-

ples of all category instances, with 179, 1451, and 152 im-

ages in total for bed, chair, and desk category respectively.

For Pascal3D+ we follow the provided test sets and make

use of the ground-truth bounding boxes.

4.1. Comparison with supervised approaches

Given our approach does not use any pose annotations

during training, it is challenging to evaluate it against ex-

isting state-of-the-art methods, which use pose annotations
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Category Bed Chair Desk

Metric Az. El. Pl. Accπ

6
↑ MedErr ↓ Az. El. Pl. Accπ

6
↑ MedErr ↓ Az. El. Pl. Accπ

6
↑ MedErr ↓

Baseline-A 38.2 39.6 30.6 9.7 1.9 28.6 41.4 20.3 3.7 1.9 37.6 34.4 28.8 5.6 2.0

Baseline-ZDDA 29.9 39.6 22.2 4.9 2.3 30.1 44.6 21.5 7.6 1.9 36.8 43.2 30.4 13.6 1.7

Proposed - joint 66.7 50.0 62.5 29.2 0.9 43.7 50.4 31.3 15.1 1.4 59.2 44.0 41.6 13.6 1.3

Proposed - alternate 75.7 61.1 74.3 45.1 0.6 52.0 57.4 38.0 21.2 1.2 62.4 44.0 53.6 18.4 1.2

Table 3: Results for azimuth (%), elevation (%), in-plane rotation (%) accuracy, Accπ

6
(%) and MedErr (radians) for the

sec. 4.3 experiment.

Figure 6: Illustration of rendered estimated poses on test RGB images from the Pix3D dataset for the sec. 4.2 experiment.

during training. In addition, our method cannot be trained

on Pascal3D+ because it requires paired RGB and depth im-

ages, which cannot be generated from the dataset’s annota-

tions. Therefore, we designed the following experiment for

a fair comparison: we train all methods on Pix3D and test

on Pascal3D+. We compare to the state-of-the-art methods

of Deep3DBox [26], Render for CNN [34], and Viewpoints

& Keypoints [40], all of which require pose annotations

for RGB images. Other approaches, such as Pavlakos et

al. [27], were considered for comparison but unfortunately

they require semantic keypoint annotations during training

which Pix3D does not provide. We conduct this evaluation

on the common categories between Pix3D and Pascal3D+

(chair and sofa) and report results in Table 1.

As expected, all approaches generally underperform

when applied on a new dataset. Our method demonstrates

better generalization and achieves higher Accπ

6
for both ob-

jects, even though it does not explicitly require 3D pose

annotations during training. This is due to fundamental

conceptual differences between these approaches and ours.

These methods formulate viewpoint estimation as a clas-

sification problem where a large number of parameters in

fully-connected layers are to be learned. This increases the

demand for data and annotations and confines the methods

mostly to data distributions that were trained on. On the

other hand, we exploit CAD models to densely sample from

the object’s viewsphere, and explicitly bridge the gap be-

tween the synthetic data and real images, thereby reducing

the demand for annotations. Furthermore, the learned local

correspondences allow more flexibility in understanding the

geometry of unseen objects, as we also show in sec. 4.3.

4.2. Ablation study

To understand each objective’s contribution, we have

carefully designed a set of baselines, which we train and

test on Pix3D, and compare them on the task of pose esti-

mation for the bed, chair, and desk categories.

Baseline-A. In order to assess the importance of the cross-

modality representation learning (sec. 3.3), we learn view-

invariant depth representations and depth keypoints and

simply use these keypoints and representations during test-

ing. In practice, this corresponds to removing the local

euclidean and keypoint consistency losses, and using only

the triplet and relative pose losses during training. Con-

sequently this baseline is utilizing only depth data during

training, but is applied on RGB images during testing.

Baseline-ZDDA. Another baseline would be to only learn

RGB-D modality invariant representations, i.e., similar fea-

tures for RGB and depth images, which can then be used to

match RGB images to depth renderings from CAD models.

In practice, this would correspond to training our proposed

approach with only the local feature alignment objective by

sampling all possible keypoint locations. This is similar in

spirit to and an improved version of ZDDA [28], a domain

adaptation approach that maps RGB and depth modalities

to the same point in the latent space.

Joint and alternate training. Finally we use all objectives

in our approach and investigate two different training strate-

gies. First we try training all objectives jointly in a single

optimization session and report this baseline as Proposed-

joint. Second, we define a three-step alternating training,

where we initially optimize using only the triplet and rel-

ative pose losses (i.e. branches A, B, C), then we opti-
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mize only with the local euclidean and keypoint consistency

losses (i.e. branch D), and in the last step all objectives

are jointly optimized together. This baseline is reported as

Proposed-alternate. Note that also experiments in sec. 4.1

and 4.4 follow this training paradigm.

Results. We first show, in Figure 5 (top row), qualitative

keypoint prediction results on test images, where we see

keypoint predictions that generally satisfy our intuition of

good keypoints. We then adopt the testing protocol de-

scribed above to report quantitative pose estimation results

for test RGB images. Performance analysis is shown in

Table 2 for the three object categories. As can be noted

from the results, our proposed model generally achieves

higher accuracy when compared to the baseline approaches.

In particular, the improvements over Baseline-A suggests

that keypoint and representation modality adaptation en-

forced in our model is critical. Furthermore, the improve-

ments over Baseline-ZDDA suggests that simply perform-

ing modality adaptation for the RGB and depth features

is not sufficient, and learning keypoints and view-invariant

representations, as is done in our method, is important to

achieve good performance. Finally, we observe that alter-

nating training outperforms the joint strategy, demonstrat-

ing the importance of learning good keypoints and repre-

sentations first, before transferring to the RGB modality.

4.3. Model transferability

In this section, we demonstrate the transfer capability,

where the goal is for a model, trained according to the pro-

posed approach, to generalize well to category instances not

seen during training. This is key to practical usability of the

approach since we cannot possibly have relevant CAD mod-

els of all instances of interest during training. To this end,

the baselines introduced in sec. 4.2 are re-used with the fol-

lowing experimental protocol: during training, quadruplets

are sampled from a subset of the available instances for each

category, and test on RGB images corresponding to all other

instances. For instance, for the bed category, we use 10 in-

stances for training and 9 instances for testing. Similarly,

for chair and desk, we use 111 and 12 instances respectively

for training and the rest for testing. During testing, we use

the same protocol as above. We present qualitative keypoint

predictions in Figure 5 (middle row) and report quantita-

tive performance in Table 3. We see our model shows good

transferability, providing (a) a similar level of detail in the

predicted keypoints as before, (b) improved accuracy when

compared to the baselines, and (c) absolute accuracies that

are not too far from those in Table 2.

4.4. Framework flexibility

While the results above use RGB-D pairs from Pix3D

for model training, in principle, our approach can be used in

conjunction with other datasets that provide aligned RGB-D

Metric Az. El. Pl. Accπ

6
↑ MedErr ↓

Bed 65.9 54.1 44.0 24.0 1.0

Chair 44.3 51.0 31.0 15.2 1.6

Desk 50.0 45.4 31.6 7.2 1.9

Table 4: Results for sec. 4.4 experiment. All numbers are

% except MedErr (radians).

pairs as well. Such capability will naturally make it easier

to train models with our framework, leading to improved

framework flexibility. To demonstrate this aspect, we train

our model as before, but now for input to branches C and D,

we use aligned RGB-D pairs from the NYUv2 [32] dataset.

Since these pairs contain noisy depth images from a real

depth sensor, we synthetically apply realistic noise on the

clean rendered depth images, used for branches A and B,

using DepthSynth [29]. This ensures branches A, B, and C

still receive the same modality as input. Note that we do

not test on NYUv2, but rather we use it to collect auxiliary

training data and perform testing on Pix3D. Similarly to all

other experiments, we do not use any pose annotations for

the RGB images as part of training our model and we follow

the previous testing protocol. Figure 5 (bottom row), shows

some keypoint prediction results on test data from Pix3D. In

Table 4, we report quantitative results. We can make several

observations- while the numbers are lower than those with

the proposed method in Table 2, which is expected, they

are higher than all the baselines reported in Table 2. Please

note that the baselines were trained with alignment from

Pix3D, whereas our model here was trained with alignment

from NYUv2. These results, along with those in the previ-

ous section, show the potential of our approach in learning

generalizable models for estimating object pose, while not

explicitly requiring pose annotations during training.

5. Conclusions

We proposed a new framework for 3D object pose esti-

mation in RGB images, which does not require either tex-

tured CAD models or 3D pose annotations for RGB images

during training. We achieve this by means of a novel end-to-

end learning pipeline that guides our model to discover key-

points in rendered depth images optimized for relative pose

estimation as well as transfer the keypoints and representa-

tions to the RGB modality. Our experiments have demon-

strated the effectiveness of the proposed method on unseen

testing data compared to supervised approaches, suggesting

that it is possible to learn generalizable models without de-

pending on pose annotations.
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