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Figure 1. Visualizations produced by GANalyze. The middle columns represent generated images serving as the original seed. These

are then modified to be characterized more (right) or less (left) by a given property of interest, as told by the score in the top left corner.

Abstract

We introduce a framework that uses Generative Adver-

sarial Networks (GANs) to study cognitive properties like

memorability. These attributes are of interest because we

do not have a concrete visual definition of what they en-

tail. What does it look like for a dog to be more memo-

rable? GANs allow us to generate a manifold of natural-

looking images with fine-grained differences in their visual

attributes. By navigating this manifold in directions that in-

crease memorability, we can visualize what it looks like for

a particular generated image to become more memorable.

The resulting “visual definitions” surface image proper-

ties (like “object size”) that may underlie memorability.

Through behavioral experiments, we verify that our method

indeed discovers image manipulations that causally affect

human memory performance. We further demonstrate that

the same framework can be used to analyze image aesthetics

and emotional valence. ganalyze.csail.mit.edu.

1. Introduction

Why do we remember the things we do? Decades of

work have provided numerous explanations: we remember

things that are out of context [5, 30], that are emotionally

salient [4], that involve people [14], etc. But a picture is, as

they say, worth a thousand words. What does it look like to

make an image more memorable? The same questions can

be asked for many cognitive visual properties: what visual

changes can take a bland foggy seascape and add just the

right colors and tones to make it serenely beautiful.

Attributes like memorability, aesthetics, and emotional

valence are of special interest because we do not have con-

crete definitions of what they entail. This contrasts with

attributes like “object size” and “smile”. We know exactly

what it means to zoom in on a photo, and it’s easy to imag-

ine what a face looks like as it forms a smile. It’s an open

question, on the other hand, what exactly do changes in

“memorability” look like? Previous work has built pow-

erful predictive models of image memorability [14, 19] but

these have fallen short of providing a fine-grained visual ex-

planation of what underlies the predictions.

In this paper, we propose a new framework, GANalyze,

based on Generative Adversarial Networks (GAN) [6], to

study the visual features and properties that underlie high-

level cognitive attributes. We focus on image memorability

as a case study, but also show that the same methods can be

applied to study image aesthetics and emotional valence.
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Figure 2. Schematic of the model. The model learns how to transform a z vector such that when fed to a Generator, the resulting image’s

property of interest changes. The transformation is achieved by the Transformer, who moves the z vector along a learned direction, θ, in

the Generator’s latent space. An Assessor module (e.g., MemNet) predicts the property of interest (e.g., memorability). Finally, α acts as a

knob to set the desired degree of change in the Assessor value (e.g., MemNet score), telling the Transformer how far to move along θ.

Our approach leverages the ability of GANs to gener-

ate a continuum of images with fine-grained differences in

their visual attributes. We can learn how to navigate the

GAN’s latent space to produce images that have increasing

or decreasing memorability, according to an off-the-shelf

memorability predictor [19]. Starting with a seed image,

this produces a sequence of images of increasing and de-

creasing predicted memorability (see Figure 1). By show-

ing this visualization for a diverse range of seed images, we

come up with a catalog of different image sequences show-

casing a variety of visual effects related to memorability.

We call this catalog a visual definition of image memora-

bility. GANalyze thereby offers an alternative to the non-

parametric approach in which real images are simply sorted

on their memorability score to visualize what makes them

memorable (example shown in the Supplementary Materi-

als). The parametric, fine-grained visualizations generated

by GANalyze provide much clearer visual definitions.

These visualizations surface several correlates of mem-

orability that have been overlooked by prior work, includ-

ing “object size”, “circularity”, and “colorfulness”. Most

past work on modeling image memorability focused on se-

mantic attributes, such as object category (e.g., “people”

are more memorable than “trees”) [14]. By applying our

approach to a class-conditional GAN, BigGAN [3], we can

restrict it to only make changes that are orthogonal to object

class. This reveals more fine-grained changes that nonethe-

less have large effects on predicted memorability. For ex-

ample, consider the cheeseburgers in Figure 4. Our model

visualizes more memorable cheeseburgers as we move to

the right. The apparent changes go well beyond semantic

category – the right-most burger is brighter, rounder, more

canonical, and, we think, looks tastier.

Since our visualizations are learned based on a model

of memorability, a critical step is to verify that what we are

seeing really has a causal effect on human behavior. We test

this by running a behavioral experiment that measures the

memorability of images generated by our GAN, and indeed

we find that our manipulations have a causal effect: navi-

gating the GAN manifold toward images that are predicted

to be more memorable actually results in generating images

that are measurably more memorable in the behavioral ex-

periment.

Our contributions include the following:

• Introducing GANalyze, a framework that uses GANs to

provide a visual definition of image properties, like mem-

orability, aesthetics, and emotional valence, that we can

measure but are not easy, in words, to define.

• Showing that this framework surfaces previously over-

looked attributes that correlate with memorability.

• Demonstrating that the discovered transformations have

a causal effect on memorability.

• Showing that GANalyze can be applied to provide visual

definitions for aesthetics and emotional valence.

1.1. Related work

Generative Adverserial Networks (GANs). GANs [6]

introduced a framework to synthesize natural-looking im-

ages [17, 3, 32, 16, 3]. Among the many applications for

GANs are style transfer [35], visual prediction [22], and

“sim2real” domain adaptation [2]. Concurrent work ex-

plores the ability to manipulate images via simple transfor-

mations in latent space [27, 15]. Here, we show how they

can also be applied to the problem of understanding high-

level, cognitive image properties, such as memorability.

Understanding CNN representations. The internal

representations of CNNs can be unveiled using methods

like network dissection [33, 1, 34] including for a CNN

trained on memorability [19]. For instance, Khosla et al.

[19] showed that units with strong positive correlations with

memorable images specialized for people, faces, body parts,

etc., while those with strong negative correlations were

more sensitive to large regions in landscapes scenes. Here,

GANalyze introduces a new way of defining what memora-

bility, aesthetic, and emotional valence variability look like.

Modifying Memorability. The memorability of an im-

age, like faces, can be manipulated using warping tech-

niques [18]. Concurrent work has also explored using a

GAN for this purpose [29]. Another approach is a deep style

transfer [28] which taps into more artistic qualities. Now

that GANs have reached a quality that is often almost in-

distinguishable from real images, they offer a powerful tool

to synthesize images with different cognitive qualities. As

shown here, our GANalyze framework successfully modi-

fied GAN-generated images across a wide range of image

categories to produce a second generation of GAN realistic
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photos with different mnemonic qualities.

2. Model

2.1. Formulation

We start with a pretrained Generator G, who takes a

noise vector z and a one-hot class vector y as input and

generates a photo-realistic image G(z,y). Assumed is also

an Assessor function A that assesses an image property of

interest, in this case memorability. Our goal was to learn to

transform any given noise vector z of any class y such that

the memorability of its resulting, generated image increases

(or decreases) with a certain amount α. The transformation

is achieved by a Transformer function, who moves the input

z along a certain direction θ in the latent space. We express

the objective as:

L(θ) = Ez,y,α[(A(G(Tθ(z, α),y))

−(A(G(z,y)) + α))2]
(1)

Note that this is simply the MSE loss between the target

memorability score, i.e. the seed image’s score A(G(z,y))
increased by α, and the memorability score of the trans-

formed clone image A(G(Tθ(z, α),y)). The scalar α acts

as a metaphorical knob which one can use to turn up or

turn down memorability. The optimizing problem is θ∗ =
argminθ L(θ). The Transformer T is defined as:

T (z, α) = z+ αθ (2)

Figure 2 presents a schematic of the model. Finally,

note that when α = 0, T becomes a null operation and

G(Tθ(z, α),y) then equals G(z,y).

2.2. Implementation

For the results presented here, we used the Generator

of BigGAN [3], which generates state-of-the art GAN im-

ages and is pretrained on ImageNet [25]. The Assessor

was implemented as MemNet [19], a CNN predicting im-

age memorability. Note, however, that training our model

with different Generators or different Assessors can easily

be achieved by substituting the respective modules. We dis-

cuss other Assessors in Section 4.

To train our model and find θ∗, we built a training set by

randomly sampling 400K z vectors from a standard normal

distribution truncated to the range [−2, 2]. Each z was ac-

companied by an α value, randomly drawn from a uniform

distribution between -0.5 and 0.5, and a randomly chosen

y. We used a batch size of 4 and an Adam optimizer.

In view of the behavioral experiments (see Section 3),

we restricted the test set to 750 randomly chosen Imagenet

classes and two z vectors per class. Each z vector was then

paired with five different α values: [−0.2,−0.1, 0, 0.1, 0.2].
Note that this includes an α of 0, representing the original

Figure 3. Model results. A) Graph shows the mean MemNet

score across the images in every α condition. Our model success-

fully learned how to modify a GAN image to decrease (negative

α) or increase (positive α) its MemNet score. B) List of emerg-

ing factors potentially underlying the effect observed in (A), and

graph of how they change in function of α. The factors emerged

from visualizations generated by the GANalyze framework (ex-

amples shown in Figures 4 and in the Supplementary Materials).

image G(z,y). Finally, the test set consisted of 1.5K sets

of five images, or 7.5K test images in total.

3. Experiments

3.1. Model validation

Did our model learn to navigate the latent space such

that it can increase (or decrease) the Assessor score of the

generated image with positive (or negative) α values?

Figure 3.A suggests that it did. The mean MemNet score

of test set images increases with every increment of α. To

test this formally, we fitted a linear mixed-effects regression

model to the data and found a (unstandardized) slope (β) of

0.68 (95%CI = [0.66, 0.70], p < 0.001), confirming that

the Memnet score increases significantly with α.

3.2. Emerging factors

We observe that the model can successfully change the

memorability of an image, given its z vector. Next, we ask

which image factors it altered to achieve this. The answer to

this question can provide further insight into what the As-

sessor has learned about the to-be-assessed image property,

in this case what MemNet has learned about memorability.

From a qualitative analysis of the test set (examples shown

in Figure 4), a number of candidate factors stand out.

First, MemNet assigns higher memorability scores when

the size of the object (or animal) in the image is larger, as

our model is in many cases zooming in further on the object

with every increase of α.

Second it is centering the subject in the image frame.

Third, it seems to strive for square or circular shapes

in classes where it is realistic to do so (e.g., snake, cheese-

burger, necklace, and espresso in Figure 4).

Fourth, it is often simplifying the image from low to

high α, by reducing the clutter and/or number of objects,
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Figure 4. Examples of generated images along the memorability dimension. The middle column represents G(z,y), the generated image

serving as the original seed to create a series of clone images more or less memorable.
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such as in the cheeseburger or flamingo, or by making the

background more homogeneous, as in the snake example.

A fifth observation is that the subject’s eyes sometimes

become more pronounced and expressive, in particular in

the dog classes (see Figure 1).

Sixth, one can also detect color changes between the dif-

ferent α conditions. Positive α′s often produce brighter

and more colorful images, and negative α′s often produce

darker images with dull colors. Finally, for those classes

where multiple object hues can be considered realistic (e.g.,

the bell pepper and the necklace in Figure 1 and Figure 4),

the model seems to prefer a red hue.

To verify our observations, we quantified the factors

listed above for the images in the test set (except for “ex-

pressive eyes”, which is more subjective and harder to quan-

tify). Brightness was measured as the average pixel value

after transforming the image to grayscale. For colorfulness,

we used the metric proposed by [10], and for redness we

computed the normalized number of red pixels. Finally, the

entropy of the pixel intensity histogram was taken as proxy

for simplicity. For the other three factors, a pretrained Mask

R-CNN [11, 21] was used to generate an instance-level seg-

mentation mask of the subject. To capture object size, we

calculated the mask’s area (normalized number of pixels).

To measure centeredness, we computed the deviation of the

mask’s centroid from the center of the frame. Finally, we

calculated the length of minor and major axes of an ellipse

that has the same normalized second central moments as the

mask, and used their ratio as a metric of squareness. Figure

3.B shows that the emerging factor scores increase with α.

3.3. Realness

While BigGAN achieves state-of-the-art to generate

highly realistic images, there remains some variability in the

“realness” of the output. How best to evaluate the realness

of a set of GAN-images is still an open question. Below, we

discuss two automatically computed realness measures and

a human measure in relation to our data.

3.3.1 Automatic measures

In Figure 5.A, we plot two popular automatic measures in

function of α: the Frechet Inception Distance (FID) [13]

and the Inception Score (IS) [26]. A first observation is that

the FID is below 40 in all α conditions. An FID as low

as 40 already corresponds to reasonably realistic images.

Thus the effects of our model’s modifications on memora-

bility are not explained by making the images unrealistic.

But we do observe interesting differences in FID- and IS-

differences related to α, suggesting that more memorable

images have more interpretable semantics.

Figure 5. Realness measures as a function of α. A) Two popu-

lar automatic measures for evaluating the realness of a set of GAN

images. Note that lower FID values indicate higher realness. B)

Human fakeness discriminability, measured as the mean propor-

tion correct in a 2AFC-task in which AMT workers had to dis-

criminate GAN-images (fake) from real photographs.

3.3.2 Human measure

In addition to the two automatic measures, we conducted

an experiment to collect human realness scores. The exper-

iment consisted of a two-alternative forced choice (2AFC)

task, hosted on Amazon Mechanical Turk (AMT), in which

workers had to discriminate GAN-images from real ones.

Workers were shown a series of pairs, consisting of one

GAN-image and one real image. They were presented side

by side for a duration of 1.6 s. Once a pair had disap-

peared off the screen, workers pressed the j-key when they

thought the GAN-image was shown on the right, or the

f-key when they thought it was shown on the left. The

position of the GAN-image was randomized across trials.

The set of real images used in this experiment was con-

structed by randomly sampling 10 real ImageNet exem-

plars per GAN-image class. The set of GAN-images was

the same as the one quantified on memorability in Section

3.4. A GAN-image was randomly paired with one of the

10 real images belonging to the same class. Each series

consisted of 100 trials, of which 20 were vigilance trials.

For the vigilance trials, we generated GAN-images from z

vectors that were sampled from the tails of a normal dis-

tribution (to make them look less real). For a worker’s first

series, we prepended 20 trials with feedback as practice (not

included in the analyses). Workers could complete up to 17

series, but were blocked if they scored less than 65% cor-

rect on the vigilance trials. Series that failed this criterion

were also excluded from the analyses. The pay rate equaled

$0.50 per completed series. On average, each of our test im-

ages was seen by 2.76 workers, meaning 4137 data points

per α condition.

We did not observe differences in task performance

between different α (see Figure 5.B). Indeed, a logis-

tic mixed-effects regression fitted to the raw, binary data

(correct/incorrect) did not reveal a statistically signifi-

cant regression weight for α (β = −0.08, 95%CI =
[−0.33, 0.18], p = 0.55). In other words, the model’s im-

5748



Figure 6. Schematic of the visual memory game. Each image is shown for 600 ms, with a blank interstimulus interval of 800 ms.

Workers are asked to respond whenever they recognize a repeat of a previously shown image. For a correct response, the frame around the

image briefly turns green. A red frame, on the other hand, indicates a mistake.

age modifications did not affect workers’ ability to correctly

identify the fake image, indicating that perceptually, the im-

age clones of a seed image did not differ in realness.

3.4. Do our changes causally affect memory?

In addition to the MemNet scores, is our model also suc-

cessful at changing the probability of an image being rec-

ognized by participants in an actual memory experiment?

We tested people’s memory for the images of a test set (see

Section 2.2) using a repeat-detection visual memory game

hosted on AMT (see Figure 6) [14, 19]. AMT workers

watched a series of one image at a time and had to press

a key whenever they saw a repeat of a previously shown

image. Each series comprised 215 images, shown each

for 600 ms with a blank interval of 800 ms in-between.

Sixty images were targets, sampled from our test set, and

repeated after 34–139 intervening images. The remaining

images were either filler or vigilance images and were sam-

pled from a separate set. This set was created with 10 z

vectors per class and the same five α values as the test set:

[−0.2,−0.1, 0, 0.1, 0.2], making a total of 37.5K images.

Filler images were only presented once and ensured spacing

between a target and its repeat. Vigilance images were pre-

sented twice, with 0–3 intervening images in-between the

two presentations. The vigilance repeats constituted easy

trials to keep workers attentive. Care was taken to ensure

that a worker never saw more than one G(Tθ(z, α),y) for

a given z. They could complete up to 25 series, but were

blocked if they missed more than 55% of the vigilance re-

peats in a series or made more than 30% false alarms. Series

that failed this were not analyzed. The pay rate was $0.50

per completed series. On average, a test image was seen by

3.16 workers, with 4740 data points per α condition.

Workers could either recognize a repeated test image

(hit, 1), or miss it (miss, 0). Figure 7.A shows the hit rate

across all images and workers. The hit rate increases with

every step of α. Fitting a logistic mixed-effects regression

model to the raw, binary data (hit/miss), we found that the

predicted log odds of image being recognized increase with

0.19 for an increase in α of 0.01 (β = 1.92, 95%CI =

Figure 7. Human memory performance for images modified

according to different Assessors: A) MemNet, B) Object size and

C) AestheticsNet. Performance is measured as the hit rate across

all images and workers in the memory game for each property.

[1.71 − 2.12], p < 0.001). This shows that our model can

successfully navigate the BigGAN latent space in order to

make an image more (or less) memorable to humans.

3.4.1 Emerging factors

Given human memory data for images modified for mem-

orability, we evaluate how the images’ emerging factor

scores relate to their likelihood of being recognized. We

fitted mixed-effects logistic regression models, each with

a different emerging factor as the predictor, see Table 1.

Except for entropy, all the emerging factors show a signifi-

cant, positive relation to the likelihood of a hit in the mem-

ory game, but none fit the data as well as the model’s α.

This indicates that a single emerging factor is not enough to

fully explain the effect observed in Figure 7.A. Note that

the emerging factor results are correlational and the factors

are intercorrelated, hampering conclusions about which in-

dividual factors truly causally affect human memory perfor-

mance. As an example of how this can be addressed within

the GANalyze framework, we conducted an experiment fo-

cusing on the effect of one salient emerging factor: object

size. As seen in Figure 4, more memorable images tend to

center and enlarge the object class.

We trained a version of our model with an Object size

Assessor, instead of the MemNet Assessor. This is the same
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Figure 8. Model results for additional Assessors. Graphs show

the mean Assessor (A: Object size, B: AestheticsNet, C: EmoNet)

score across images in every α condition.

Object size Assessor used to quantify the object size in the

images modified according to MemNet (e.g., for the results

in Figure 3.B), now teaching the Transformer to perform

“enlarging” modifications. After training with 161,750 z

vectors, we generated a test set as described in Section 2.2,

except with a different set of α’s: [−0.8,−0.4, 0, 0.4, 0.8].
We chose these values to qualitatively match the degree of

object size changes achieved by the MemNet version of the

model. Figure 8.A visualizes the results achieved on the

test set. The model successfully enlarges the object with

increasing alpha’s, as confirmed by a linear mixed-effects

regression analysis (β = 0.07, 95%CI = [0.06, 0.07], p <

0.001). Figure 10 shows example images generated by that

model. A comparison with images modified according to

MemNet suggests that the latter model was doing more than

just enlarging the object.

To study how the new size modifications affect memo-

rability, we generated a new set of images (7.5K targets,

37.5K fillers) with α’s [−0.8,−0.4, 0, 0.4, 0.8]. We chose

these values to qualitatively match the degree of object size

changes achieved by the MemNet version of the model. The

new images were then quantified using the visual memory

game (on average 2.36 data points per image and 3540 per α

condition). Figure 7.B shows the results. Memory perfor-

mance increases with α, as confirmed by a logistic mixed-

effects analysis (β = 0.11, 95%CI = [0.06, 0.18], p <

0.001, although mostly for positive α values.

4. Other image properties

As mentioned in Section 2.2, the proposed method can

be applied to other image properties, simply by substituting

the Assessor module. To show our framework can gener-

alize, we trained a model for aesthetics and emotional va-

lence. Emotional valence refers to how positive (or neg-

ative) the emotions evoked by an image are experienced.

The respective Assessors were AestheticsNet [20] and our

own EmoNet (a ResNet50 model [12], pretrained on Mo-

ments [23], fine-tuned to Cornell Emotion6 [24]). Fig-

ure 8.B shows the average AestheticsNet scores per α con-

dition of a test set. The scores significantly increase with α,

Factor Log

Odds

CI p Tjur’s

D

Brightness 0.28 [ 0.24, 0.32] <0.001 0.066
Centeredness 0.24 [ 0.19, 0.29] <0.001 0.059
Colorfulness 0.17 [ 0.14, 0.21] <0.001 0.054
Entropy 0.03 [−0.04, 0.10] 0.441 0.062
Redness 0.06 [ 0.00, 0.12] 0.042 0.055
Shape 0.19 [ 0.14, 0.24] <0.001 0.060
Object size 0.32 [ 0.27, 0.37] <0.001 0.050

α 1.92 [ 1.71, 2.12] <0.001 0.074

Table 1. Relation between emerging factors and human mem-

ory performance. We show the output of logistic mixed-effects

regressions. From left to right: the regression weight, the confi-

dence interval (CI) for that weight, the p-value for statistical sig-

nificance, and Tjur’s coefficient of discrimination (D), being the

regression model’s goodness of fit [31]. The emerging factor val-

ues were normalized before running the regression models.

as evidenced by the results of a linear mixed-effects regres-

sion (β = 0.72, 95%CI = [0.70, 0.74], p < 0.001). Simi-

larly, the EmoNet scores significantly increase with α in a

test set (β = 0.44, 95%CI = [0.43, 0.45], p < 0.001, see

Figure 8.C). Example visualizations are presented in Fig-

ure 9 and in the Supplementary Materials.

Based on a qualitative inspection of such visualizations,

we observed that the aesthetics model is modifying factors

like depth of field, color palette, and lighting, suggesting

that the AestheticsNet is sensitive to those factors. Indeed,

the architecture of the AestheticsNet includes attribute-

adaptive layers to predict these factors, now highlighted

by our visualizations. The emotional valence model often

averts the subject’s gaze away from the “camera” when de-

creasing valence. To increase valence, it often makes im-

ages more colorful, introduces bokeh, and makes the skies

more blue in landscape images. Finally, the teddy bear in

Figure 1 (right) seems to smile more. Interestingly, the

model makes different modifications for every property (see

Figure 10), suggesting that what makes an image memo-

rable is different from what makes it aesthetically pleasing

or more positive in its emotional valence.

A final question we asked is whether an image modified

to become more (less) aesthetic also becomes more (less)

memorable? To test this, we quantified the images of the

aesthetic test set on memorability by presenting them to

workers in the visual memory game (we collected 1.54 data

points per image and 2306 data points per α condition). Fig-

ure 7.C shows the human memory performance in function

of an α that is tuning aesthetics. A logistic mixed-effects

regression revealed that with an 0.1 increase in the aesthet-

ics α, the predicted log odds of an image being recognized

increase with 0.07 (β = 0.72, 95%CI = [0.44, 1.00], p <

0.001). While modifying an image to make it more aesthetic

does increase its memorability, the effect is rather small,
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Figure 9. Examples of generated images along the aesthetics

(top) and emotional valence (bottom) dimension. The middle col-

umn represents G(z,y), the generated image serving as the origi-

nal seed. An images’ Assessor score is shown in its top left corner.

More examples are included in the Supplementary Materials.

suggesting that memorability is more than only aesthetics

and that our model was right to modify memorability and

aesthetics in different ways.

5. Conclusion

We introduce GANalyze, a framework that shows how

a GAN-based model can be used to visualize what another

model (i.e. CNN as an Assessor) has learned about its tar-

get image property. Here we applied it to memorability,

yielding a kind of “visual definition” of this high-level cog-

nitive property, where we visualize what it looks like for an

image to become more or less memorable. These visual-

izations surface multiple candidate features that may help

explain why we remember what we do. Importantly, our

framework can also be generalized to other image proper-

ties, such as aesthetics or emotional valence: by replacing

the Assessor module, the framework allows us to explore

the visual definition for any property we can model as a

differentiable function of the image. We validated that our

model successfully modified GAN images to become more

(or less) memorable via a behavioral human memory exper-

iment on manipulated images.

GANalyze’s intended use is to contribute to the scientific

understanding of otherwise hard to define cognitive prop-
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Figure 10. Comparison of examples generated according to

different Assessors. The top row represents G(z,y), the gener-

ated image serving as the original seed to create a series of images

with a higher or lower Assessor value. The respective Assessor

values are indicated in the top left corner. Note that for object

size, we used a different α range: {-0.8,0.8}.

erties. Note that this was achieved by modifying images

for which the encoding into the latent space of the GAN

was given. In other words, it is currently only possible to

modify seed images that are GAN-images themselves, not

user-supplied, real images. However, should advances in

the field lead to an encoder network, this would become

possible and it would open applications in graphics and ed-

ucation, for example, where selected images can be made

more memorable. One should also be wary, though, of po-

tential misuse, especially when applied to images of people

or faces. Note that the BigGAN [3] generator used here

was trained on ImageNet categories [25] which only occa-

sionally include people, and that it does not allow to render

realistically looking people. Nevertheless, with generative

models yielding ever more realistic output, an increasingly

important challenge in the field is to develop powerful de-

tection methods to allow us to reliably distinguish gener-

ated, fake images from real ones [8][7][9].
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