
Memorizing Normality to Detect Anomaly: Memory-augmented Deep

Autoencoder for Unsupervised Anomaly Detection

Dong Gong1, Lingqiao Liu1, Vuong Le2, Budhaditya Saha2,

Moussa Reda Mansour3, Svetha Venkatesh2, Anton van den Hengel1

1The University of Adelaide, Australia 2A2I2, Deakin University 3University of Western Australia

https://donggong1.github.io/anomdec-memae

Abstract

Deep autoencoder has been extensively used for

anomaly detection. Training on the normal data, the au-

toencoder is expected to produce higher reconstruction er-

ror for the abnormal inputs than the normal ones, which

is adopted as a criterion for identifying anomalies. How-

ever, this assumption does not always hold in practice. It

has been observed that sometimes the autoencoder “gen-

eralizes” so well that it can also reconstruct anomalies

well, leading to the miss detection of anomalies. To miti-

gate this drawback for autoencoder based anomaly detec-

tor, we propose to augment the autoencoder with a mem-

ory module and develop an improved autoencoder called

memory-augmented autoencoder, i.e. MemAE. Given an in-

put, MemAE firstly obtains the encoding from the encoder

and then uses it as a query to retrieve the most relevant

memory items for reconstruction. At the training stage, the

memory contents are updated and are encouraged to repre-

sent the prototypical elements of the normal data. At the test

stage, the learned memory will be fixed, and the reconstruc-

tion is obtained from a few selected memory records of the

normal data. The reconstruction will thus tend to be close to

a normal sample. Thus the reconstructed errors on anoma-

lies will be strengthened for anomaly detection. MemAE is

free of assumptions on the data type and thus general to be

applied to different tasks. Experiments on various datasets

prove the excellent generalization and high effectiveness of

the proposed MemAE.

1. Introduction

Anomaly detection is an essential task with critical ap-

plications in various areas, such as video surveillance [26].

The unsupervised anomaly detection [47, 43, 48, 32, 7] is

to learn a normal profile given only the normal data exam-

ples and then identify the samples not conforming to the

normal profile as anomalies, which is challenging due to

E
n

c
o

d
e
r

D
e
c
o

d
e
r

Normal
input

Abnormal
input

Recon. of
anomaly

Recon. of
the normal

Encodeding of normal input

Encoding of abnormal input

Prototypical normal patterns

in memory slots

Addressing memory

Abnormal
input

Normal
input

Anomaly?

Recon.

error

Significant recon. error

on abnormal sample

Small recon. error

on normal sample

Figure 1. Anomaly detection via the proposed MemAE. After

training on the dataset only with normal samples, the memory in

MemAE records the prototypical normal patterns. Given an ab-

normal input, MemAE retrieves the most relevant normal patterns

in memory for reconstruction, resulting in an output significantly

different to the abnormal input. To simplify the visualization, we

assume only one memory item is addressed here.

the lack of human supervision. Notably, the problem be-

comes even more difficult when the data points lay in a

high-dimensional space (i.e. videos), since modeling the

high-dimensional data is notoriously challenging [47].

Deep autoencoder (AE) [2, 18] is a powerful tool to

model the high-dimensional data in the unsupervised set-

ting. It consists of an encoder to obtain a compressed en-

coding from the input and a decoder that can reconstruct the

data from the encoding. The encoding essentially acts as an

information bottleneck which forces the network to extract

the typical patterns of high-dimensional data. In the context

of anomaly detection, the AE is usually trained by mini-

mizing the reconstruction error on the normal data and then

uses the reconstruction error as an indicator of anomalies.

It is generally assumed [48, 11, 45] that the reconstruction

error will be lower for the normal input since they are close

to the training data, while the reconstruction error becomes

higher for the abnormal input.

However, this assumption may not always hold, and

sometimes the AE can “generalize” so well that it can also

reconstruct the abnormal inputs well. This observation has

1705

been made in the existing literature [48, Figure 1] and also

in this paper (See Figure 4 and 6). The assumption that

anomaly incurs higher reconstruction error might be some-

how questionable since there are no training samples for

anomalies and the reconstruction behavior for anomaly in-

puts should be unpredictable. If some anomalies share com-

mon compositional patterns (e.g. local edges in images)

with the normal training data or the decoder is “too strong”

for decoding some abnormal encodings well, AE is very

likely to reconstruct the anomalies well.

To mitigate the drawback of AEs, we propose to aug-

ment the deep autoencoder with a memory module and in-

troduce a new model memory-augmented autoencoder, i.e.

MemAE. Given an input, MemAE does not directly feed its

encoding into the decoder but uses it as a query to retrieve

the most relevant items in the memory. Those items are

then aggregated and delivered to the decoder. Specifically,

the above process is realized by using attention based mem-

ory addressing. We further propose to use a differentiable

hard shrinkage operator to induce sparsity of the memory

addressing weights, which implicitly encourage the mem-

ory items to be close to the query in the feature space.

In the training phase of MemAE, we update the memory

content together with the encoder and decoder. Due to the

sparse addressing strategy, the MemAE model is encour-

aged to optimally and efficient use the limited number of

memory slots, making the memory to record the prototyp-

ical normal patterns in the normal training data to obtain

low average reconstruction error (See Figure 3). In the test

phase, the learned memory content is fixed, and the recon-

struction will be obtained by using a small number of the

normal memory items, which are selected as the neighbor-

hoods of the encoding of the input. Because the reconstruc-

tion is obtained normal patterns in memory, it tends to be

close to the normal data. Consequently, the reconstruction

error tends to be highlighted if the input is not similar to

normal data, that is, an anomaly. The schematic illustra-

tion is shown in Figure 1. The proposed MemAE is free of

the assumption on the types of data and thus can be gener-

ally applied to solve different tasks. We apply the proposed

MemAE on various public anomaly detection datasets from

different applications. Extensive experiments prove the ex-

cellent generalization and high effectiveness of MemAE.

2. Related Work

Anomaly detection In unsupervised anomaly detection,

only normal samples are available as training data [4]. A

natural choice for handling the problem is thus the one-

class classification methods, such as one-class SVM [5, 34]

and deep one-class networks [31, 3], which seeks to learn

a discriminative hyperplane surrounding the normal sam-

ples. Unsupervised clustering methods, such as the k-means

method and Gaussian Mixture Models (GMM) [47, 40],

have also been applied to build a detailed profile of the nor-

mal data for identifying the anomalies. These methods usu-

ally suffer from suboptimal performance when processing

high-dimensional data.

Reconstruction-based methods are proposed relying on

an assumption that the anomalies cannot be represented and

reconstructed accurately by a model learned only on nor-

mal data [48]. Different techniques, such as PCA methods

[14, 15] and sparse representation [25, 45], have been used

to learn the representation of the normal patterns. Specifi-

cally, sparse representation methods [25, 45] jointly learn

a dictionary and the sparse representation of the normal

data for detecting anomalies. The restricted feature repre-

sentations limit the performances. Some very recent works

[43, 46, 48, 6] train deep autoencoders for anomaly detec-

tion. For example, structured energy based deep neural net-

work [43] is used to model the training samples. Zong et

al. [48] proposed to jointly model the encoded features and

the reconstruction error in a deep autoencoder. Although the

reconstruction based methods have achieved fruitful results,

their performances are restricted by the under-designed rep-

resentation of the latent space.

Due to the critical application scenario, a series of meth-

ods are specifically designed for video anomaly detection

[24, 44, 11, 21]. Kim and Grauman [15] use a mixture of

probabilistic PCA (MPPCA) to model optical flow features.

Mahadevan et al. [27] model the video via a mixture of

dynamic textures (MDT). Lu et al. [25] proposed an effi-

cient sparse coding-based method with multiple dictionar-

ies. Zhao et al. [44] update the dictionary in an online man-

ner. Deep learning based methods [11, 26, 24, 32] are pro-

posed to use the information in both the spatial and temporal

domain. Hasan et al. [11] detect the anomalies according

to the reconstruction error of a convolutional AE. Zhao et

al. [45] proposed to use 3D convolution based reconstruc-

tion and prediction. Luo et al. [26] iteratively update the

sparse coefficients via a stacked RNN to detect anomalies in

videos. Liu et al. [24] train a frame prediction network by

incorporating different techniques including gradient loss,

optical flow, and adversarial training. However, these meth-

ods lack a reliable mechanism to encourage the model to

induce large reconstruction error on the anomalies.

Memory networks Memory-augmented networks have at-

tracted increasing interest for solving different problems

[10, 39, 33]. Graves et al. [10] use external memory to

extend the capability of neural networks, in which content-

based attention is used for addressing the memory. Consid-

ering that memory can record information stably, Santoro et

al. [33] use a memory network to handle the one-shot learn-

ing problem. The external memory has also been used for

multi-modal data generation [16, 22], for circumventing the

mode collapse issue and preserving detailed data structure.

1706

E
n
c
o

d
e
r

D
e
c
o

d
e
r

…

Memory

Addressing
Input Rec.

x fe(·) fd(·)z

MMemory

Attention based addressing

with Hard shrinkage

Memory module

w ŵ

ẑ x̂

Figure 2. Diagram of the proposed MemAE. The memory addressing unit takes the encoding z as query to obtain the soft addressing

weights. The memory slots can be used to model the whole encoding or the features on one pixel of the encoding (as shown in the figure).

Note that ŵ is normalized after the hard shrinkage operation.

3. Memory-augmented Autoencoder

3.1. Overview

The proposed MemAE model consists of three major

components - an encoder (for encoding input and generating

query), a decoder (for reconstruction) and a memory mod-

ule (with a memory and the associated memory address-

ing operator). As shown in Figure 2, given an input, the

encoder first obtains the encoding of the input. By using

the encoded representation as a query, the memory mod-

ule retrieves the most relevant items in the memory via the

attention-based addressing operator, which are then deliv-

ered to the decoder for reconstruction. During training, the

encoder and decoder are optimized to minimize the recon-

struction error. The memory contents are simultaneously

updated to record the prototypical elements of the encoded

normal data. Given a testing sample, the model performs

reconstruction merely using a restricted number of the nor-

mal patterns recorded in the memory. As a result, the recon-

struction tends to be close to the normal sample, resulting

in small reconstruction errors for normal samples and large

errors on anomalies, which will be used as a criterion to

detect the anomalies.

3.2. Encoder and Decoder

The encoder is used to represent the input in an informa-

tive latent domain. The encoded representation performs as

a query to retrieve the relevant items in the memory. In our

model, the encoder can be seen as a query generator. The

decoder is trained to reconstruct the samples by taking the

retrieved memories as input.

We first define X to represent the domain of the data sam-

ples and Z to represent the domain of the encodings. Let

fe(·) : X → Z denote the encoder and fd(·) : Z → X

denote the decoder. Given a sample x ∈ X, the encoder

converts it to an encoded representation as z ∈ Z; and the

decoder is trained to reversely mapping a latent representa-

tion ẑ ∈ Z to the domain X as follows

z = fe(x; θe), (1)

x̂ = fd(ẑ; θd), (2)

where θe and θd denote the parameters of the encoder fe(·)
and decoder fd(·), respectively. In the proposed MemAE, z

is used to retrieve the relevant memory items; and ẑ is ob-

tained using the retrieved items. For the standard AE model,

there is ẑ = z. Our method is agnostic to the structures of

the encoder and decoder, which can be specially selected

for different applications.

In testing, given a sample x, we use the ℓ2-norm based

mean square error (MSE), i.e. e = ‖x− x̂‖2
2
, to measure of

the reconstruction quality, which is used as the criterion for

anomaly detection.

3.3. Memory Module with Attention­based Sparse
Addressing

The proposed memory module consists of a memory to

record the prototypical encoded patterns and an attention-

based addressing operator for accessing the memory.

3.3.1 Memory-based Representation

The memory is designed as a matrix M ∈ R
N×C contain-

ing N real-valued vectors of fixed dimension C. For con-

venience, we assume C is same to the dimension of z and

let Z = R
C . Let the row vector mi, ∀i ∈ [N] denote the

i-th row of M, where [N] denotes the set of integers from 1

to N . Each mi denotes a memory item. Given a query (i.e.

1707

encoding) z ∈ R
C , the memory network obtains ẑ relying

a soft addressing vector w ∈ R
1×N as follows

ẑ = wM =
∑N

i=1

wimi, (3)

where w is a row vector with non-negative entries that sum

to one and wi denotes the i-th entry of w. The weight vector

w is computed according to z. As shown in Eq. (3), the

addressing weight w is required for accessing the memory.

The hyper-parameter N defines the maximum capacity of

the memory. Although it is non-trivial to find the optimal

N for different datasets, MemAE is insensitive to the setting

of N , fortunately (See Section 4.2). A large enough N can

work well for each dataset.

3.3.2 Attention for Memory Addressing

In MemAE, the memory M is designed to explicitly record

the prototypical normal patterns during training. We define

the memory as a content addressable memory [39, 30] with

an addressing scheme that computes attention weights w

based on the similarity of the memory items and the query

z. As visualized in Figure 1, we compute each wight wi via

a softmax operation:

wi =
exp(d(z,mi))∑N

j=1
exp(d(z,mj))

, (4)

where d(·, ·) denotes a similarity measurement. Similar to

[33], we define d(·, ·) as cosine similarity:

d(z,mi) =
zm

T

i

‖z‖‖mi‖
. (5)

As shown in Eq. (3), (4) and (5), the memory module

retrieves the memory items most similar to z to obtain the

representation ẑ. Due to the restricted memory size and the

sparse addressing technique (introduced in Section 3.3.3),

only a small number of memory items can be addressed ev-

ery time. Accordingly, the beneficial behaviors of the mem-

ory module can be interpreted as follows.

In training phase, the decoder in MemAE is restricted to

perform reconstruction merely using a very small number

of addressed memory items, rendering the requirement for

efficient utilization of the memory items. The reconstruc-

tion supervision thus forces the memory to record the most

representative prototypical patterns in the input normal pat-

terns. In Figure 3, we visualize the trained single memory

slots, which shows that each single memory slot records the

prototypical normal patterns in the training data.

In testing phase, given the trained memory, only the

normal patterns in the memory can be retrieved for recon-

struction. Thus the normal samples can naturally be recon-

structed well. Conversely, the encoding of an abnormal in-

put will be replaced by the retrieved normal patterns, result-

ing in significant reconstruction errors on anomalies (See

visualized examples in Figure 4).

3.3.3 Hard Shrinkage for Sparse Addressing

As discussed above, performing reconstruction with a re-

stricted number of normal patterns in the memory helps

to induce large reconstruction error on anomalies. The

attention-based addressing tends to approach this naturally

[10]. However, some anomalies may still have the chance

to be reconstructed well with a complex combination of the

memory items via a dense w containing many small ele-

ments. To alleviate this issue, we apply a hard shrinkage

operation to promote the sparsity of w:

ŵi = h(wi;λ) =

{
wi, if wi > λ,
0, otherwise,

(6)

where ŵi denotes the i-th entry of the memory addressing

weight vector ŵ after shrinkage and λ denotes the shrink-

age threshold. It is not easy to directly implement the back-

ward of the discontinuous function in Eq. (6). For simplic-

ity, considering that all entries in w are non-negative, we

rewrite the hard shrinkage operation using the continuous

ReLU activation function as

ŵi =
max(wi − λ, 0) · wi

|wi − λ|+ ǫ
, (7)

where max(·, 0) is also known as ReLU activation, and ǫ is

a very small positive scalar. In practice, setting the thresh-

old λ as a value in the interval [1/N, 3/N] can render de-

sirable results. After the shrinkage, we re-normalize ŵ by

letting ŵi = ŵi/‖ŵ‖1, ∀i. The latent representation ẑ will

be obtained via ẑ = ŵM.

The sparse addressing encourages the model to repre-

sent an example using fewer but more relevant memory

items, leading to learning more informative representations

in memory. In addition, similar to the sparse representa-

tion methods [44], encouraging sparsity of the addressing

weights is beneficial in testing due to that the memory M

is trained to adapt the sparse w. Encouraging sparsity in w

will also alleviate the issue that an abnormal sample may

be fairly reconstructed well with dense addressing weights.

Comparing with the sparse representation methods [44, 26],

the proposed method obtains the desired sparse w via once

efficient forward operation, instead of the iterative updating.

3.4. Training

Given a dataset {xt}Tt=1
containing T samples, let x̂t de-

note the reconstructed sample corresponding the each train-

ing sample x
t. We firstly conduct to minimize the recon-

struction error on each sample:

R(xt, x̂t) = ‖xt − x̂
t‖2

2
, (8)

where the ℓ2-norm is used to measure the reconstruction

error. Let ŵt denote the memory addressing weights for

each sample x
t. To further promote the sparsity of ŵ, in

addition to the shrinkage operation in Eq. (7), we minimize

1708

a sparsity regularizer on ŵ during training. Considering that

all entries of ŵ are non-negative and ‖ŵ‖1 = 1, instead of

minimizing ‖ŵ‖1 [8, 9], we minimize the entropy of ŵt:

E(ŵt) =
∑T

i=1

−ŵi · log(ŵi). (9)

The hard shrinkage operation in Eq. (7) and the entropy

loss Eq. (9) jointly promote the sparsity of the generated

addressing weights. More detailed ablation studies and dis-

cussions can be found in Section 4.4.

By combining loss functions in Eq. (8) and (9), we con-

struct the training objective for MemAE as:

L(θe, θd,M) =
1

T

∑T

t=1

(
R(xt, x̂t) + αE(ŵt)

)
, (10)

where α is a hyper-parameter in training. In practice,

α = 0.0002 leads to desirable results in all our experi-

ments. During training, the memory M is updated through

optimization via backpropagation and gradient descent. In

backward pass, only the gradients for the memory items

with non-zero addressing weights wi can be non-zero.

4. Experiments

In this section, we validate the proposed MemAE for

anomaly detection. To show the generality and applica-

bility of the proposed model, we conduct experiments on

five datasets of three different tasks. The results are com-

pared with different baseline models and state-of-the-art

techniques. The proposed MemAE is applied to all datasets

following previous sections. MemAE and its variants are

implemented using PyTorch [29] and trained using the op-

timizer Adam [17] with a learning rate of 0.0001. We make

them and other encoder-decoder models such as VAE to

have the similar model capacity.

4.1. Experiments on Image Data

We first conduct the experiments to detect outliers image

[32] and evaluate the performance on two image datasets:

MNIST [20] and CIFAR-10 [19], both of which contain im-

ages belonging to 10 classes. For each dataset, we construct

10 anomaly detection (i.e. one-class classification) datasets

by sampling images from each class as normal samples and

sampling anomalies from the rest classes. The normal da-

tums are split into training and testing set with a rate of 2:1.

Following the setting used in [43, 48], the training set only

consists of normal samples and has no overlapping with the

testing set. The anomaly proposition is controlled around

30%. 10% of the original training data is left for validation.

In this experiment, we focus on validating the proposed

memory module and implement the encoder and decoder

as plain convolutional neural networks. We first define

Conv2(k, s, c) to denote a 2D convolution layer, where k,

s and c are the kernel size, stride size and the number

of channels, respectively. For MNIST, we implement the

encoder using three convolution layers: Conv2(3, 2, 32)-

Conv2(3, 2, 16)-Conv2(3, 3, 8). The decoder is imple-

mented as Dconv2(3, 3, 16)-Dconv2(3, 2, 32)-Dconv2(3, 2,

1), where Dconv2 denotes the 2D deconvolution layer. Ex-

cept for the last Dconv2, each layer is followed by a batch

normalization (BN) [13] and a leaky ReLU activation. Such

design is applied for all datasets in the following. Consider-

ing the higher data complexity of CIFAR-10, we use the

encoder and decoder with larger capacities: Conv2(3, 2,

64)-Conv2(3, 2, 128)-Conv2(3, 2, 128)-Conv2(3, 2, 256)

and Dconv2(3, 2, 128)-Dconv2(3, 2, 128)-Dconv2(3, 2,

64)-Dconv2(3, 2, 3). We process the MNIST and CIFAR-

10 datasets as gray images and RGB images, respectively.

Memory sizes N for MNIST and CIFAR-10 are set as 100

and 500, respectively.

We compare the proposed model with several conven-

tional and deep learning based methods for general anomaly

detection as baselines, including one-class SVM (OC-

SVM) [35], kernel density estimation (KDE) [28], a deep

variational autoencoder (VAE) [18], a deep autoregressive

generative model PixCNN [38] and the deep structured

energy-based model (DSEBM) [43]. Specifically, for the

density estimation methods (e.g. KDE and PixCNN) and

the reconstruction based methods (e.g. VAE and DSEBM),

the log-likelihood and reconstruction error are used to cal-

culate the regularity score, respectively. Note that for fair

comparison with other methods, we calculate the regular-

ity score of VAE based on only reconstruction error. We

also conduct the comparisons with some baseline variants

of MemAE to show the importance of the major compo-

nents, including the antueocoder without memory module

(AE) and a variant of MemAE without the sparse shrinkage

and the entropy loss (MemAE-nonSpar). In all experiments,

AE, MemAE-nonSpar, and VAE share a similar capacity

with the full MemAE model by using the same encoder and

decoder. In testing, we scale the reconstruction error to the

range [0, 1] as the criterion to identify the anomalies. Fol-

lowing [27, 26, 1], we use the AUC (Area Under Curve)

as the measurement for performance evaluation, which is

obtained by calculating the area under the Receiver Opera-

tion Characteristic (ROC) with a varying threshold. Table 1

shows the average AUC values on the 10 sampled datasets.

As shown in Table 1, the proposed MemAE gener-

ally outperforms the compared methods. The memory-

augmented models significantly outperform the AE without

memory. And the MemAE model with sparse addressing

yields better results. Images in MNIST only contain sim-

ple patterns, i.e. digits, which is easy to model. VAE can

thus produce satisfactory results by using a simple Gaus-

sian distribution to model latent space. All methods per-

form better on MNIST than CIFAR-10, since the images

in CIFAR-10 have more complex content and exhibit larger

1709

Table 1. Experimental results on image data. Average AUC val-

ues on 10 anomaly detection datasets sampled from MNIST and

CIFAR-10 are shown.
Dataset MNIST CIFAR-10

OC-SVM [35] 0.9499 0.5619

KDE 0.8116 0.5756

VAE [18] 0.9643 0.5725

PixCNN [38] 0.6141 0.5450

DSEBM [43] 0.9554 0.5725

AE 0.9619 0.5706

MemAE-nonSpar 0.9725 0.6058

MemAE 0.9751 0.6088

intra-class variance on several classes, which incurs unsat-

isfactory average ACU. Nevertheless, among the compared

models with similar capacities, MemAE achieves superior

performance than the competitors, which proves the effec-

tiveness of the proposed memory module.

4.1.1 Visualizing How the Memory Works

Considering that the images in MNIST contain the patterns

easy to identify, we use it to show how the proposed mem-

ory module works for anomaly detection.

What the memory learns. We first visualize what the

memory learns from MNIST by randomly sampling a sin-

gle memory slot and performing decoding on it. Figure 3

visualizes the memory learned on the MNIST digits “9” by

treating them as normal samples. Since MemAE usually

performs reconstruction via a combination of several ad-

dressed items, the decoded single slot appears blurry and

noisy. Nevertheless, as shown in Figure 3(b), the memory

slots record the different prototypical patterns of the normal

training samples (i.e. digits “9”).

(a) Training samples (b) Decoded single memory item

Figure 3. Visualization of the memory slots learned on MNIST by

treating digits “9” as normal data. We randomly select a single

memory item and perform decoding. The decoded single memory

slot in (b) appears as a prototypical pattern of the normal samples.

How memory augments reconstruction. In Figure 4, we

visualize the image reconstruction process under the mem-

ory augmentation. Since the trained memory only records

the normal prototypical patterns, given an abnormal input

“9”, the MemAE trained on “5” reconstructs a “5”, result-

ing in significant reconstruction error on the abnormal input.

Note that the reconstructed “5” of MemAE has a similar

shape of the input “9” since the memory module retrieves

the most similar normal patterns. The AE model without

memory tends to learn some representations more locally.

Thus an abnormal sample may also be reconstructed well.

Input AE MemAE

(a) Training on the normal “5”

Input AE MemAE

(b) Training on the normal “2”

Figure 4. Visualization of the reconstruction results of AE and

MemAE on MNIST. (a) The models are trained on “5”. The input

is an image of “9”. (b) The models are trained on “2”. The input is

an image of “4”. The MemAE retrieves the normal memory items

for reconstructions and obtains the results significantly different

from the input anomalies.

Normal pedestrians

Anomaly: cycling

(a) UCSD-Ped2

Normal pedestrians

Anomaly: chasing

(b) ShanghaiTech

Figure 5. Normality scores of the video frames obtain by MemAE.

The score decreases immediately when some anomalies appear in

the video frame.

4.2. Experiments on Video Anomaly Detection

Anomaly detection on video aims to identify the un-

usual contents and moving patterns in the video, which

is an essential task in video surveillance. We conduct

experiments on three real-world video anomaly detection

datasets, i.e. UCSD-Ped2 [27], CUHK Avenue [25] and

ShanghaiTech [26]. Specifically, the most recent bench-

mark dataset ShanghaiTech contains more than 270,000

training frames and more than 42,000 frames (with about

17,000 abnormal frames) for testing, which covers 13 dif-

ferent scenes. In the datasets, objects except for pedestrians

(e.g. vehicles) and strenuous motion (e.g. fighting and chas-

ing) are treated as anomalies.

To preserve the video temporal information, we imple-

ment the encoder and decoder using 3D convolutions to ex-

tract the spatial-temporal features in video [36]. Accord-

ingly, the input of the network is a cuboid constructed by

stacking 16 neighbor frames in grayscale. The structures

of encoder and decoder are designed as: Conv3(3, 2, 96)-

Conv3(3, 2, 128)-Conv3(3, 2, 256)-Conv3(3, 2, 256) and

Dconv3(3, 2, 256)-Dconv3(3, 2, 128)-Dconv3(3, 2, 96)-

Dconv3(3, 2, 1), where Conv3 and Dconv3 denote 3D con-

volution and deconvolution, respectively. A BN and a leaky

ReLU activation follow each layer (except the last one). We

set N = 2000. Considering the complexity of the video

data, we let each memory slot record the features on one

pixel in the feature maps, corresponding to a sub-area of the

video clip. The memory is thus a matrix of 2000× 256. In

testing, the normality of each frame is evaluated by the re-

construction error of the cuboid centering on it. Following

[11, 26], we obtain the normality score pu of the u-th frame

by normalizing the errors to range [0, 1]:

1710

Table 2. AUC of different methods on video datasets UCSD-Ped2,

CUHK Avenue and ShanghaiTech.

Method\Dataset UCSD-Ped2 CUHK SH.Tech

N
o

n
-R

ec
o

n
.

MPPCA [15] 0.693 - -

MPPCA+SFA [27] 0.613 - -

MDT [27] 0.829 - -

AMDN [41] 0.908 - -

Unmasking [37] 0.822 0.806 -

MT-FRCN [12] 0.922 - -

Frame-Pred [26] 0.954 0.849 0.728

R
ec

o
n

.

AE-Conv2D [11] 0.850 0.800 0.609

AE-Conv3D [45] 0.912 0.771 -

TSC [26] 0.910 0.806 0.679

StackRNN [26] 0.922 0.817 0.680

AE 0.917 0.810 0.697

MemAE-nonSpar 0.929 0.821 0.688

MemAE 0.941 0.833 0.712

pu = 1−
eu −minu(eu)

maxu(eu)−minu(eu)
, (11)

where eu denotes the reconstruction error the u-th frame in

a video episode. The value of pu closer to 0 indicates the

frame is more likely an abnormal frame. Figure 5 shows

that the normality score obtained by MemAE immediately

decreases when some anomalies appear in the video frame.

Due to the complexity of the video data, many gen-

eral anomaly detection methods [28, 18, 48] without spe-

cific design cannot work well on videos. To show the ef-

fectiveness of the proposed memory module, we compare

the proposed MemAE with many well-designed reconstruc-

tion based state-of-the-art methods including AE methods

with 2D [11] and 3D convolution [45] (AE-Conv2D and

AE-Conv3D), a temporally-coherent sparse coding method

(TST) [26], a stacked recurrent neural network (StackRNN)

[26] and many video anomaly detection baselines. The vari-

ants of MemAE are also compared as baselines.

Table 2 shows the AUC values on video datasets.

MemAE produces much better results than TSC and Stack-

RNN [26], which also apply the sparse regularization. The

comparisons with AE and MemAE-nonSpar show that the

memory module with the sparse addressing is steadily ben-

eficial. Figure 6 visualizes the reconstruction error on one

abnormal frame in UCSD-Ped2. The error map of MemAE

significantly highlights the abnormal event (i.e. vehicle and

bicycle moving on the sidewalk), inducing low normality

score. However, AE reconstructs the anomaly well and in-

duces some random errors.

The proposed MemAE obtains better or comparative per-

formance than other methods, while our model solves a

more general problem and can be flexibly applied to dif-

ferent types of data. By merely using the reconstruction

error, the proposed method can obtain superior results with

the minimum knowledge of the specific application. Even

comparing with the method [24] (i.e. Frame-Pred in Ta-

ble 2) that uses many non-reconstruction techniques specif-

(a) Frame (b) AE (c) MemAE
Figure 6. Reconstruction error of AE and MemAE on an abnormal

frame of UCSD-Ped2. MemAE can significantly highlight the ab-

normal parts (in red bounding box) in the scene.

ically for video data, e.g. optical flow, frame prediction, and

adversarial loss, the performance of the proposed MemAE

is still comparable. Note that the purpose of our experiment

is not pursuing the highest accuracy on certain applications

but to demonstrate the advantages of the proposed improve-

ment of AE, i.e. MemAE, for the general anomaly detection

problem. Our study is orthogonal to that in [24] and can be

readily incorporated into their system to boost the perfor-

mance further. On the other hand, the techniques in [24]

can also be used in the proposed MemAE.

Robustness to the memory size We use the UCSD-Ped2 to

study the robustness of the proposed MemAE to the mem-

ory size N . We conduct the experiments by using different

memory size settings and show the AUC values in Figure

7. Given a large enough memory size, the MemAE can ro-

bustly produce plausible results.

500 1000 1500 2000 2500 3000

Memory size

0.9

0.91

0.92

0.93

0.94

0.95

A
U

C

Figure 7. Robustness to the setting of memory size. AUC values

of MemAE with different memory size on UCSD-Ped2 are shown.

Running time We empirically study the computing com-

plexity of the proposed method on the video dataset UCSD-

Ped2 with an NVIDIA GeForce 1080 Ti graphics card. The

proposed MemAE averagely takes 0.0262 seconds for video

anomaly detection of one frame (i.e. 38 fps), which is on

par or faster than previous state-of-the-art deep learning

based methods such as [24] using 0.04s, [26] using 0.02s

and [37] using 0.05s1. Moreover, comparing to our baseline

AE model that takes 0.0266s for each frame, our memory

module (in MemAE) induces little additional computation

time (i.e. 4×10−4s per frame).

4.3. Experiments on Cybersecurity Data

To further validate the generalization of the proposed

method, we experiment on a widely used cybersecurity

dataset beyond the computer vision applications, i.e. KD-

DCUP99 10 percent dataset from the UCI repository [23].

1Running time of the compared methods are quoted from [24] for ref-

erence, which is produced using a faster graphics card than ours.

1711

Table 3. Experimental results of different methods on the cyberse-

curity dataset KDDCUP.

Method\Metric Precision Recall F1

OC-SVM [35] 0.7457 0.8523 0.7954

DCN [42] 0.7696 0.7829 0.7762

DSEBM [43] 0.8619 0.6446 0.7399

DAGMM [48] 0.9297 0.9442 0.9369

AE 0.9328 0.9356 0.9342

MemAE-nonSpar 0.9341 0.9368 0.9355

MemAE 0.9627 0.9655 0.9641

Following the settings in [48], 80% of the samples labeled

as “attack” in the original dataset are treated as normal sam-

ples. Each sample can be organized as a vector with 120

dimensions [48]. We use fully-connected layers (noted as

FC) to implement the encoder and decoder as FC(120, 60)-

FC(60, 30)-FC(30, 10)-FC(10, 3) and FC(3, 10)-FC(10,

30)-FC(30, 60)-FC(60, 120), in which FC(i, o) denotes the

FC layer with input and output size i and o. Expect the last

one, each FC layer is followed by a Tanh activation. The

structure shares a similar capacity to the model in [48]. We

set N = 50 and thus have a memory with the size of 50×3.

As suggested in [43, 48], we randomly sample 50% of

data for training and the rest for testing. Only data sam-

ples from normal class are used for training. We compare

the proposed method with previous state-of-the-art methods

on the KDDCUP dataset, including OC-SVM [35], a deep

clustering network (DCN) [42], DSEBM [43], DAGMM

[48] and the baseline variants of MemAE. Following the

standard protocol [48], the methods are evaluated using

the average precision, recall and F1 score after 20 runs.

DAGMM and the proposed models perform very well be-

cause of the more effective data modeling. The proposed

method obtains the superior performance since it can ex-

plicitly memorize the behavior patterns of “attack” samples.

4.4. Ablation Studies

In previous sections, extensive comparisons among

MemAE and its variants, i.e. AE and MemAE-nonSpar,

have proved the importance of the major components of the

proposed method. In this section, we will conduct several

further ablation studies to investigate other different com-

ponents in details.

4.4.1 Study of the Sparsity-inducing Components

As introduced above, we use two components to induce

sparsity of the memory addressing weights, i.e. the hard-

thresholding shrinkage defined in Eq. (6) and the entropy

loss E(·) in Eq. (10). We experiment to study the impor-

tance of each component by removing the other one. Table

4 records the AUC on the dataset UCSD-Ped2. As shown

in Table 4, removing either the shrinkage operator or the

entropy loss will degenerate the performance. Without the

hard shrinkage, the model cannot directly encourage spar-

Table 4. Ablation studies based on UCSD-Ped2 dataset.
Method AUC

AE 0.9170

AE-ℓ1 0.9286

MemAE-nonSpar 0.9293

MemAE w/o Shrinkage 0.9324

MemAE w/o Entropy loss 0.9372

MemAE 0.9410

sity in testing, which may lead to non-sparse memory ad-

dressing weights with too much noise. Entropy loss plays

a vital role when the under-trained model generates unopti-

mized addressing weights at the early stage of training.

4.4.2 Comparison with AE with Sparse Regularization

The sparse memory addressing in MemAE derives a flavor

of the autoencoders that induce sparsity of the encoder out-

put (activations). We thus conduct a straightforward exper-

iment to compare MemAE with an autoencoder with sparse

regularization on the encoded features, which is directly im-

plemented by minimizing the ℓ1-norm of the latent com-

pressed feature, i.e. ‖z‖1, during training, referred to as

AE-ℓ1, which shares the same encoder and decoder with

MemAE. As shown in Table 4, the performance of AE-ℓ1
is close to MemAE-nonSpar and superior to AE due to the

sparsity-inducing regularization. However, AE-ℓ1 still lacks

a clear mechanism to encourage large reconstruction errors

on anomalies or a powerful module to model the prototyp-

ical patterns of the normal samples, lead to worse perfor-

mance than MemAE and other MemAE variants.

5. Conclusion

In this paper, we proposed a memory-augmented au-

toencoder (MemAE) to improve the performance of the

autoencoder based unsupervised anomaly detection meth-

ods. Given an input, the propose MemAE first uses the

encoder to obtain an encoded representation and then use

the encoding as a query to retrieve the most relevant pat-

terns in the memory for reconstruction. Since the mem-

ory is trained to record the prototypical normal patterns, the

proposed MemAE can well reconstruct the normal samples

and enlarge the reconstruction error of the anomalies, which

strengths the reconstruction error as the anomaly detection

criterion. Experiments on various datasets from different

applications prove the generalization and effectiveness of

the proposed method. In the future, we will investigate to

use the addressing weight for anomaly detection. Consid-

ering that the proposed memory module is general and ag-

nostic to the structures of the encoder and decoder, we will

integrate it into more complicated base models and apply it

on more challenging applications.

Acknowledgments This work was partially supported by iCetana

Pty Ltd.

1712

References

[1] Davide Abati, Angelo Porrello, Simone Calderara, and Rita

Cucchiara. AND: Autoregressive novelty detectors. arXiv

preprint arXiv:1807.01653, 2018.

[2] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo

Larochelle. Greedy layer-wise training of deep networks. In

Advances in Neural Information Processing Systems, pages

153–160, 2007.

[3] Raghavendra Chalapathy, Aditya Krishna Menon, and San-

jay Chawla. Anomaly detection using one-class neural net-

works. arXiv preprint arXiv:1802.06360, 2018.

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar.

Anomaly detection: A survey. ACM computing surveys

(CSUR), 41(3):15, 2009.

[5] Yunqiang Chen, Xiang Sean Zhou, and Thomas S Huang.

One-class svm for learning in image retrieval. In The IEEE

International Conference on Image Processing, volume 1,

pages 34–37. IEEE, 2001.

[6] Yong Shean Chong and Yong Haur Tay. Abnormal event

detection in videos using spatiotemporal autoencoder. In In-

ternational Symposium on Neural Networks, pages 189–196.

Springer, 2017.

[7] Izhak Golan and Ran El-Yaniv. Deep anomaly detection us-

ing geometric transformations. In Advances in Neural Infor-

mation Processing Systems, pages 9758–9769, 2018.

[8] Dong Gong, Mingkui Tan, Qinfeng Shi, Anton van den Hen-

gel, and Yanning Zhang. MPTV: Matching pursuit-based

total variation minimization for image deconvolution. IEEE

Transactions on Image Processing, 28(4):1851–1865, 2019.

[9] Dong Gong, Mingkui Tan, Yanning Zhang, Anton Van den

Hengel, and Qinfeng Shi. Blind image deconvolution by

automatic gradient activation. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages

1827–1836, 2016.

[10] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing

machines. arXiv preprint arXiv:1410.5401, 2014.

[11] Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K

Roy-Chowdhury, and Larry S Davis. Learning temporal reg-

ularity in video sequences. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 733–

742, 2016.

[12] Ryota Hinami, Tao Mei, and Shin’ichi Satoh. Joint detection

and recounting of abnormal events by learning deep generic

knowledge. In The IEEE International Conference on Com-

puter Vision (ICCV), pages 3639–3647, 2017.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[14] Ian Jolliffe. Principal component analysis. In Interna-

tional encyclopedia of statistical science, pages 1094–1096.

Springer, 2011.

[15] Jaechul Kim and Kristen Grauman. Observe locally, infer

globally: a space-time mrf for detecting abnormal activities

with incremental updates. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2009.

[16] Youngjin Kim, Minjung Kim, and Gunhee Kim. Memoriza-

tion precedes generation: Learning unsupervised gans with

memory networks. International Conference on Learning

Representations (ICLR), 2018.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[18] Diederik P Kingma and Max Welling. Auto-encoding vari-

ational bayes. International Conference on Learning Repre-

sentations (ICLR), 2014.

[19] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009.

[20] Yann LeCun. The mnist database of handwritten digits.

http://yann. lecun. com/exdb/mnist/, 1998.

[21] Roberto Leyva, Victor Sanchez, and Chang-Tsun Li. The lv

dataset: A realistic surveillance video dataset for abnormal

event detection. In International Workshop on Biometrics

and Forensics (IWBF), pages 1–6. IEEE, 2017.

[22] Chongxuan Li, Jun Zhu, and Bo Zhang. Learning to gener-

ate with memory. In International Conference on Machine

Learning (ICML), pages 1177–1186, 2016.

[23] Moshe Lichman et al. Uci machine learning repository,

2013.

[24] Wen Liu, Weixin Luo, Dongze Lian, and Shenghua Gao.

Future frame prediction for anomaly detection–a new base-

line. The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[25] Cewu Lu, Jianping Shi, and Jiaya Jia. Abnormal event detec-

tion at 150 fps in matlab. In The IEEE International Confer-

ence on Computer Vision (ICCV), pages 2720–2727, 2013.

[26] Weixin Luo, Wen Liu, and Shenghua Gao. A revisit of

sparse coding based anomaly detection in stacked rnn frame-

work. The IEEE International Conference on Computer Vi-

sion (ICCV), 2017.

[27] Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vas-

concelos. Anomaly detection in crowded scenes. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR).

[28] Emanuel Parzen. On estimation of a probability density

function and mode. The Annals of Mathematical Statistics,

33(3):1065–1076, 1962.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[30] Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley,

Andrew W Senior, Gregory Wayne, Alex Graves, and Tim

Lillicrap. Scaling memory-augmented neural networks with

sparse reads and writes. In Advances in Neural Information

Processing Systems, pages 3621–3629, 2016.

[31] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas

Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Em-

manuel Müller, and Marius Kloft. Deep one-class classifi-

cation. In International Conference on Machine Learning

(ICML), pages 4393–4402, 2018.

[32] Mohammad Sabokrou, Mohammad Khalooei, Mahmood

Fathy, and Ehsan Adeli. Adversarially learned one-class

classifier for novelty detection. In The IEEE Conference

1713

on Computer Vision and Pattern Recognition, pages 3379–

3388, 2018.

[33] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan

Wierstra, and Timothy Lillicrap. One-shot learning with

memory-augmented neural networks. International Confer-

ence on Machine Learning (ICML), 2016.

[34] Bernhard Scholkopf and Alexander J Smola. Learning with

kernels: support vector machines, regularization, optimiza-

tion, and beyond. MIT press, 2001.

[35] Bernhard Schölkopf, Robert C Williamson, Alex J Smola,

John Shawe-Taylor, and John C Platt. Support vector method

for novelty detection. In Advances in Neural Information

Processing Systems, pages 582–588, 2000.

[36] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torre-

sani, and Manohar Paluri. Learning spatiotemporal features

with 3d convolutional networks. In The IEEE International

Conference on Computer Vision (ICCV), pages 4489–4497,

2015.

[37] Radu Tudor Ionescu, Sorina Smeureanu, Bogdan Alexe, and

Marius Popescu. Unmasking the abnormal events in video.

In The IEEE International Conference on Computer Vision

(ICCV), 2017.

[38] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt,

Oriol Vinyals, Alex Graves, et al. Conditional image gen-

eration with pixelcnn decoders. In Advances in Neural In-

formation Processing Systems, pages 4790–4798, 2016.

[39] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory

networks. International Conference on Learning Represen-

tations (ICLR), 2015.

[40] Liang Xiong, Barnabás Póczos, and Jeff G Schneider. Group

anomaly detection using flexible genre models. In Advances

in Neural Information Processing Systems, pages 1071–

1079, 2011.

[41] Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu

Sebe. Learning deep representations of appearance and

motion for anomalous event detection. arXiv preprint

arXiv:1510.01553, 2015.

[42] Xi Yang, Kaizhu Huang, John Yannis Goulermas, and Rui

Zhang. Joint learning of unsupervised dimensionality reduc-

tion and gaussian mixture model. Neural Processing Letters,

45(3):791–806, 2017.

[43] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei

Zhang. Deep structured energy based models for anomaly

detection. In International Conference on Machine Learn-

ing (ICML), pages 1100–1109, 2016.

[44] Bin Zhao, Li Fei-Fei, and Eric P Xing. Online detection

of unusual events in videos via dynamic sparse coding. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 3313–3320, 2011.

[45] Yiru Zhao, Bing Deng, Chen Shen, Yao Liu, Hongtao Lu,

and Xian-Sheng Hua. Spatio-temporal autoencoder for video

anomaly detection. In ACM on Multimedia Conference,

pages 1933–1941. ACM, 2017.

[46] Chong Zhou and Randy C Paffenroth. Anomaly detection

with robust deep autoencoders. In ACM SIGKDD, pages

665–674. ACM, 2017.

[47] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A

survey on unsupervised outlier detection in high-dimensional

numerical data. Statistical Analysis and Data Mining: The

ASA Data Science Journal, 5(5):363–387, 2012.

[48] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cris-

tian Lumezanu, Daeki Cho, and Haifeng Chen. Deep autoen-

coding gaussian mixture model for unsupervised anomaly

detection. In International Conference on Learning Repre-

sentations, 2018.

1714

