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Abstract

Self-supervised learning aims to learn representations

from the data itself without explicit manual supervision.

Existing efforts ignore a crucial aspect of self-supervised

learning - the ability to scale to large amount of data be-

cause self-supervision requires no manual labels. In this

work, we revisit this principle and scale two popular self-

supervised approaches to 100 million images. We show that

by scaling on various axes (including data size and problem

‘hardness’), one can largely match or even exceed the per-

formance of supervised pre-training on a variety of tasks

such as object detection, surface normal estimation (3D)

and visual navigation using reinforcement learning. Scal-

ing these methods also provides many interesting insights

into the limitations of current self-supervised techniques

and evaluations. We conclude that current self-supervised

methods are not ‘hard’ enough to take full advantage of

large scale data and do not seem to learn effective high

level semantic representations. We also introduce an exten-

sive benchmark across 9 different datasets and tasks. We

believe that such a benchmark along with comparable eval-

uation settings is necessary to make meaningful progress.

Code is at: https://github.com/facebookresearch/

fair_self_supervision_benchmark.

1. Introduction

Computer vision has been revolutionized by high ca-

pacity Convolutional Neural Networks (ConvNets) [39]

and large-scale labeled data (e.g., ImageNet [10]). Re-

cently [42, 64], weakly-supervised training on hundreds of

millions of images and thousands of labels has achieved

state-of-the-art results on various benchmarks. Interest-

ingly, even at that scale, performance increases only log-

linearly with the amount of labeled data. Thus, sadly, what

has worked for computer vision in the last five years has

now become a bottleneck: the size, quality, and availability

of supervised data.

One alternative to overcome this bottleneck is to use

the self-supervised learning paradigm. In discriminative

self-supervised learning, which is the main focus of this

∗Equal contribution

work, a model is trained on an auxiliary or ‘pretext’ task

for which ground-truth is available for free. In most cases,

the pretext task involves predicting some hidden portion of

the data (for example, predicting color for gray-scale im-

ages [11, 37, 74]). Every year, with the introduction of new

pretext tasks, the performance of self-supervised methods

keeps coming closer to that of ImageNet supervised pre-

training. The hope around self-supervised learning outper-

forming supervised learning has been so strong that a re-

searcher has even bet gelato [1].

Yet, even after multiple years, this hope remains unful-

filled. Why is that? In attempting to come up with clever

pretext tasks, we have forgotten a crucial tenet of self-

supervised learning: scalability. Since no manual labels

are required, one can easily scale training from a million to

billions of images. However, it is still unclear what happens

when we scale up self-supervised learning beyond the Ima-

geNet scale to 100M images or more. Do we still see per-

formance improvements? Do we learn something insightful

about self-supervision? Do we surpass the ImageNet super-

vised performance?

In this paper, we explore scalability which is a core

tenet of self-supervised learning. Concretely, we scale two

popular self-supervised approaches (Jigsaw [48] and Col-

orization [74]) along three axes:

1. Scaling pre-training data: We first scale up both meth-

ods to 100× more data (YFCC-100M [65]). We observe

that low capacity models like AlexNet [35] do not show

much improvement with more data. This motivates our

second axis of scaling.

2. Scaling model capacity: We scale up to a higher capac-

ity model, specifically ResNet-50 [28], that shows much

larger improvements as the data size increases. While

recent approaches [14, 33, 72] used models like ResNet-

50 or 101, we explore the relationship between model

capacity and data size which we believe is crucial for

future efforts in self-supervised learning.

3. Scaling problem complexity: Finally, we observe that

to take full advantage of large scale data and higher ca-

pacity models, we need ‘harder’ pretext tasks. Specifi-

cally, we scale the ‘hardness’ (problem complexity) and

observe that higher capacity models show a larger im-

provement on ‘harder’ tasks.

6391



Task Datasets Description

Image classification

§ 6.1 Places205 Scene classification. 205 classes.

(Linear Classifier) VOC07 Object classification. 20 classes.

COCO2014 Object classification. 80 classes.

Low-shot image classification

§ 6.2 VOC07 ≤ 96 samples per class

(Linear Classifier) Places205 ≤ 128 samples per class

Visual navigation

§ 6.3 (Fixed ConvNet) Gibson Reinforcement Learning for navigation.

Object detection

§ 6.4 VOC07 20 classes.

(Frozen conv body) VOC07+12 20 classes.

Scene geometry (3D)

§ 6.5 (Frozen conv body) NYUv2 Surface Normal Estimation.

Table 1: 9 transfer datasets and tasks used for Benchmarking in §6.

Another interesting question that arises is: how does one

quantify the visual representation’s quality? We observe

that due to the lack of a standardized evaluation method-

ology in self-supervised learning, it has become difficult

to compare different approaches and measure the advance-

ments in the area. To address this, we propose an exten-

sive benchmark suite to evaluate representations using a

consistent methodology. Our benchmark is based on the

following principle: a good representation (1) transfers to

many different tasks, and, (2) transfers with limited super-

vision and limited fine-tuning. We carefully choose 9 differ-

ent tasks (Table 1) ranging from semantic classification/de-

tection to 3D and actions (specifically, navigation).

Our results show that by scaling along the three axes,

self-supervised learning can outperform ImageNet super-

vised pre-training using the same evaluation setup on non-

semantic tasks of Surface Normal Estimation and Naviga-

tion. For semantic classification tasks, although scaling

helps outperform previous results, the gap with supervised

pre-training remains significant when evaluating fixed fea-

ture representations (without full fine-tuning). Surprisingly,

self-supervised approaches are quite competitive on object

detection tasks with or without full fine-tuning. For exam-

ple, on the VOC07 detection task, without any bells and

whistles, our performance matches the supervised Ima-

geNet pre-trained model.

2. Related Work

Visual representation learning without supervision is an

old and active area of research. It has two common mod-

eling approaches: generative and discriminative. A gen-

erative approach tries to model the data distribution di-

rectly. This can be modeled as maximizing the probability

of reconstructing the input [43, 51, 67] and optionally esti-

mating latent variables [29, 58] or using adversarial train-

ing [15, 44]. Our work focuses on discriminative learning.

One form of discriminative learning combines clustering

with hand-crafted features to learn visual representations

such as image-patches [13, 62], object discovery [57, 63].

We focus on discriminative approaches that learn repre-

sentations directly from the the visual input. A large por-

tion of such approaches are grouped under the term ‘self-

supervised’ learning [9] in which the key principle is to au-

tomatically generate ‘labels’ from the data. The label gener-

ation can either be domain agnostic [6, 8, 52, 72] or exploit

structural properties of the domain, e.g., spatial structure of

images [12]. We explore the ‘pretext’ tasks [12] that ex-

ploit structural information of the visual data to learn rep-

resentations. These approaches can broadly be divided into

two types - methods that use multi-modal information, e.g.

sound [53] and methods that use only the visual data (im-

ages, videos). Multi-modal information such as depth from

a sensor [17], sound in a video [3, 4, 23, 53], sensors on

an autonomous vehicle [2, 30, 79] etc. can be used to auto-

matically learn visual representations without human super-

vision. One can also use the temporal structure in a video

for self-supervised methods [21, 27, 41, 46, 47]. Videos

can provide information about how objects move [54], the

relation between viewpoints [69, 70] etc.

In this work, we choose to scale image-based self-

supervised methods because of their ease of implementa-

tion. Many pretext tasks have been designed for images

that exploit their spatial structure [12, 48–50], color infor-

mation [11, 37, 38, 74], illumination [16], rotation [24] etc.

These pretext tasks model different properties of images

and have been shown to contain complementary informa-

tion [14]. Given the abundance of such approaches to use, in

our work, we focus on two popular approaches that are sim-

ple to implement, intuitive, and diverse: Jigsaw from [48]

and Colorization from [74]. A concurrent work [33] also

explores multiple self-supervised tasks but their focus is on

the architectural details which is complementary to ours.

3. Preliminaries

We briefly describe the two image based self-supervised

approaches [49, 74] that we study in this work and refer the

reader to the original papers for detailed explanations. Both

these methods do not use any supervised labels.

3.1. Jigsaw Self­supervision

This approach by Noroozi et al. [48] learns an image rep-

resentation by solving jigsaw puzzles created from an input

image. The method divides an input image I into N = 9
non-overlapping square patches. A ‘puzzle’ is then cre-

ated by shuffling these patches randomly and a ConvNet is

trained to predict the permutation used to create the puzzle.

Concretely, each patch is fed to a N -way Siamese ConvNet

with shared parameters to obtain patch representations. The

patch representations are concatenated and used to predict

the permutation used to create the puzzle. In practice, as the

total number of permutations N ! can be large, a fixed sub-

set P of the total N ! permutations is used. The prediction

problem is reduced to classification into one of |P| classes.
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Figure 1: Scaling the Pre-training Data Size: The transfer learning per-

formance of self-supervised methods on the VOC07 dataset for AlexNet

and ResNet-50 as we vary the pre-training data size. We keep the prob-

lem complexity and data domain (different sized subsets of YFCC-100M)

fixed. More details in § 4.1.

3.2. Colorization Self­supervision

Zhang et al. [74] learn an image representation by pre-

dicting color values of an input ‘grayscale’ image. The

method uses the CIE Lab color space representation of an

input image I and trains a model to predict the ab colors

(denoted by Y ) from the input lightness L (denoted by X).

The output ab space is quantized into a set of discrete bins

Q = 313 which reduces the problem to a |Q|-way classifi-

cation problem. The target ab image Y is soft-encoded into

|Q| bins by looking at the K-nearest neighbor bins (default

value K=10). We denote this soft-encoded target explic-

itly by Z
K . Thus, each |Q|-way classification problem has

K non-zero values. The ConvNet is trained to predict ZK

from the input lightness image X .

4. Scaling Self-supervised Learning

In this section, we scale up current self-supervised ap-

proaches and present the insights gained from doing so. We

first scale up the data size to 100× the size commonly used

in existing self-supervised methods. However, observations

from recent works [31, 42, 64] show that higher capacity

models are required to take full advantage of large datasets.

Therefore, we explore the second axis of scaling: model ca-

pacity. Additionally, self-supervised learning provides an

interesting third axis: the complexity (hardness) of pretext

tasks which can control the quality of the learned represen-

tations.

Finally, we observe the relationships between these three

axes: whether the performance improvements on each of

the axes are complementary or they encompass one other.

To study this behavior, we introduce a simple investigation

setup. Note that this setup is different from the extensive

evaluation benchmark we propose in §6.

Investigation Setup: We use the task of image classifica-

tion on PASCAL VOC2007 [19] (denoted as VOC07). We

train linear SVMs [7] (with 3-fold cross validation to se-

lect the cost parameter) on fixed feature representations ob-

Symbol Description

YFCC-XM
Images from the YFCC-100M [65] dataset.

We use subsets of size X ∈ [1M, 10M, 50M, 100M ].
ImageNet-22k The full ImageNet dataset (22k classes, 14M images) [10].

ImageNet-1k ILSVRC2012 dataset (1k classes, 1.28M images) [56].

Table 2: A list of self-supervised pre-training datasets used in this work.

We train AlexNet [35] and ResNet-50 [28] on these datasets.

tained from the ConvNet (setup from [53]). Specifically, we

choose the best performing layer: conv4 layer for AlexNet

and the output of the last res4 block (notation from [26])

for ResNet-50. We train on the trainval split and report

mean Average Precision (mAP) on the test split.

4.1. Axis 1: Scaling the Pre­training Data Size

The first premise in self-supervised learning is that it re-

quires ‘no labels’ and thus can make use of large datasets.

But do the current self-supervised approaches benefit from

increasing the pre-training data size? We study this for both

the Jigsaw and Colorization methods. Specifically, we

train on various subsets (see Table 2) of the YFCC-100M

dataset - YFCC-[1, 10, 50, 100] million images. These sub-

sets were collected by randomly sampling respective num-

ber of images from the YFCC-100M dataset. We specifi-

cally create these YFCC subsets so we can keep the data do-

main fixed. Further, during the self-supervised pre-training,

we keep other factors that may influence the transfer learn-

ing performance such as the model, the problem complexity

(|P| = 2000, K = 10) etc. fixed. This way we can isolate

the effect of data size on performance. We provide training

details in the supplementary material.

Observations: We report the transfer learning performance

on the VOC07 classification task in Figure 1. We see that

increasing the size of pre-training data improves the transfer

learning performance for both the Jigsaw and Coloriza-

tion methods on ResNet-50 and AlexNet. We also note

that the Jigsaw approach performs better compared to Col-

orization. Finally, we make an interesting observation

that the performance of the Jigsaw model saturates (log-

linearly) as we increase the data scale from 1M to 100M.

4.2. Axis 2: Scaling the Model Capacity

We explore the relationship between model capacity and

self-supervised representation learning. Specifically, we

observe this relationship in the context of the pre-training

dataset size. For this, we use AlexNet and the higher capac-

ity ResNet-50 [28] model to train on the same pre-training

subsets from § 4.1.

Observations: Figure 1 shows the transfer learning per-

formance on the VOC07 classification task for Jigsaw and

Colorization approaches. We make an important ob-

servation that the performance gap between AlexNet and

ResNet-50 (as a function of the pre-training dataset size)

keeps increasing. This suggests that higher capacity models
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Figure 2: Scaling Problem Complexity: We evaluate transfer learning

performance of Jigsaw and Colorization approaches on VOC07 dataset

for both AlexNet and ResNet-50 as we vary the problem complexity. The

pre-training data is fixed at YFCC-1M (§ 4.3) to isolate the effect of prob-

lem complexity.

are needed to take full advantage of the larger pre-training

datasets.

4.3. Axis 3: Scaling the Problem Complexity

We now scale the problem complexity (‘hardness’) of the

self-supervised approaches. We note that it is important to

understand how the complexity of the pretext tasks affects

the transfer learning performance.

Jigsaw: The number of permutations |P| (§ 3.1) determines

the number of puzzles seen for an image. We vary the num-

ber of permutations |P| ∈ [100, 701, 2k, 5k, 10k] to con-

trol the problem complexity. Note that this is a 10× in-

crease in complexity compared to [48].

Colorization: We vary the number of nearest neighbors K
for the soft-encoding (§ 3.2) which controls the hardness of

the colorization problem.

To isolate the effect of problem complexity, we fix the pre-

training data at YFCC-1M. We explore additional ways of

increasing the problem complexity in the supplementary

material.

Observations: We report the results on the VOC07 clas-

sification task in Figure 2. For the Jigsaw approach, we

see an improvement in transfer learning performance as the

size of the permutation set increases. ResNet-50 shows a

5 point mAP improvement while AlexNet shows a smaller

1.9 point improvement. The Colorization approach ap-

pears to be less sensitive to changes in problem complexity.

We see ∼2 point mAP variation across different values of

K. We believe one possible explanation for this is in the

structure encoded in the representation by the pretext task.

For Colorization, it is important to represent the relation-

ship between the semantic categories and their colors, but

fine-grained color distinctions do not matter as much. On

the other hand, Jigsaw encodes more spatial structure as

the problem complexity increases which may matter more

for downstream transfer task performance.
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Figure 3: Scaling Data and Problem Complexity: We vary the pre-

training data size and Jigsaw problem complexity for both AlexNet and

ResNet-50 models. We pre-train on two datasets: ImageNet and YFCC

and evaluate transfer learning performance on VOC07 dataset.

4.4. Putting it together

Finally, we explore the relationship between all the three

axes of scaling. We study if these axes are orthogonal and

if the performance improvements on each axis are comple-

mentary. We show this for Jigsaw approach only as it out-

performs the Colorization approach consistently. Fur-

ther, besides using YFCC subsets for pretext task training

(from § 4.1), we also report self-supervised results for Im-

ageNet datasets (without using any labels). Figure 3 shows

the transfer learning performance on VOC07 task as func-

tion of data size, model capacity and problem complexity.

We note that transfer learning performance increases on

all three axes, i.e., increasing problem complexity still gives

performance boost on ResNet-50 even at 100M data size.

Thus, we conclude that the three axes of scaling are comple-

mentary. We also make a crucial observation that the perfor-

mance gains for increasing problem complexity are almost

negligible for AlexNet but significantly higher for ResNet-

50. This indicates that we need higher capacity models to

exploit hardness of self-supervised approaches.

5. Pre-training and Transfer Domain Relation

Thus far, we have kept the pre-training dataset and the

transfer dataset/task fixed at YFCC and VOC07 respec-

tively. We now add the following pre-training and transfer

dataset/task to better understand the relationship between

pre-training and transfer performance.

Pre-training dataset: We use both the ImageNet [10]

and YFCC datasets from Table 2. Although the ImageNet

datasets [10, 56] have supervised labels, we use them (with-

out labels) to study the effect of the pre-training domain.

Transfer dataset and task: We further evaluate on the

Places205 scene classification task [77]. In contrast to the

object centric VOC07 dataset, Places205 is a scene centric

dataset. Following the investigation setup from §4, we keep

the feature representations of the ConvNets fixed. As the

Places205 dataset has >2M images, we follow [75] and
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Figure 4: Relationship between pre-training and transfer domain: We vary pre-training data domain - (ImageNet-[1k, 22k], subsets of YFCC-100M)

and observe transfer performance on the VOC07 and Places205 classification tasks. The similarity between the pre-training and transfer task domain shows

a strong influence on transfer performance.

train linear classifiers using SGD. We use a batchsize of

256, learning rate of 0.01 decayed by a factor of 10 after

every 40k iterations, and train for 140k iterations. Full de-

tails are provided in the supplementary material.

Observations: In Figure 4, we show the results of using

different pre-training datasets and transfer datasets/tasks.

Comparing Figures 4 (a) and (b), we make the following

observations for the Jigsaw method:

• On the VOC07 classification task, pre-training on

ImageNet-22k (14M images) transfers as well as pre-

training on YFCC-100M (100M images).

• However, on the Places205 classification task, pre-

training on YFCC-1M (1M images) transfers as well as

pre-training on ImageNet-22k (14M images).

We note a similar trend for the Colorization problem

wherein pre-training ImageNet, rather than YFCC, provides

a greater benefit when transferring to VOC07 classification

(also noted in [8, 12, 31]). A possible explanation for this

benefit is that the domain (image distribution) of ImageNet

is closer to VOC07 (both are object-centric) whereas YFCC

is closer to Places205 (both are scene-centric). This moti-

vates us to evaluate self-supervised methods on a variety of

different domain/tasks and we propose an extensive evalua-

tion suite next.

6. Benchmarking Suite for Self-supervision

We evaluate self-supervised learning on a diverse set of 9

tasks (see Table 1) ranging from semantic classification/de-

tection, scene geometry to visual navigation. We select this

benchmark based on the principle that a good representation

should generalize to many different tasks with limited su-

pervision and limited fine-tuning. We view self-supervised

learning as a way to learn feature representations rather

than an ‘initialization method’ [34] and thus perform lim-

ited fine-tuning of the features. We first describe each of

these tasks and present our benchmarks.

Consistent Evaluation Setup: We believe that having a

consistent evaluation setup, wherein hyperparameters are

Method layer1 layer2 layer3 layer4 layer5

ResNet-50 ImageNet-1k Supervised 14.8 32.6 42.1 50.8 52.5

ResNet-50 Places205 Supervised 16.7 32.3 43.2 54.7 62.3

ResNet-50 Random 12.9 16.6 15.5 11.6 9.0

ResNet-50 (NPID) [72]⊳ 18.1 22.3 29.7 42.1 45.5

ResNet-50 Jigsaw ImageNet-1k 15.1 28.8 36.8 41.2 34.4

ResNet-50 Jigsaw ImageNet-22k 11.0 30.2 36.4 41.5 36.4

ResNet-50 Jigsaw YFCC-100M 11.3 28.6 38.1 44.8 37.4

ResNet-50 Coloriz. ImageNet-1k 14.7 27.4 32.7 37.5 34.8

ResNet-50 Coloriz. ImageNet-22k 15.0 30.5 37.8 44.0 41.5

ResNet-50 Coloriz. YFCC-100M 15.2 30.4 38.6 45.4 41.5

Table 3: ResNet-50 top-1 center-crop accuracy for linear classification

on Places205 dataset (§ 6.1). Numbers with ⊳ use a different fine-tuning

procedure. All other models follow the setup from Zhang et al. [75].

set fairly for all methods, is important for easier and mean-

ingful comparisons across self-supervised methods. This is

crucial to isolate the improvements due to better represen-

tations or better transfer optimization1.

Common Setup (Pre-training, Feature Extraction and

Transfer): The common transfer process for the bench-

mark tasks is as follows:

• First, we perform self-supervised pre-training using a

self-supervised pretext method (Jigsaw or Coloriza-

tion) on a pre-training dataset from Table 2.

• We extract features from various layers of the network.

For AlexNet, we do this after every conv layer; for

ResNet-50, we extract features from the last layer of ev-

ery residual stage denoted, e.g., res1, res2 (notation

from [26]) etc. For simplicity, we use the term layer.

• We then evaluate quality of these features (from dif-

ferent self-supervised approaches) by transfer learning,

i.e., benchmarking them on various transfer datasets and

tasks that have supervision.

We summarize these benchmark tasks in Table 1 and dis-

cuss them in the subsections below. For each subsection, we

provide full details of the training setup: model architecture,

hyperparameters etc. in the supplementary material.

1We discovered inconsistencies across previous methods (different im-

age crops for evaluation, weights re-scaling, pre-processing, longer fine-

tuning schedules etc.) which affects the final performance.
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Places205

Method layer1 layer2 layer3 layer4 layer5

AlexNet ImageNet-1k Supervised 22.4 34.7 37.5 39.2 38.0

AlexNet Places205 Supervised 23.2 35.6 39.8 43.5 44.8

AlexNet Random 15.7 20.8 18.5 18.2 16.6

AlexNet (Jigsaw) [48] 19.7 26.7 31.9 32.7 30.9

AlexNet (Colorization) [74] 16.0 25.7 29.6 30.3 29.7

AlexNet (SplitBrain) [75] 21.3 30.7 34.0 34.1 32.5

AlexNet (Counting) [49] 23.3 33.9 36.3 34.7 29.6

AlexNet (Rotation) [24]⊳ 21.5 31.0 35.1 34.6 33.7

AlexNet (DeepCluster) [8] 17.1 28.8 35.2 36.0 32.2

AlexNet Jigsaw ImageNet-1k 23.7 33.2 36.6 36.3 31.9

AlexNet Jigsaw ImageNet-22k 24.2 34.7 37.7 37.5 31.7

AlexNet Jigsaw YFCC-100M 24.1 34.7 38.1 38.2 31.6

AlexNet Coloriz. ImageNet-1k 18.1 28.5 30.2 31.3 30.3

AlexNet Coloriz. ImageNet-22k 18.9 30.3 33.4 34.9 34.2

AlexNet Coloriz. YFCC-100M 18.4 30.0 33.4 34.8 34.6

Table 4: AlexNet top-1 center-crop accuracy for linear classification on

Places205 dataset (§ 6.1). Numbers for [48, 74] are from [75]. Numbers

with ⊳ use a different fine-tuning schedule.

Method layer1 layer2 layer3 layer4 layer5

ResNet-50 ImageNet-1k Supervised 24.5 47.8 60.5 80.4 88.0

ResNet-50 Places205 Supervised 28.2 46.9 59.1 77.3 80.8

ResNet-50 Random 9.6 8.3 8.1 8.0 7.7

ResNet-50 Jigsaw ImageNet-1k 27.1 45.7 56.6 64.5 57.2

ResNet-50 Jigsaw ImageNet-22k 20.2 47.7 57.7 71.9 64.8

ResNet-50 Jigsaw YFCC-100M 20.4 47.1 58.4 71.0 62.5

ResNet-50 Coloriz. ImageNet-1k 24.3 40.7 48.1 55.6 52.3

ResNet-50 Coloriz. ImageNet-22k 25.8 43.1 53.6 66.1 62.7

ResNet-50 Coloriz. YFCC-100M 26.1 42.3 53.8 67.2 61.4

Table 5: ResNet-50 Linear SVMs mAP on VOC07 classification (§ 6.1).

6.1. Task 1: Image Classification

We extract image features from various layers of a self-

supervised network and train linear classifiers on these fixed

representations. We evaluate performance on the classi-

fication task for three datasets: Places205, VOC07 and

COCO2014. We report results for ResNet-50 in the main

paper; AlexNet results are in the supplementary material.

Places205: We strictly follow the training and evalua-

tion setup from Zhang et al. [75] so that we can draw

comparisons to existing works (and re-evaluate the model

from [8]). We use a batchsize of 256, learning rate of 0.01
decayed by a factor of 10 after every 40k iterations, and

train for 140k iterations using SGD on the train split. We

report the top-1 center-crop accuracy on the val split for

ResNet-50 in Table 3 and AlexNet in Table 4.

VOC07 and COCO2014: For smaller datasets that fit in

memory, we follow [53] and train linear SVMs [7] on

the frozen feature representations using LIBLINEAR pack-

age [20]. We train on trainval split of VOC07 dataset,

and evaluate on test split of VOC07. Table 5 shows results

on VOC07 for ResNet-50. AlexNet and COCO2014 [40]

results are provided in the supplementary material.

Observations: We see a significant accuracy gap between

self-supervised and supervised methods despite our scaling

efforts. This is expected as unlike self-supervised meth-

ods, both the supervised pre-training and benchmark trans-
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Figure 5: Low-shot Image Classification on the VOC07 and Places205

datasets using linear SVMs trained on the features from the best perform-

ing layer for ResNet-50. We vary the number of labeled examples (per

class) used to train the classifier and report the performance on the test

set. We show the mean and standard deviation across five runs (§ 6.2).

fer tasks solve a semantic image classification problem.

6.2. Task 2: Low­shot Image Classification

It is often argued that a good representation should not

require many examples to learn about a concept. Thus, fol-

lowing [71], we explore the quality of feature representation

when per-category examples are few (unlike § 6.1).

Setup: We vary the number k of positive examples (per

class) and use the setup from § 6.1 to train linear SVMs

on Places205 and VOC07 datasets. We perform this

evaluation for ResNet-50 only. For each combination of

k/dataset/method, we report the mean and standard devia-

tion of 5 independent samples of the training data evalu-

ated on a fixed test set (test split for VOC07 and val split

for Places205). We show results for the Jigsaw method in

Figure 5; Colorization results are in the supplementary

material as we draw the same observations.

Observations: We report results for the best performing

layer res4 (notation from [26]) for ResNet-50 on VOC07

and Places205 in Figure 5. In the supplementary material,

we show that for the lower layers, similar to Table 3, the

self-supervised features are competitive to their supervised

counterpart in low-shot setting on both the datasets. How-

ever, for both VOC07 and Places205, we observe a signif-

icant gap between supervised and self-supervised settings

on their ‘best’ performing layer. This gap is much larger at

lower sample size, e.g., at k=1 it is 30 points for Places205,

whereas at higher values (full-shot in Table 3) it is 20 points.

6.3. Task 3: Visual Navigation

In this task, an agent receives a stream of images as in-

put and learns to navigate to a pre-defined location to get a

reward. The agent is spawned at random locations and must

build a contextual map in order to be successful at the task.

Setup: We use the setup from [59] who train an agent using

reinforcement learning (PPO [60]) in the Gibson environ-

ment [73]. The agent uses fixed feature representations from

a ConvNet for this task and only updates the policy network.

6396



Method VOC07 VOC07+12

ResNet-50 ImageNet-1k Supervised∗ 66.7 ± 0.2 71.4 ± 0.1

ResNet-50 ImageNet-1k Supervised 68.5 ± 0.3 75.8 ± 0.2

ResNet-50 Places205 Supervised 65.3 ± 0.3 73.1 ± 0.3

ResNet-50 Jigsaw ImageNet-1k 56.6 ± 0.5 64.7 ± 0.2

ResNet-50 Jigsaw ImageNet-22k 67.1 ± 0.3 73.0 ± 0.2

ResNet-50 Jigsaw YFCC-100M 62.3 ± 0.2 69.7 ± 0.1

Table 6: Detection mAP for frozen conv body on VOC07 and

VOC07+12 using Fast R-CNN with ResNet-50-C4 (mean and std com-

puted over 5 trials). We freeze the conv body for all models. Numbers

with ∗ use Detectron [26] default training schedule. All other models use

slightly longer training schedule (see § 6.4).

We evaluate the representation of layers res3, res4, res5

(notation from [26]) of a ResNet-50 by separately training

agents for these settings. We use the training hyperparam-

eters from [59], who use a rollout of size 512 and optimize

using Adam [32].

Observations: Figure 6 shows the average training reward

(and variance) across 5 runs. Using the res3 layer fea-

tures, we observe that our Jigsaw ImageNet model gives

a much higher training reward and is more sample effi-

cient (higher reward with fewer steps) than its supervised

counterpart. The deeper res4 and res5 features perform

similarly for the supervised and self-supervised networks.

We also observe that self-supervised pre-training on the Im-

ageNet domain outperforms pre-training on the YFCC do-

main.

6.4. Task 4: Object Detection

Setup: We use the Detectron [26] framework to train

the Fast R-CNN [25] object detection model using Se-

lective Search [66] object proposals on the VOC07 and

VOC07+12 [18] datasets. We provide results for Faster R-

CNN [55] in the supplementary material. We note that we

use the same training schedule for both the supervised and

self-supervised methods since it impacts final object detec-

tion performance significantly. We report mean and stan-

dard deviation result of 5 independent runs for ResNet-50

only as Detectron does not support AlexNet.

We freeze the full conv body of Fast R-CNN and only

train the RoI heads (last ResNet-50 stage res5 onwards).

We follow the same setup as in Detectron and only change

the training schedule to be slightly longer. Specifically,

we train on 2 GPUS for 22k/8k schedule on VOC07 and

for 66k/14k schedule on VOC07+12 (compared to origi-

nal 15k/5k schedule on VOC07 and 40k/15k schedule on

VOC07+12). This change improves object detection perfor-

mance for both supervised and self-supervised methods.

Observations: We report results in Table 6 and note that

the self-supervised initialization is competitive with the Im-

ageNet pre-trained initialization on VOC07 dataset even

when fewer parameters are fine-tuned on the detection task.

We also highlight that the performance gap between super-

vised and self-supervised initialization is very low.

6.5. Task 5: Surface Normal Estimation

Setup: We use the surface normal estimation task [22], with

the evaluation, and dataset splits as formulated in [5, 45,

68]. We use the NYUv2 [61] dataset which consists of in-

door scenes and use the surface normals calculated by [36].

We use the state-of-the-art PSPNet [76] architecture (im-

plementation [78]). This provides a much stronger baseline

(our scratch model outperforms the best numbers reported

in [70]). We fine-tune res5 onwards and train all the models

with the same hyperparameters for 150 epochs. The scratch

model (initialized randomly) is trained for 400 epochs. We

use the training hyperparameters from [78], i.e., batchsize

of 16, learning rate of 0.02 decayed polynomially with a

power of 0.9 and optimize using SGD.

Observations: We report the best test set performance for

Jigsaw in Table 7 and results for Colorization are pro-

vided in the supplementary material. We use the metrics

from [22] which measure the angular distance (error) of the

prediction as well as the percentage of pixels within t◦ of

the ground truth. We note that our Jigsaw YFCC-100M

self-supervised model outperforms both the supervised

models (ImageNet-1k and Places205 supervised) across all

the metrics by a significant margin, e.g., a 5 point gain com-

pared to the Places205 supervised model on the number of

pixels within t◦=11.5 metric. We, thus, conclude that self-

supervised methods provide better features compared to su-

pervised methods for 3D geometric tasks.

Angle Distance Within t◦

Initialization Mean Median 11.25 22.5 30

(Lower is better) (Higher is better)

ResNet-50 ImageNet-1k supervised 26.4 17.1 36.1 59.2 68.5

ResNet-50 Places205 supervised 23.3 14.2 41.8 65.2 73.6

ResNet-50 Scratch 26.3 16.1 37.9 60.6 69.0

ResNet-50 Jigsaw ImageNet-1k 24.2 14.5 41.2 64.2 72.5

ResNet-50 Jigsaw ImageNet-22k 22.6 13.4 43.7 66.8 74.7

ResNet-50 Jigsaw YFCC-100M 22.4 13.1 44.6 67.4 75.1

Table 7: Surface Normal Estimation on the NYUv2 dataset. We train

ResNet-50 from res5 onwards and freeze the conv body below (§ 6.5).

7. Legacy Tasks and Datasets

For completeness, we also report results on the evalua-

tion tasks used by previous works. As we explain next, we

do not include these tasks in our benchmark suite (§6).

Full fine-tuning for transfer learning: This setup fine-

tunes all parameters of a self-supervised network and views

it as an initialization method. We argue that this view eval-

uates not only the quality of the representations but also the

initialization and optimization method. For completeness,

we report results for AlexNet and ResNet-50 on VOC07

classification in the supplementary material.

VOC07 Object Detection with Full Fine-tuning: This

task fine-tunes all the weights of a network for the object

detection task. We use the same settings as in § 6.4 and
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Figure 6: Visual Navigation. We train an agent on the navigation task in the Gibson environment. The agent is trained using reinforcement learning and

uses fixed ConvNet features. We show results for different layers features of ResNet-50 trained on both supervised and self-supervised settings (§ 6.3).

Method VOC07 VOC07+12

ResNet-50 ImageNet-1k Supervised∗ 69.1 ± 0.4 76.2 ± 0.4

ResNet-50 ImageNet-1k Supervised 70.5 ± 0.4 76.2 ± 0.1

ResNet-50 Places205 Supervised 67.2 ± 0.2 74.5 ± 0.4

ResNet-50 Jigsaw ImageNet-1k 61.4 ± 0.2 68.3 ± 0.4

ResNet-50 Jigsaw ImageNet-22k 69.2 ± 0.3 75.4 ± 0.2

ResNet-50 Jigsaw YFCC-100M 66.6 ± 0.1 73.3 ± 0.4

Table 8: Detection mAP for full fine-tuning on VOC07 and VOC07+12

using Fast R-CNN with ResNet-50-C4 (mean and std computed over 5

trials) (§7). Numbers with ∗ use Detectron [26] default training schedule.

All other models use a slightly longer training schedule.

report results for supervised and Jigsaw self-supervised

methods in Table 8. Without any bells and whistles, our

self-supervised model initialization matches the perfor-

mance of the supervised initialization on both VOC07 and

VOC07+12. We note that self-supervised pre-training on

ImageNet performs better than YFCC (similar to §5).

ImageNet Classification using Linear Classifiers: While

the task itself is meaningful, we do not include it in our

benchmark suite for two reasons:

1. For supervised representations, the widely used baseline

is trained on ImageNet-1k dataset. Hence, evaluating

also on the same dataset (ImageNet-1k) does not test

generalization of the supervised baseline.

2. Most existing self-supervised approaches [12, 75] use

ImageNet-1k for pre-training and evaluate the represen-

tations on the same dataset. As observed in §5, pre-

training and evaluating in the same domain biases evalu-

ation. Further, the bias is accentuated as we pre-train the

self-supervised features and learn the linear classifiers

(for transfer) on identical images.

To compare with existing methods, we report results on

ImageNet-1k classification for AlexNet in Table 9 (setup

from § 6.1). We report results on ResNet-50 in the supple-

mentary material.

8. Conclusion
In this work, we studied the effect of scaling two self-

supervised approaches along three axes: data size, model

capacity and problem complexity. Our results indicate that

transfer performance increases log-linearly with the data

size. The quality of the representations also improves with

higher capacity models and problem complexity. More in-

terestingly, we observe that the performance improvements

ImageNet-1k

Method layer1 layer2 layer3 layer4 layer5

AlexNet ImageNet-1k Supervised 19.4 37.1 42.5 48.0 49.6

AlexNet Places205 Supervised 18.9 35.5 38.9 40.9 37.3

AlexNet Random 11.9 17.2 15.2 14.8 13.5

AlexNet (Jigsaw) [48] 16.2 23.3 30.2 31.7 29.6

AlexNet (Colorization) [74] 13.1 24.8 31.0 32.6 31.8

AlexNet (SplitBrain) [75] 17.7 29.3 35.4 35.2 32.8

AlexNet (Counting) [49] 23.3 33.9 36.3 34.7 29.6

AlexNet (Rotation) [24]⊳ 18.8 31.7 38.7 38.2 36.5

AlexNet (DeepCluster) [8] 13.4 28.5 37.4 39.2 35.7

AlexNet Jigsaw ImageNet-1k 20.2 32.9 36.5 36.1 29.2

AlexNet Jigsaw ImageNet-22k 20.2 33.9 38.7 37.9 27.5

AlexNet Jigsaw YFCC-100M 20.2 33.4 38.1 37.4 25.8

AlexNet Coloriz. ImageNet-1k 14.1 27.5 30.6 32.1 31.1

AlexNet Coloriz. ImageNet-22k 15.0 30.5 35.5 37.9 37.4

AlexNet Coloriz. YFCC-100M 14.4 28.8 33.2 35.3 34.0

Table 9: AlexNet top-1 center-crop accuracy for linear classification

on ImageNet-1k. Numbers for [48, 74] are from [75]. Numbers with ⊳

use a different fine-tuning schedule.

on the the three axes are complementary (§4). We obtain

state-of-the-art results on linear classification using the

ImageNet-1k and Places205 datasets. We also propose a

benchmark suite of 9 diverse tasks to evaluate the quality

of our learned representations. Our self-supervised learned

representation: (a) outperforms supervised baseline on

task of surface normal estimation; (b) performs competi-

tively (or better) compared to supervised-ImageNet base-

line on navigation task; (c) matches the supervised object

detection baseline even with little fine-tuning; (d) performs

worse than supervised counterpart on task of image classi-

fication and low-shot classification. We believe future work

should focus on designing tasks that are complex enough to

exploit large scale data and increased model capacity. Our

experiments suggest that scaling self-supervision is crucial

but there is still a long way to go before definitively surpass-

ing supervised pre-training.
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[34] Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor

Darrell. Data-dependent initializations of convolutional neu-

ral networks. arXiv preprint arXiv:1511.06856, 2015. 5
[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012. 1, 3
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