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Abstract

We propose a local adversarial disentangling network

(LADN) for facial makeup and de-makeup. Central to our

method are multiple and overlapping local adversarial dis-

criminators in a content-style disentangling network for

achieving local detail transfer between facial images, with

the use of asymmetric loss functions for dramatic makeup

styles with high-frequency details. Existing techniques do

not demonstrate or fail to transfer high-frequency details

in a global adversarial setting, or train a single local dis-

criminator only to ensure image structure consistency and

thus work only for relatively simple styles. Unlike others,

our proposed local adversarial discriminators can distin-

guish whether the generated local image details are con-

sistent with the corresponding regions in the given refer-

ence image in cross-image style transfer in an unsuper-

vised setting. Incorporating these technical contributions,

we achieve not only state-of-the-art results on conventional

styles but also novel results involving complex and dra-

matic styles with high-frequency details covering large ar-

eas across multiple facial features. A carefully designed

dataset of unpaired before and after makeup images is

released at https://georgegu1997.github.io/LADN-project-

page.

1. Introduction

We propose to incorporate local adversarial discrimina-

tors into an image domain translation network for details

transfer between two images, and apply these local ad-

versarial discriminators on overlapping image regions to

achieve image-based facial makeup and removal. By en-
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(a) Source

(b) Reference (c) Transfer result (d) Demakeup result

(e) Zoom-in view

Figure 1: Facial makeup and de-makeup with dramatic makeup

style. See supplemental material for high-quality images of all our

results.

couraging cross-cycle consistency between input and out-

put, we can disentangle the makeup latent variable from

other factors on a single facial image. Through increasing

the number and overlapping local discriminators, complex

makeup styles with high-frequency details can be seam-

lessly transferred or removed while facial identity and struc-

ture are both preserved. See Figure 1.

The contributions of our paper are:

• By utilizing local adversarial discriminators rather

than cropping the image into different local paths, our

network can seamlessly transfer and remove dramatic

makeup styles;

• Through incorporating asymmetric loss functions on

makeup transfer and removal branches, the network
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is forced to disentangle the makeup latent variable

from others, and thus our network can generate photo-

realistic results where facial identity is mostly pre-

served;

• A dataset containing unpaired before-makeup and

after-makeup facial images will be released for non-

commercial purpose upon the paper’s acceptance.

Our target application, digital facial makeup [2, 1], has

been increasingly popular. Its inverse application, known

as facial de-makeup [27, 8] is also starting to gain more

attention. All current results in deep learning only either

work for or demonstrate conventional or relatively sim-

ple makeup styles, possibly due to limitations of their net-

work architectures and overfitting to their datasets. Exist-

ing methods often fail to transfer/remove dramatic makeup,

which oftentimes is the main usage for such an applica-

tion, before the user physically applies the dramatic makeup

which may take hours to accomplish.

Given an image of a clean face without makeup as the

source, and another image of an after-makeup face as the

reference, the makeup transfer problem is to synthesize a

new image where the specific makeup style from the refer-

ence is applied on the face of the source (Figure 1). The

main problem stems from the difficulty of extracting the

makeup-only latent variable, which is required to be dis-

entangled from other factors in a given facial image. This

problem is often referred to as content-style separation.

Most existing works addressed this problem through region-

specific style transfer and rendering [22, 7, 21, 23, 3]. This

approach can precisely extract the makeup style in spe-

cific and well-defined facial regions such as eyes and mouth

where makeup is normally applied, but it limits the appli-

cation range in the vicinity of these facial regions, and thus

fails to transfer/remove more dramatic makeup where color

and texture details can be far away from these facial fea-

tures.

By incorporating multiple and overlapping local dis-

criminators in a content-style disentangling network, we

successfully perform transfer (resp. removal) of com-

plex/dramatic makeup styles with all details faithfully trans-

ferred (resp. removed).

2. Related Work

Given the bulk of deep learning work on photographic

image synthesis, we will review related work in image

translation and style transfer, and those on makeup trans-

fer. We will also review approaches that involve global and

local discriminators and describe the differences between

ours and theirs.

Style transfer and image domain translation. Style

transfer can be formulated as an image domain transla-

tion problem, which was first formulated by Taigman et

Method Work

Global discriminator GAN [9], pix2pix[13]

Single local Image completion[12, 19],

discriminator PatchGAN [16], CycleGAN[28]

Multiple overlapping LADN (ours)

local discriminators

Table 1: Related works on local and global discriminators. Differ-

ent from existing works, our paper applies multiple local discrim-

inators in overlapping image regions.

al. [25] as learning a generative function to map a sample

image from a source domain to a target domain. Isola et

al. [13] proposed the pix2pix framework which adopted a

conditional GAN to model the generative function. This

method, however, requires cross-domain, paired image data

for training. Zhu et al. [28] introduced the CycleGAN to

relax this paired data requirement, by incorporating a cy-

cle consistency loss into the generative network to gener-

ate images that satisfy the distribution of desired domain.

Lee et al. [15] recently proposed a disentangled represen-

tation framework, DRIT, to diversify the outputs with un-

paired training data by adding a reference image from the

target domain as input. They encode images into a domain-

invariant content space and another domain-specific at-

tribute space. By disentangling content and attribute, the

generated output adopts the content of an image in an-

other domain while preserving the attributes of its own do-

main. However, in the context of makeup/de-makeup trans-

fer, DRIT can only be applied when the relevant makeup

style transfer can be formulated into image-to-image trans-

lation. As our experiments show, this means that only light

makeup styles can be handled.

Makeup transfer and removal. Tong et al. [26] first

tackled this problem by solving the mapping of cosmetic

contributions of color and subtle surface geometry. How-

ever, their method requires the input to be in pairs of well-

aligned before-makeup and after-makeup images and thus

the practicability is limited. Guo et al. [10] proposed to

decompose the source and reference images into face struc-

ture, skin detail, and color layers and then transfer infor-

mation on each layer correspondingly. Li et al. [17] de-

composed the image into intrinsic image layers, and used

physically-based reflectance models to manipulate each

layer to achieve makeup transfer. Recently, a number of

makeup recommendation and synthesis systems have been

developed [21, 23, 3], but their contribution is on makeup

recommendation and the capability of makeup transfer is

limited. As recently the style transfer problem has been

successfully formulated as maximizing feature similarities

in deep neural networks, Liu et al. [22] proposed to trans-

fer makeup style by locally applying the style transfer tech-

nique on facial components.
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In addition to makeup transfer, the problem of dig-

itally removing makeup from portraits has also gained

some attention from researchers [27, 8]. But all of them

treat makeup transfer and removal as separate problems.

Chang et al. [7] formulated the makeup transfer and re-

moval problem as an unsupervised image domain transfer

problem. They augmented the CycleGAN with a makeup

reference, so that the specific makeup style of the reference

image can be transferred to the non-makeup face to gener-

ate photo-realistic results. However, since they crop out the

regions of eyes and mouth and train them separately as local

paths, more emphasis is given to these regions. Therefore,

the makeup style on other regions (such as nose, cheeks,

forehead or the overall skin tone/foundation) cannot be han-

dled properly. Very recently, Li et al. [18] also tackled the

makeup transfer and removal problem together by incorpo-

rating “makeup loss” into the CycleGAN. Although their

network structure is somewhat similar, we are the first to

achieve disentanglement of makeup latent and transfer and

removal on extreme and dramatic makeup styles.

Global and local discriminators. Since Goodfellow et al.

[9] proposed the generative adversarial networks (GANs),

many related works have employed discriminators in a

global setting. In the domain translation problem, while a

global discriminator can distinguish images from different

domains, it can only capture global structures for a gener-

ator to learn. Local (patch) discriminators can compensate

this by assuming independence between pixels separated by

a patch diameter and modeling images as Markov random

fields. Li et al. [16] first utilized the discriminator loss for

different local patches to train a generative neural network.

Such a “PatchGAN” structure was also used in [13], where

a local discriminator was incorporated with an L1 loss to

encourage the generator to capture local high-frequency de-

tails. In image completion [12, 19], a global discrimina-

tor was used to maintain global consistency of image struc-

tures, while a local discriminator was used to ensure consis-

tency of the generated patches in the completed region with

the image context. Azadi et al. [5] similarly incorporated

local discriminator together with a global discriminator on

the font style transfer problem.

Contrary to all previous works where only a single local

discriminator is used and local patches are sampled, we in-

corporate multiple style discriminators specialized for dif-

ferent facial patches defined by facial landmarks. There-

fore, our discriminators can distinguish whether the gener-

ated facial makeup style is consistent with the makeup refer-

ence, and force the generator to learn to transfer the specific

makeup style from the reference.

3. LADN

In the absence of adequate pixel-aligned before-makeup

and after-makeup image datasets for our purpose, we will

xi

yj x̃j

ỹiEa
X

Ec
X

GX

Ea
Y

Ec
Y

GY

skip connection

skip connection

Figure 2: Generative Network Structure. The outputs of Ec and

Ea are C and A, which are concatenated at the bottleneck and fed

into generators. Skip connections are added between Ec and G to

capture more details in generated results.

formulate makeup transfer and removal as an unsupervised

image domain translation problem in section 3.1. We will

then describe the whole network architecture and discuss

our design of local style discriminators in respectively sec-

tion 3.2 and section 3.3. Our asymmetric losses will be de-

scribed in section 3.4 with other loss functions in the net-

work in section 3.5.

3.1. Problem Formulation

Let image domains of before-makeup faces and after-

makeup faces be X ⊂ R
H×W×3 and Y ⊂ R

H×W×3

respectively. In the unsupervised setting, we have

{xi}i=1,··· ,M , xi ∈ X to represent before-makeup exam-

ples and {yj}j=1,··· ,N , yj ∈ Y to represent after-makeup

examples, where i, j are the identities of facial images.

Note that the makeup style in Y can be different for each

make-up training example and there exist no before-makeup

and after-makeup pairs of the same identity. The goal of

the makeup transfer problem is to learn a mapping function

ΦY : xi, yj → ỹi, where ỹi receives the makeup style from

yj while preserving the identity from xi. This can be for-

mulated as an unsupervised cross-domain image translation

problem with conditioning. The makeup removal problem

can be similarly defined as ΦX : yj → x̃j , an unsuper-

vised cross-domain image translation problem from Y to X
without conditioning.

3.2. Network Architecture

Recently, efforts have been put on diversifying the out-

put of cross-domain image translation. Latest approaches

leveraging disentanglement of latent variables have shown

great success in similar problems [15, 4, 11, 6]. In the con-

text of makeup transfer and removal, we want to separate

the makeup style latent variable from non-makeup features
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yj

W (xi, yj)

ỹi

(a) pYk

(b) pWk

(c) p̃Yk 6

102
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64

51
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128

26

26

256

13

13

512

7

7

1024

4

4

2048

2

2

1

2

2

1

Dlocal
k (pYk , pWk ) → 1

Dlocal
k (pYk , p̃Yk ) → 0

Conv3x3 (P=1, S=2) Leaky ReLU

Spectral Normalization Sigmoid

Avg Pooling

Figure 3: Local Patches and Local Discriminators. The local patches pYk , pWk and p̃Yk (of size 102 × 102 × 3) are respectively cropped

from the makeup reference, the warping result and the generated image. Pairs of pYk , pWk are concatenated along the color channel and

fed into the local discriminator as positive examples, while those of pYk , p̃Yk as negative ones. Each local discriminator is comprised of six

3 × 3 convolutional layers (padding=1, stride=2) with spectral normalization layers and leaky ReLU layers as shown. After the last layer

of spectral normalization, the 2 × 2 × 1 feature vector is passed to a sigmoid module and then averaged to produce a single scalar value

which is the output indicating the probability of input pair possessing the same makeup style.

(identity, facial structure, head pose, etc.) and generate

new images through recombination of these latent variables.

In this process, a disentanglement framework can suppress

the false correlation between makeup style and other non-

makeup features. Therefore, we define attribute space A
that captures the makeup style latent and content space S
which includes the non-makeup features, and our network

is composed of content encoders {Ec
X , Ec

Y }, style encoders

{Ea
X , Ea

Y } and generators {GX , GY }.

As shown in Figure 2, by Ea
X(xi) = Ai, E

a
Y (yj) = Aj

and Ec
X(xi) = Ci, E

c
Y (yi) = Cj , we capture the attribute

and content from a source image and a makeup reference,

which are then fed into the generators to generate the de-

makeup result x̃j and makeup transfer result ỹi:

GX(Ai, Cj) = x̃j and GY (Aj , Ci) = ỹi. (1)

The encoders and decoders are designed with a U-Net

structure [24], The latent variables A, C are concatenated

at the bottleneck and skip connections are used between the

content encoder and generator. This structure can help re-

tain more identity details from the source in the generated

image. For the cross-domain image adaptation, we incor-

porate two discriminators {DX , DY } for the non-makeup

domain and makeup domain, which tries to discriminate be-

tween generated images and real samples and thus helps the

generators synthesize realistic outputs. And this gives the

adversarial loss Ladv
domain = Ladv

X + Ladv
Y , where

Ladv
X = Ex∼PX

[logDX(x)] + Ex̃∼GX
[log(1−DX(x̃))]

Ladv
Y = Ey∼PY

[logDY (y)] + Eỹ∼GY
[log(1−DY (ỹ))].

(2)

The discriminator D tries to discriminate between gen-

erated images and real samples, while the generator G tries

to fool D and thus can learn to adapt the generated results

into the target domain.

3.3. Local Style Discriminator

We propose to use multiple overlapping local discrim-

inators to realistically transfer makeup styles which may

contain high-frequency details, and this sets ourselves apart

from [7] which used specialized generators and global dis-

criminators for three key regions and thus may miss makeup

details that straddle outside of those regions.

To deal with the lack of ground truth of makeup trans-

fer yi, inspired by [7], we generate synthetic ground truth

W (xi, yj) by warping and blending yj onto xi according

to their facial landmarks. Although the synthetic results

cannot serve as the real ground truth of the final results,

they can provide guidance to the makeup transfer network

on what the generated results should look like. Note that

the warping results sometimes possess artifacts, which can

be fixed by the network in the generated results. Based

on this idea, we use local discriminators to construct style

loss, which can help the generator capture the style from the

makeup reference in an adversarial learning process. A typ-

ical placement of local discriminators is shown in Figure 3,

where corresponding patches in the makeup reference yj ,

warping reference W (xi, yj), and generated image ỹi are

marked with bounding boxes. Given the image resolution

of 512× 512, each local discriminator considers a local im-

age patch of size 102 × 102. Note that the local discrim-

inators are overlapping, with one discriminator trained on
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one key facial landmark and thus exact locations of local

discriminators are not critical.

Given a set of K local discriminators {Dlocal
k }k=1,··· ,K

at each facial landmark, a local patch from the makeup ref-

erence pYk (Figure 3a), the corresponding local patch from

makeup warp pWk (Figure 3b), and that from the generated

facial image p̃Yk (Figure 3c) are cropped and fed into the

local discriminator Dlocal
k in pairs. By setting the ground

truth for different pairs to local discriminators, the local

discriminators will learn to judge pYk and pWk as positive

pairs (of the same makeup style), and judge pYk and p̃Yk as

negative pairs (of different makeup styles). Meanwhile, the

goal of the generator ΦY is to generate the result ỹi which

is of the same makeup style as the makeup reference yj ,

therefore forming an adversarial learning process with the

local discriminators. The loss for local discriminators is

Llocal =
∑

k L
local
k , where Llocal

k is defined as

Llocal
k =Exi∼PX ,yj∼PY

[logDlocal
k (pYk , p

W
k )]

+Exi∼PX ,yj∼PY
[log[1−Dlocal

k (pYk , p̃
Y
k )].

(3)

The corresponding mini-max game is defined as

max
Dlocal

k

min
Ec

X
,Ea

Y
,GY

Llocal. (4)

By this setup, we take the synthetic results as guidance

and encourage the local discriminators to capture makeup

details from the makeup reference. Figure 3 gives the net-

work details of local discriminators.

3.4. Asymmetric Losses

While transfer and removal of light makeup styles

mainly involve re-coloring of eyeshadows and lips, extreme

makeup style poses new challenges in this problem. On the

one hand, extreme makeup styles contain high-frequency

components, for which the network needs to differentiate

from other high-frequency facial textures (e.g., eyelashes).

On the other hand, in some cases of extreme makeup re-

moval, the original facial color of the person can hardly be

observed from the after-makeup image (e.g., Figure 6 (c)),

which requires the network to reconstruct or hallucinate the

facial skin color without makeup. To tackle these chal-

lenges, we incorporate a high-order loss Lho for the makeup

transfer branch to help transfer high-frequency details, and

a smooth loss Lsmooth for the de-makeup branch, based on

the assumption that facial colors behind the makeups are

generally smooth.

High-Order Loss: Since the warping image W (xi, yj)
preserves most texture information of the makeup style

(color changes, edges) from the reference image yj , we ap-

ply Laplacian filters to pWk , p̃Yk and define high-order loss

as

Lho =
∑

k

hk||f(p
W
k )− f(p̃Yk )||1, (5)

where hk is the weight for local patches, and f is the Lapla-

cian filter. We set hk to be similar for all local patches, with

slight emphases on eye regions as eye makeups can contain

subtle but essential details.

Smooth Loss: Contrary to the makeup transfer result ỹi,
we do not want the de-makeup result x̃j to possess high-

frequency details and instead it should be smooth in local

parts. Therefore we apply a smooth loss to x̃j , which is

defined as

Lsmooth =
∑

k

sk||f(p̃
X
k )||1, (6)

where p̃Xk is a local patch from x̃j , sk is the weight for p̃Xk
and f is a Laplacian filter. Different from Lho, we give

significantly smaller weights to eyes areas since we do not

want to lose the high-frequency texture around the eyes. For

cheek and nose areas, we assign larger weight and thus im-

pose a higher degree of smoothness on these regions.

The smooth loss tries to prevent the high-frequency com-

ponent from presenting in x̃i, while the high-order loss tries

to extract and incorporate this component into ỹj . There-

fore, these asymmetric losses work in tandem with each

other to further improve the disentanglement of the makeup

latent variable from non-makeup ones.

3.5. Other Loss Functions

Reconstruction Loss: Inspired by CycleGAN [28], we

add the reconstruction losses into the network. We feed Ai,

Ci into GX to generate x̃self
i , and Aj , Cj into GY to gen-

erate ỹselfj , which should be identical to xi and yj respec-

tively. This gives us self reconstruction loss. From the gen-

erated results x̃j and ỹi, we again extract the attributes and

contents and use them to generate x̃cross
i and ỹcrossj , which

should be identical to xi and yj . This gives us cross-cycle

reconstruction loss. We use L1 loss to encourage such re-

construction consistency and define the reconstruction loss

Lrecon as

Lrecon =||xi − x̃self
i ||1 + 8||xi − x̃cross

i ||1+

||yj − ỹselfj ||1 + 8||yj − ỹcrossj ||1,
(7)

where we use an additional scaling factor 8 for cross-cycle

reconstruction loss to encourage the makeup transfer result

to possess the makeup style.

KL Loss: We encourage the makeup style representation

{Ai, Aj} captured by attribute encoders {Ea
X , Ea

Y } to be

close to a prior Gaussian distribution. Therefore, we apply

KL loss LKL = LKL
i + LKL

j , where

LKL
i = E[(DKL(Ai||N(0, 1))],

LKL
j = E[(DKL(Aj ||N(0, 1))],

and DKL(p||q) =

∫

p(x) log

(

p(x)

q(x)

)

dx.

(8)
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source reference

Global K = 3 K = 6 K = 12

Figure 4: Results of global and local style discriminators. We

evaluate the network outputs using only the global style discrim-

inator (the first column) and 3, 6, 12 local style discriminators

without the global one (the second, third and the fourth column re-

spectively). First row: input source and reference images; second

row: the placement of the local patches; third row: the makeup

transfer results under different settings.

Total Loss: Our total loss is

Ltotal =λlocalL
local + λadv

domainL
adv
domain + λreconL

recon+

λKLL
KL + λhoL

ho + λsmoothL
smooth,

(9)

where λlocal, λ
adv
domain, λrecon, λKL, λho, λsmooth are the

weights to balance different objectives. We will provide

more details of setting these weights in section 4.2.

4. Experiments

For results on conventional/light makeup transfer, re-

moval and user studies for comparison with state-of-the-

arts, please refer to the supplemental materials. In this sec-

tion we focus on results on complex and dramatic make-

ups where no existing work had demonstrated significant

results.

4.1. Data Collection

Since most datasets of face images are for recognition or

identification tasks, they generally lack the labels necessary

of facial makeup. There are only a few datasets on makeup

that are publicly available, but most are of inadequate reso-

lution. Some of them only contain makeup faces generated

using commercial software, and thus the range of makeup

styles are very limited.

As a result, we collected our own dataset, starting by col-

lecting high-quality images of faces without occlusion from

(a) (b) (c) (d)

Figure 5: Makeup transfer results and ablation study on local

high-order loss. First row: source images; second row: makeup

references; third row: makeup transfer results from the network

without local high-order loss; fourth row: makeup transfer results

from the complete network.

the Internet. We used facial landmark detector to filter out

images without a frontal face. We then labeled a small por-

tion of them based on the presence of makeup, from which

the histogram of hue values of eyeshadow and lips regions

were extracted and used to train a simple multilayer percep-

tron classifier. We utilized the classifier to label the remain-

ing images and finally obtained 333 before-makeup images

and 302 after-makeup images.

To achieve extreme makeup transfer, we manually se-

lected and downloaded facial images with extreme makeup

by visually inspecting whether each makeup extends out of

the lip and eyeshadow regions. We obtained 115 extreme

makeup images with great variance on makeup color, style

and region coverage, and incorporated them into the after-

makeup image set.

4.2. Training Details

We incorporate K = 12 local discriminators into our

network and set λlocal = 2, λadv
domain = 1, λrecon = 80,

λKL = 0.01, λho = 20, λsmooth = 20. For Lho, we

set hk to 4 for areas containing eyelashes, eyelids, and 2
for areas covering nose and mouth. In Lsmooth, sk is set

to 4 for cheek, nose areas and 0.1 for eye areas. To bal-

ance losses while number of local discriminators varies, we

additionally normalize losses from the local discriminators

Llocal and losses related to local patches Lho and Lsmooth

by 1/K = 1/12. The whole network is initialized by nor-

mal initialization with mean = 0, gain = 0.02. We use an
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Adam optimizer [14] with a learning rate of 0.001 and expo-

nential decay rates (β1, β2) = (0.5, 0.999). The resolution

of input and output images is 512 × 512 and batch size is

set to 1 due to the GPU memory limitation. The network is

trained firstly for 700 epochs with λsmooth = λho = 0 to

get stable with normal makeup styles, and then it is trained

for 2000 epochs with λho = 20, λsmooth = 20 to boost

performance on extreme and dramatic makeup styles. The

input facial images are cropped and frontalized according

to facial landmarks, and outputs are cropped back similarly.

4.3. Local Discriminators

To evaluate the effect of local discriminators, compara-

tive experiments were conducted under the settings of a sin-

gle global discriminator and varying numbers of local dis-

criminators. The last row of Figure 4 shows that the network

with only a single global style discriminator fails to capture

the complete makeup style from the makeup reference, only

adding some random color around eyes. In contrast, the net-

work becomes focused on details of makeup style when lo-

cal discriminators are incorporated (As we can tell the blue

and pink texture around eyes appears for K = 3 compared

to the Global case, which corresponds to the makeup refer-

ence). Moreover, using more local discriminators can fur-

ther improve the coverage and accuracy of the transferred

makeup style. As shown in Figure 4, with the expand-

ing coverage of local discriminators (K = 3, 6, 12), the

blue/red belt on the face gradually merges, while the tex-

ture on the nose shows stronger resemblance to the refer-

ence makeup, particularly in K = 12 than K = 6. There-

fore, multiple and overlapping local discriminators are of

paramount importance for our network to perform well,

which makes feasible the transfer of complex makeup styles

with high-frequency details covering large facial areas.

4.4. Makeup Transfer Results

As shown in Figure 5, our network can transfer the

makeup styles from highly dramatic ones (Figure 5b) to

those only on eyes and mouth (Figure 5d) with considerable

accuracy. Although the results are not perfect as the stars

in Figure 5a disappear in the transfer result, and the color

on eyeshadows is a bit harsh, LADN is the first method to

transfer and remove such dramatic makeup effects.

To test the effect of the high-order loss on transfer re-

sults, we ran the network with the high-order loss disabled,

and the results are shown in the third row of Figure 5. Com-

paring the third and the fourth row, we can clearly observe

that some fine details get blurred in absence of the high-

order loss, and this is more severe for the makeup style with

more edges (for a, b and c).

(a) (b) (c) (d)

Figure 6: Makeup removal results and ablation study on smooth

loss. First row: makeup reference; second row: de-makeup results

from the network without smooth loss. third row: de-makeup re-

sults from the complete network for different styles, from (a)–(b)

light and conventional style to (c)–(d) heavy and dramatic style.

4.5. Makeup Removal Results

Figure 6 shows makeup removal results where the

styles span across a spectrum from light to heavy/dramatic

makeup. As discussed in section 3.4, the makeup removal

problem is ill-posed in the sense that there can be multiple

possible faces behind the same makeup style. This can be

reflected by the makeup reference in Figure 6c, where the

makeup style covers almost the whole face and the network

has no clue about the face color behind the makeup from

the given image. Using the asymmetric losses, our network

succeeds in distinguishing makeup style from facial texture

and removing it. Then the generator hallucinates to give the

identity a reasonable skin color.

We also demonstrate the efficacy of smooth loss on ex-

treme makeup removal by the ablation study in Figure 6.

Similar to the high-order loss, smooth loss demonstrates

its significance especially when the makeup involves edges

striding over large areas out of the mouth and eyes areas (for

c and d). Meanwhile, the network can also generate satis-

factory light makeup removal results (Figure 6a and 6b).

The applied eyeshadow and the lipstick are removed, re-

covering the normal face color without significant changes

to other no-makeup areas.

4.6. Qualitative Comparison

To our best knowledge, we are the first to achieve transfer

and removal of dramatic makeup styles requiring no extra

inputs. Figure 8 shows a qualitative comparison on extreme

makeup transfer between our results and those from [10]

and [20]. For [20], we show the result after refinement step,

because otherwise the identity of the source will be lost.

But as shown the refinement also blurs the makeup details.

Similarly, the result from [10] depicts artifacts such as dis-
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Reference 1 Source Interpolated results Reference 2

Figure 7: Interpolated makeup styles.

Liao et al. [20] Guo et al. [10]

Ours

Figure 8: Comparison on extreme makeup transfer.

continuity along the boundary of skin area and color fading

of the makeup. Note the method in [10] is based on con-

ventional methods which requires extreme accuracy on face

geometry alignments between two faces. In contrast, our

method only requires roughly correct landmarks in order to

define the location of local discriminators.

4.7. Interpolated Makeup Styles

With LADN, the attribute space is disentangled well

from the content space, and we can therefore easily ob-

tain intermediate makeup styles by interpolating two at-

tribute vectors. Given attribute A1 and A2 respectively

extracted from makeup reference 1 and 2, we compute

αA1 + (1− α)A2 (α ∈ [0, 1]), and feed the resulting com-

posite attribute into the generator to yield smooth transition

between two reference makeup styles. Figure 7 shows the

interpolated results from left to right which depicts a smooth

and natural transition: gradual increase on the lip color and

red eyeshadow as well as a gradual decrease on the bluish-

pink extreme makeup, without affecting the facial identity

and facial structure of the source. Such interpolation capa-

bility enables our LADN network to not only control the

amount or heaviness of the generated makeup but also to

mix two makeup styles to generate a new style as shown,

Makeup reference De-makeup result

Figure 9: Limitation. One de-makeup example in the dataset.

thus significantly broadening the range of styles through

this simple mix-and-match feature provided by LADN.

5. Limitations and Conclusion

One limitation of our network is that it struggles to re-

move extreme makeup styles where colors are highly con-

sistent in local regions but vary sharply across local patches.

Figure 9 shows such style which divides the face into two

halves, with each half coherent within itself (purple on left

and orange on right). With very few high-frequency de-

tails present, the smooth loss is unable to take effect. As

a result, the de-makeup network produces a plausible face

behind the given makeup for each half of the face. More-

over, our smooth loss is designed to encourage local smooth

color transition in the de-makeup result, which is different

from existing de-makeup methods which aims to recover fa-

cial imperfections before the light cosmetic makeup. Con-

sequently, our smooth loss removes the mole as well, which

in hindsight may be part of the dramatic makeup as well.

In conclusion, we propose the Local Adversarial Dis-

entangling Network (LADN) by incorporating local style

discriminators, disentangling representation and asymmet-

ric loss functions into a cross-domain image translation

network. We apply LADN to makeup transfer and re-

moval, which demonstrates its power in transferring ex-

treme makeup styles with high-frequency color changes and

details covering large facial areas, which cannot be handled

by previous work. Our network also achieves state-of-the-

art performance in transferring and removing light/typical

makeup styles. We believe this framework can also be ap-

plied to applications beyond makeup transfer and removal,

which is a fruitful future research direction to explore.
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