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Abstract

We show that for human-object interaction detection a

relatively simple factorized model with appearance and lay-

out encodings constructed from pre-trained object detectors

outperforms more sophisticated approaches. Our model in-

cludes factors for detection scores, human and object ap-

pearance, and coarse (box-pair configuration) and option-

ally fine-grained layout (human pose). We also develop

training techniques that improve learning efficiency by: (1)

eliminating a train-inference mismatch; (2) rejecting easy

negatives during mini-batch training; and (3) using a ra-

tio of negatives to positives that is two orders of magnitude

larger than existing approaches. We conduct a thorough ab-

lation study to understand the importance of different fac-

tors and training techniques using the challenging HICO-

Det dataset [4].

1. Introduction

Human-object interaction (HOI) detection is the task of

localizing all instances of a predetermined set of human-

object interactions. For example, detecting the HOI

“human-row-boat” refers to localizing a “human,” a “boat,”

and predicting the interaction “row” for this human-object

pair. Note that an image may contain multiple people row-

ing boats (or even the same boat), and the same person

could simultaneously interact with the same or a different

object. For example, a person can simultaneously “sit on”

and “row” a boat while “wearing” a backpack.

Recently, increasingly sophisticated techniques have

been proposed for encoding position and appearance for

HOI detection. For instance, Chao et al. [4] encode the

configuration of human-object box pairs using a CNN op-

erating on a two channel binary image called the interac-

tion pattern. Gkioxari et al. [10] predict a distribution over

target object locations based on human appearance using a

mixture density network [1]. For encoding appearance, ap-

proaches range from multitask training of a human-centric

Horse

Horse

StraddleWalk

Figure 1: Outputs of pretrained object and human-pose de-

tectors provide strong cues for predicting interactions. Top:

human and object boxes, object label, and human pose predicted

by Faster-RCNN [20] and OpenPose [2] respectively. We encode

appearance and layout using these predictions (and Faster-RCNN

features) and use a factored model to detect human-object interac-

tions. Bottom: boxes and pose overlaid on the input image.

branch [10] alongside object classification, to using an at-

tention mechanism which gathers contextual information

from the image [9].

In this work, we propose a no-frills model for HOI

detection. In contrast to sophisticated end-to-end mod-

els, we use appearance features from pretrained object de-

tectors, and encode layout using hand-crafted bounding-

box coordinate features (optionally human pose keypoints).

Our network architecture is also modest, comprising of

light-weight multi-layer perceptrons (MLPs) that operate

on these appearance and layout features. In spite of these

simplifications, our model achieves state-of-the-art perfor-

mance on the challenging HICO-Det dataset.

Our gains are due to the choice of factorization, direct

encoding and scoring of layout, and improved training tech-

niques. Our model consists of human/object detection terms

and an interaction term. The interaction term further con-

sists of human and object appearance, box-configuration,

and pose or fine-layout factors. We perform a thorough ab-

lation study to evaluate the effect of each factor.

In contrast to existing work, which needs to train a
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𝑁×1

Conditionally Independent Training Joint Inference

Mismatch

Mask out “non-human” 

candidates using indicator term

𝕀{𝑏' ∈ 𝐵/0123}

Mask out “non-horse” 

candidates using indicator term

𝕀{𝑏) ∈ 𝐵/5678}

HOI scores / probabilities

(e.g. for “human-ride-horse”)

HOI

Classification Loss

Joint Inference Joint Training

Aligned

(a) Training and inference mismatch in previous state-of-the-art models (b) Proposed approach with easy negative rejection using indicator terms

Equivalent to sampling 

𝑏' only from 𝐵/0123

Equivalent to sampling 

𝑏) only from 𝐵/5678

Indicators are an efficient 

mechanism to allow inference and 

training on all HOI categories 

simultaneously without sampling

Figure 2: Proposed training techniques. The figure shows training and inference on a single HOI class (“human-ride-horse”) for sim-

plicity. Eliminating training-inference mismatch: As shown in (a), existing models [10, 9] often train human/object and interaction

branches using object and interaction classification losses. The scores produced by these branches are simply multiplied during testing

to produce the final HOI scores. Hence, training does not accurately reflect the test objective. Our model, shown in (b), fixes this mis-

match by directly optimizing the combined scores using a multi-label HOI classification loss. Rejecting easy negatives: In a mini-batch,

we treat candidate box-pairs for HOI categories other than “human-ride-horse” as easy negatives and their probability for HOI category

“human-ride-horse” is set to 0 both during training and inference using indicator terms. This is implemented efficiently by applying binary

masks to predicted probabilities. Specifically, if a human candidate box b1 does not belong to the set of “human” proposals Bhuman, or if the

object candidate box b2 does not belong to the set of “horse” proposals Bhorse, the mask entry corresponding to (b1, b2) and HOI category

“human-ride-horse” is set to 0.

CNN [4] or a mixture density network [10] to encode lay-

out, we use hand-crafted absolute and relative position fea-

tures computed from bounding boxes or human pose key-

points. Our choice is motivated by the observation illus-

trated in Fig. 1: pretrained object and pose detectors provide

strong geometric cues for interaction prediction.

We also develop the following training techniques for

improving learning efficiency of our factored model:

(1) Eliminating train-inference mismatch. [10, 9] learn

detection and interaction terms via separate detection and

interaction losses. During inference, the scores of all fac-

tors are simply multiplied to get final HOI class probabili-

ties. Instead, we directly optimizing the HOI class proba-

bilities using a multi-label HOI classification loss (Fig. 2)

(Interaction Loss: 15.89 mAP vs. HOI Loss: 16.96 mAP).

(2) Rejecting easy negatives using indicator terms. Re-

jecting easy negatives is beneficial not only during test but

also during training because it allows the model to focus on

learning to score hard negatives. We generate a candidate

box-pair (b1, b2) using a pre-trained object detector which

is then scored by the factor model. If either b1 is not a “hu-

man” candidate (category h) or b2 is not an object candidate

o, then the factor model should predict a 0 probability of

(b1, b2) belonging to HOI category (h, o, i) for any interac-

tions i. This is achieved by including indicator terms in our

object detection factors and can be implemented efficiently

by applying a mask on predicted probabilities constructed

from labels predicted by the object detector (Fig. 2) (w/o

indicators: 15.93 mAP vs. w indicators: 16.96 mAP).

(3) Training with large negative to positive ratio. We

construct training mini-batches by sampling a two orders

of magnitude larger number of negative box-pairs per pos-

itive pair than related work (1000 vs. < 10). Higher ratios

compared to object detector training are expected since the

number of negative pairs is quadratic in the number of ob-

ject proposals as opposed to being linear for object detectors

(neg. to pos. ratio 10: 13.40 mAP vs. 1000: 16.96 mAP).

In summary, our key contributions are: (1) a simple but

competitive model for HOI detection that takes advantage

of appearance and layout encodings from a pre-trained ob-

ject detector (and optionally a pose detector); (2) a compar-

ison of coarse and fine-grained layout encodings; and (3)

techniques for enhancing learning efficiency of our model.

2. Related Work

Assessing interactions between humans and objects in

images is a challenging problem which has received a con-

siderable amount of attention [25, 24, 8, 7, 6, 17].

Human activity recognition is among the early efforts to

analyze human actions in images or videos. Benchmarks

such as UCF101 [22] and THUMOS [12] focus on classi-

fying a video sequence into one of 101 action categories.

While UCF101 uses carefully trimmed videos, the THU-

MOS challenge additionally introduced the task of temporal

localization of activities in untrimmed videos. Image action

recognition benchmarks such as Stanford 40 Actions [26]
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and PASCAL VOC 2010 [17] have also been used in the

literature. While similar in intent, these action recognition

challenges differ from human-object interaction detection

in three ways: (1) the tasks are limited to images or videos

containing a single human-centric action, such as bowling,

diving, fencing, etc.; (2) the action classes are disjoint and

often involve interaction with an object unique to the ac-

tivity (allowing models to cheat by simply recognizing the

object); and (3) spatial localization of neither the person nor

the object is required.

Moving from actions to interactions, Chao et al. [5, 4]

introduce the HICO and HICO-DET datasets. The HICO

dataset consists of images annotated with 600 human-object

interactions with a diverse set of 117 interactions with 80
COCO [15] object categories. Unlike previous tasks, HOI

classification is multi-label in nature since each image may

contain multiple humans interacting with the same or dif-

ferent objects. Chao et al. [4] extend the HICO dataset with

exhaustive bounding box annotations for each of the HOI

classes to create HICO-DET. Due to the human-centric na-

ture of the annotation task and the predefined set of objects

and interactions, HICO-DET does not suffer from the miss-

ing annotation problem (at least to the same extent) that

plagues datasets such as Visual Genome [14] and VRD [16]

that are used for general visual relationship (object-object

interaction) detection.

In a similar effort, Gupta et al. [11] augment the COCO

dataset [15], annotating people (agents) with one of 26 ac-

tion labels along with location and labels of objects fulfill-

ing semantic roles for the action. Moreover, for seman-

tic role labeling (SRL), Yatskar et al. [27] create an image

dataset for situation recognition, which subsumes recogni-

tion of activity, participating objects and their roles.

In this work, we choose HICO-DET as a test bed due

to its large, diverse, and exhaustive HOI annotations which

allows for an accurate and meaningful evaluation.

Existing models for HOI detection. Chao et al. [4] pro-

pose HO-RCNN, a 3-stream architecture with one stream

each for a human candidate, an object candidate, and a ge-

ometric encoding of the pair of boxes using the proposed

interaction pattern. Each stream produces scores for every

possible object-interaction category (600 for HICO-DET).

The 3 sets of scores are combined using late-fusion to get

the final prediction. Note that this approach treats “ride bi-

cycle” and “ride horse” as independent visual entities and

does not use the knowledge of “ride” being a common com-

ponent. In contrast, our approach exploits this composi-

tionality to learn shared visual appearance and geometric

representations (e.g., “ride” typically involves a human box

above an object box). In other words, weight sharing be-

tween different HOI classes in our factored model makes it

more data efficient than [4] which predicts scores for 600
HOI categories using independent weights in the last 600-

way fully connected layer in each of the 3 streams.

Gkioxari et al. [10] propose InteractNet, which takes

a multitask learning [3] perspective. The idea is to aug-

ment the Faster-RCNN [20] object detection framework

with a human-centric branch and an interaction branch that

are trained jointly alongside the original object recognition

branch. To incorporate geometric cues, a Mixture Density

Network (MDN) [1] is used to produce parameters of the

object location distribution given the human appearance.

This distribution is used to score candidate objects for a

given human box. The model is trained using an object

classification loss for the object branch, interaction classi-

fication losses for the human-centric action classification

branch and the optional interaction branch, and a smooth

L1 loss between the ground truth box-pair encoding and

mean predicted by the localization MDN. During inference,

predictions from these branches are fused heuristically. In

addition to differences in the details of factorization, and ap-

pearance and layout encodings used in our model, we intro-

duce training techniques for enhancing learning efficiency

of similar factored models for this task. We optimize the

final HOI score obtained after fusing the individual factor

scores. We also encode more directly a box-pair layout us-

ing absolute and relative bounding box features which are

then scored using a dedicated factor.

Gao et al. [9] follow an approach similar to [10] but in-

troduce an attention mechanism that augments human and

object appearance with contextual information from the im-

age. An attention map is computed using cues derived from

the human/object appearance encoding and the context is

computed as an attention weighted average of convolution

features. The model is trained using an interaction classifi-

cation loss. In contrast, the only sources of contextual in-

formation in our model are the ROI pooled region features

from the object detector. Adding a similar attention mecha-

nism may further improve performance.

3. No-Frills HOI Detection

In the following, we first present an overview of the pro-

posed model, followed by details of different factors and

our training strategy.

3.1. Overview

Given an image x and a set of object-interaction cate-

gories of interest, human-object interaction (HOI) detec-

tion is the task of localizing all human-object pairs par-

ticipating in one of the said interactions. The combina-

torial search over human and object bounding-box loca-

tions and scales, as well as object labels, O, and interac-

tion labels, I, makes both learning and inference challeng-

ing. To deal with this complexity, we decompose inference

into two stages (Alg. 1). In the first stage, object cate-

gory specific bounding box candidates Bo ∀ o ∈ O are
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Algorithm 1: Inference on a single image

Input : Image x,

Set of objects (O), interactions (I), and

HOI (H ⊆ {h} × O × I) classes of interest,

Pretrained object (Faster-RCNN) and

human-pose (OpenPose) detectors

// Stage 1: Create a set of box candidates

for each object (including human)

1 Run Faster-RCNN on x ∀ o ∈ O to get 300 region proposals (Ro)

2 with ROI appearance features and detection probabilities

3 foreach o ∈ O do

4 Construct Bo = {b ∈ Ro such that

5 b survives NMS (threshold 0.3) and

6 Pdet(ldet = o|b, x) > 0.01}
7 Update Bo to keep at most 10 highest ranking detections.

8 end

9 Run OpenPose on x to get skeletal-keypoints k(b) ∀ b ∈ Bh

// Stage 2: Score candidate pairs using the

proposed factored model

10 foreach (h, o, i) ∈ H do

11 foreach (b1, b2) ∈ Bh ×Bo do

12 Compute box configuration features using (b1, b2)
13 Compute pose features using (k(b1), b1, b2)
14 Compute P (y(h,o,i) = 1|b1, b2, x)

15 using equations 1, 2, and 3

16 end

Output: Ranked list of (bh, bo) ∈ Bh ×Bo as detections for

class (h, o, i) with probabilities. For any o′ 6= o

probability of (bh, bo′ ) belonging to class (h, o, i) is

predicted as 0.

17 end

// Steps 10-17 are implemented with a single

forward pass on a mini-batch of

precomputed features

selected using a pre-trained object detector such as Faster-

RCNN (using non-maximum suppression and thresholding

on class probabilities). For each HOI category, i.e., for each

triplet (h, o, i) ∈ H, a set of candidate human-object box-

pairs is constructed by pairing every human box candidate

bh ∈ Bh with every object box candidate bo ∈ Bo. In

the second stage, a factored model is used to score and

rank candidate box-pairs (bh, bo) ∈ Bh × Bo for each

HOI category. Our factor graph consists of human and ob-

ject appearance, box-pair configuration (coarse layout) and

human-pose (fine-grained layout) factors. The factors op-

erate on appearance and layout encodings constructed from

outputs of pretrained object and human-pose detectors. The

model is parameterized to share representations and com-

putation across different object and interaction categories to

efficiently score candidate box-pairs for all HOI categories

of interest in a single forward pass.

3.2. Factored Model

For an image x, given a human-object candidate box pair

(b1, b2), human pose keypoints k(b1) detected inside b1 (if

any), and the set of box candidates for each object category,

the factored model computes the probability of occurrence

of human-object interaction (h, o, i) in (b1, b2) as follows:

P (y(h,o,i) = 1|b1, b2, x, k(b1), Bh, Bo) (1)

= P (yh = 1, yo = 1, yi = 1|b1, b2, x, k(b1), Bh, Bo)

= P (yh = 1|b1, x, Bh) · P (yo = 1|b2, x, Bo) ·
P (yi = 1|b1, b2, k(b1), x).

Here, yh ∈ {0, 1} is a random variable denoting if b1 is

labeled as a human, yo ∈ {0, 1} denotes if b2 is labeled as

object category o, and yi ∈ {0, 1} denotes if the interac-

tion assigned to the box-pair is i. The above factorization

assumes that human and object class labels depend only on

the individual boxes, the image, and the set of bounding-box

candidates for the respective classes, while the interaction

label depends on the box-pair, pose, and the image. Bh and

Bo are used in the detection terms to compute the indicator

functions for easy negative rejection. For brevity, we refer

to the left hand side of Eq. (1) as P (y(h,o,i) = 1|b1, b2, x).
We now describe the terms in detail.

3.2.1 Detector Terms

The first two terms in Eq. (1) are modeled using the set of

candidate bounding boxes for each object class and clas-

sification probabilities produced by a pretrained object de-

tector. For any object category o ∈ O (including h), the

detector term is computed via

P (yo = 1|b, x,Bo) = ✶(b ∈ Bo) · Pdet(ldet = o|b, x), (2)

where the Pdet term corresponds to the probability of assign-

ing object class o to region b in image x by the object detec-

tor. The indicator function checks if b belongs to Bo, the set

of candidate bounding boxes for o, and sets the probability

to 0 otherwise. Thus, easy negatives for class (h, o, i), i.e.,

pairs (b1, b2) where either b1 /∈ Bh or b2 /∈ Bo, are assigned

0 probability. Easy negative rejection is not only beneficial

during test but also during training since model capacity is

not wasted on learning to predict a low probability of class

(h, o, i) for box-pairs that belong to any of the classes in the

set {(h, o′, i′) | o′ ∈ O \ {o}, i′ ∈ I}.

3.2.2 Interaction Term

The interaction term refers to the probability of entities

in b1 and b2 engaging in interaction i ∈ I. To utilize

appearance and layout information, the interaction term

P (yi = 1|b1, b2, k(b1), x) is further factorized as follows:

σ(φhuman(i|b1, x) + φobject(i|b2, x) +

φboxes(i|b1, b2) + φpose(i|b1, b2, k(b1))),
(3)

where σ is the Sigmoid function and each φ is a learnable

deep net factor. We now describe each of these factors along

with the network architecture and appearance and layout en-

codings the factors operate with:
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Figure 3: Interaction confusions. Element (m,n) in each heatmap visualizes P (yim = 1|b1, b2, k(b1), o, x), the probability of interaction

im ∈ I for box-pair (b1, b2), averaged across all box pairs with ground truth interaction in ∈ I. Each row m is independently normalized

and exponentiated to highlight the interactions most confused with interaction im.

Appearance. Factors φhuman and φobject predict the inter-

action that the human and the object are engaged in, based

on visual appearance alone. The appearance of a box in

an image is encoded using Faster-RCNN [20] (Resnet-152

backbone) average pooled fc7 features extracted from the

RoI. By design, this representation captures context in ad-

dition to content within the box. The 2048 dimensional fc7

features are fed into a multi-layer perceptron (MLP) with a

single 2048 dimensional hidden layer with Batch Normal-

ization [13] and ReLU [18]. The output layer has 117 neu-

rons, one per interaction category in I.

Box Configuration. Object label and the absolute and rel-

ative positions and scales of the human and object boxes

are often indicative of the interaction, even without the ap-

pearance (e.g., a human box above and overlapping with a

‘horse’ box strongly suggests a ‘riding’ interaction). φboxes

captures this intuition by predicting a score for each inter-

action given an encoding of the bounding boxes and the

object label. The bounding boxes are represented using a

21-dimensional feature vector. We encode the absolute po-

sition and scale of both the human and object boxes using

box width, height, center position, aspect ratio, and area.

We also encode relative configuration of the human and ob-

ject boxes using relative position of their centers, ratio of

box areas and their intersection over union.

We also experiment with conditioning on the object la-

bel encoded as a |O| (= 80) dimensional one hot vector to

allow the model to learn that only certain interactions are

feasible for a given object. For example, it is possible to

“clean” or “eat at” a “dinning table” (o) but not to “drive”

or “greet” it. The object label encoding is concatenated with

21-dimensional position features and their log absolute val-

ues, and passed through an MLP with 2 hidden layers, 112

(= 2×21+80) dimensional each (same as the input feature

dimension), with Batch Normalization and ReLU. In prac-

tice, conditioning on o did not affect results significantly

and hence is not included in Eq. 1 and Eq. 3 for simplicity.

Human Pose. We supplement the coarse layout encoded

by bounding boxes with more fine-grained layout informa-

tion provided by human pose keypoints. We use Open-

Pose [2, 23, 21] to detect 18 keypoints for each person in

the image. A human candidate box is assigned a keypoint-

skeleton if the smallest bounding box around the keypoints

has 70% or more of its area inside the human box. Similar to

box features, we encode both absolute human pose and the

relative location with respect to the object candidate box.

The absolute pose features (18×3 = 54) consist of keypoint

coordinates normalized to the human bounding box frame

of reference and confidence of each keypoint predicted by

OpenPose. The relative pose features (18× 5 = 90) consist

of offset of the top left and bottom right corners of the object

box relative to each keypoint and keypoint confidences. The

absolute and relative pose features and their log values are

concatenated along with a one-hot object label encoding be-

fore being passed through φpose. φpose is also an MLP with 2

hidden layers with 368 (= 2×(54+90)+80) neurons each.

Both hidden layers are equipped with Batch Normalization

and ReLU. The output layer has 117 neurons.

Each factor eliminates some interaction confusions.

Heatmaps in Fig. 3 show the interactions that are confused

by models with all factors and models with one factor miss-

ing at a time. Comparing heatmap b with a shows the role of

the appearance factor in reducing confusion between inter-

actions. For instance, without App, “eat” is confused with

“brush with” and “drink with,” but not in the final model.

Similarly, c and d can be compared with a for the effects of

Box and Pose factors respectively.

3.3. Training

Since more than one HOI label might be assigned to a

pair of boxes, the model is trained in a fully supervised

fashion using the multi-label binary cross-entropy loss. For

each image in the training set, candidate boxes for each HOI

category (Bh×Bo for class (h, o, i)) are assigned binary la-

bels based on whether both the human and object boxes in

the pair have an intersection-over-union (IoU) greater than

0.5 with a ground truth box-pair of the corresponding HOI

category. During training, the jth sample in a mini-batch

consists of a box pair (bj1, b
j
2), HOI category lj ∈ H for

which the box pair is a candidate ((b1, b2) ∈ Bh × Bo are

considered candidates for HOI class (h, o, i)), binary label

yj to indicate match (or not) with a ground truth box pair of
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Models Full Rare Non-Rare

HO-RCNN [4] 7.81 5.37 8.54

VSRL [11] (impl. by [10]) 9.09 7.02 9.71

InteractNet [10] 9.94 7.16 10.77

GPNN [19] 13.11 9.34 14.23

iCAN [9] 14.84 10.45 16.15

Det 8.32 6.84 8.76

Det + Box 12.54 10.40 13.18

Det + Human App 11.12 8.82 11.80

Det + Object App 11.05 7.41 12.13

Det + App 15.74 11.35 17.05

Det + Human App + Box 15.63 12.45 16.58

Det + Object App + Box 15.68 10.47 17.24

Det + App + Box 16.96 11.95 18.46

Det + Pose 11.09 8.04 12.00

Det + Box + Pose 14.49 11.86 15.27

Det + App + Pose 15.50 10.14 17.10

Det + App + Box + Pose 17.18 12.17 18.68

Table 1: Results on HICO-Det test set. Det, Box, App, and Pose

correspond to object detector terms, appearance, box configura-

tion, and pose factors respectively. Each row was both trained

and evaluated with specified factors. Full (all 600 classes), Rare

(classes with < 10 training instances), and Non-Rare (rest) denote

different subsets of HOI classes. Best and second best numbers

are highlighted in color.

class lj , detection scores for human and object category cor-

responding to class lj , and input features for each factor φ.

Pairs of boxes which are candidates for more than one HOI

category are treated as multiple samples during training.

Since the number of candidate pairs per image is 3 orders

of magnitude (typically > 1000) larger than the number of

positive samples (typically < 3), random sampling would

leave most mini-batches with no positives. We therefore

select all positive samples per image and randomly sample

1000 negatives per positive. Given a mini-batch of size N
constructed from a single image x, the loss is

Lmini-batch =
1

N |H|

N∑

j=1

∑

l∈H

✶(l = lj) · BCE(yj , pjl ), (4)

where BCE(y, p) is the binary cross entropy loss and

pjl = P (yl = 1|bj1, b
j
2, x) is the probability of HOI class l

computed for the jth sample using Eq. 1. In our experi-

ments, we only learn parameters of the interaction term (i.e.,

MLPs used to compute factors φhuman, φbox, and φpose).

4. Experiments

Dataset. HICO-Det [4] and V-COCO [11] datasets are

commonly used for evaluating HOI detection models. V-

COCO is primarily used for legacy reasons since the early

HICO [5] dataset only had image-level annotations. HICO-

Det was created to extend HICO with bounding box anno-

tations specifically for the HOI detection task. HICO-Det is

both larger and more diverse than V-COCO. While HICO-

Det consists of 47, 776 images annotated with 117 interac-

tions with 80 objects resulting in a total of 600 HOI cat-

egories, V-COCO only has 26 interactions with a training

Neg./Pos. Indicators HOI Loss Interaction Loss mAP

10 ✓ ✓ ✗ 13.40

50 ✓ ✓ ✗ 15.51

100 ✓ ✓ ✗ 16.30

500 ✓ ✓ ✗ 17.06

1000 ✓ ✓ ✗ 16.96

1500 ✓ ✓ ✗ 16.62

1000 ✗ ✓ ✗ 15.93

1000 ✓ ✗ ✓ 15.89

Table 2: Training techniques evaluated using Det + App + Box

model. The results highlight the importance of: (1) large negative

to positive ratio in mini-batches; (2) using indicators during train-

ing to only learn to rank candidates selected specifically for a given

HOI category instead of all detection pairs; (3) directly optimizing

the HOI classification loss instead of training with an interaction

classification loss and then combining with object detector scores

heuristically. Best and second best numbers are shown in color.

set 1/12 the size of HICO-Det’s. Exhaustive annotations

for each HOI category also make HICO-Det more suitable

for AP based evaluation than VRD [16] which suffers from

missing annotations. VRD also contains “human” as one

among many subjects which makes evaluation of the im-

pact of fine-grained human pose less reliable due to a small

sample size. Hence, HICO-Det is best for evaluating our

contributions.

HICO-Det contains 38, 118 training and 9, 658 test im-

ages annotated with 600 HOI categories. We use an 80-20
split of the training images to generate our actual training

and validation sets. HOI categories consist of 80 object cat-

egories (same as COCO classes) and 117 interactions. Each

image contains on average 1.67 HOI detections.

In addition to comparing to state-of-the-art, our exper-

iments include factor ablation study (Tab. 1), impact of

the proposed training techniques (Tab. 2), visualization of

performance distribution across object and interaction cate-

gories (Fig. 4), and examples of top ranking detections and

failure cases (Fig. 5).

4.1. Comparison to State­of­the­art

Tab. 1 shows that our final models Det+App+Box and

Det+App+Box+Pose outperform existing approaches. We

now highlight the key strengths of our approach in compar-

ison to existing models.

Appearance does not need to be relearned. All existing

approaches learn a task specific appearance encoding by ei-

ther fine-tuning appearance encoding branches [10, 9, 11] or

training a CNN from scratch [4]. We only use ROI pooled

features from Faster-RCNN pretrained on MS-COCO [15].

Layout is directly encoded and scored. We directly en-

code layout using absolute and relative position features

which are scored using φbox (an MLP). Our formulation is

easier to learn than InteractNet which predicts a distribu-

tion over target object locations using human appearance

features alone. The explicit representation also makes our

layout terms more efficient to learn than HO-RCNN which
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Figure 4: Spread of performance (range and quartiles) across interactions with the same object (top) and across objects for a given

interaction (bottom). The horizontal axis is sorted by median AP.

needs to learn to encode layout (interaction pattern) using

a CNN.

Weight sharing for learning efficiency. Weight sharing in

our factored model (also in InteractNet and iCAN) makes

it more data efficient than HO-RCNN which predicts scores

for 600 HOI categories using independent weights in the

last 600-way fully connected layer. In other words, HO-

RCNN treats “ride-bike” and “ride-horse” as independent

visual entities and does not benefit from the knowledge of

“ride” being a common component.

ROI pooling for context. iCAN follows an approach sim-

ilar to InteractNet but augments region appearance features

with contextual features computed using an attention mech-

anism. While our model demonstrates strong performance

with only ROI pooled detector features as the source of

contextual information, we may further benefit from an at-

tention mechanism similar to iCAN. GPNN also attempts

to benefit from global context reasoning through message

passing over an inferred graph. While in theory, such an ap-

proach jointly infers all HOI detections in an image (as op-

posed to making predictions for one candidate box-pair at

a time), the advantages of this approach over simpler fixed

graph approaches like our factor model and iCAN remains

to be demonstrated.

Our model also benefits from improved training tech-

niques which are discussed next.

4.2. Training Techniques

Tab. 2 shows the effect of proposed training techniques.

Training with large negative to positive ratio. Increasing

the ratio of negative to positive box-pairs in a mini-batch

during training leads to a dramatic increase in performance

(neg. to pos. ratio 10: 13.40 mAP vs. 1000: 16.96 mAP).

Note that related work [4, 10] uses low ratios (typically

< 10), similar to those used for training object detectors.

For HOI detection, since the number of negative pairs is

quadratic in the number of object proposals as opposed to

linear for object detectors, higher ratios are expected.

Eliminating train-inference mismatch. Training the

model using interaction classification loss on the probabili-

ties predicted by the interaction term, as done in [10, 9], is

suboptimal in comparison to training using HOI classifica-

tion loss (15.89 vs. 16.96 mAP) even though the same set

of parameters are optimized by both losses. This is because

the latter calibrates the interaction term relative to the de-

tection terms. A similar approach is used in [4] but without

the strong weight sharing assumptions of our factor model.

Rejecting easy negatives. To allow the model to focus on

learning to rank hard negatives correctly, we introduce in-

dicator terms in our factor model. The indicator functions

ensure that the factor model predicts zero probability of an

HOI category (h, o, i) for box-pair (b1, b2) if b1 6∈ Bh or

b2 6∈ Bo. Tab. 2 shows that removing the indicator terms

during training causes a drop in mAP from 16.96 to 15.93
(indicators still used during inference).

4.3. Factor Ablation Study

To identify the role of different sources of appearance

and spatial information in our model, we train models with

subsets of available factors.

The role of individual factors can be assessed by com-

paring Det, Det+Box, Det+App, and Det+Pose. Note that

appearance terms lead to largest gains over Det followed by

Box and Pose. We further analyze the contribution of hu-

man and object appearance towards predicting interactions.

Interestingly, while Det+Human App and Det+Object App
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drink with bottle, 0.76 straddle bike, 0.93 jump motorcycle, 0.87 eat hot dog, 0.69 ride elephant, 0.93

repair bicycle, 0.22 turn motorcycle, 0.62drive truck, 0.86 hold dog, 0.92 kick sports ball, 0.93 carry backpack, 0.94

hug person, 0.4 cut with knife, 0.24watch bird, 0.83 kiss elephant, 0.05open backpack, 0.02 inspect airplane, 0.61 

Figure 5: Qualitative results showing top ranking true and false positives for different HOI categories with predicted probability. The

blue and red boxes correspond to human and objects detected by a pretrained Faster-RCNN detector respectively. Pose skeleton consists

of 18 keypoints predicted by the pretrained OpenPose detector and assigned to the human box.

perform comparably (11.12 and 11.05), the combination

outperforms either of them with an mAP of 15.74, show-

ing that the human and object appearance provide com-

plementary information. Note that an mAP of 11.12 (=
max(11.12, 11.05)) or less would indicate completely re-

dundant or noisy signals. A similar sense of complementary

information can be observed in Tab. 1 for App-Box, App-

Pose, and Box-Pose pairs.

While Det+Box+Pose improves over Det+Box,

Det+App+Pose and Det+App perform comparably. Sim-

ilarly, Det+App+Box+Pose only slightly improves the

performance of Det+App+Box. This suggests that while it

is useful to encode fine-grained layout in addition to coarse

layout, human appearance encoded via object detectors

already captures human pose to some extent.

Another way of understanding the role of factors is

to consider the drop in performance when a particular

factor is removed from the final model. Relative to

Det+App+Box+Pose, performance drops are 2.69, 1.68,

and 0.22 mAP for App, Box and Pose factors respectively.

4.4. Performance Distribution

Fig. 4 visualizes the distribution of performance of our

model across interactions with a given object and across ob-

jects for a given interaction. The figure shows that for most

objects certain interactions are much easier to detect than

others (with the caveat that AP computation for any class

is sensitive to the number of positives for that class in the

test set). A similar observation is true for different objects

given an interaction. In addition, we observe that interac-

tions which can occur with only a specific object category

(as indicated by absence of box) such as “kick-ball” and

“flip-skateboard” are easier to detect than those that tend to

occur with more than one object such as “cut” and “clean”

and could have drastically different visual and spatial ap-

pearance depending on the object.

4.5. Qualitative Results

Qualitative results (Fig. 5) demonstrate the advantages of

building HOI detectors on the strong foundation of object

and pose detectors. False positives are more commonly due

to incorrect interaction prediction than incorrect object/pose

detection. Notice that cues for preventing false positives

could be as subtle as gaze direction as in the case of “inspect

airplane” and “watch bird.”

5. Conclusion

We propose a no-frills approach to HOI detection which

is competitive with existing literature despite its simplic-

ity. This is achieved through appropriate factorization of

the HOI class probabilities, direct encoding and scoring

of layout, and improved training techniques. Our ablation

study shows the importance of human and object appear-

ance, coarse layout, and fine-grained layout for HOI de-

tection. We also evaluate the significance of the proposed

training techniques which can easily be incorporated into

other factored models.
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