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Abstract

We propose to learn word embeddings from visual co-

occurrences. Two words co-occur visually if both words

apply to the same image or image region. Specifically, we

extract four types of visual co-occurrences between object

and attribute words from large-scale, textually-annotated

visual databases like VisualGenome and ImageNet. We then

train a multi-task log-bilinear model that compactly en-

codes word “meanings” represented by each co-occurrence

type into a single visual word-vector. Through unsuper-

vised clustering, supervised partitioning, and a zero-shot-

like generalization analysis we show that our word embed-

dings complement text-only embeddings like GloVe by bet-

ter representing similarities and differences between visual

concepts that are difficult to obtain from text corpora alone.

We further evaluate our embeddings on five downstream ap-

plications, four of which are vision-language tasks. Aug-

menting GloVe with our embeddings yields gains on all

tasks. We also find that random embeddings perform com-

parably to learned embeddings on all supervised vision-

language tasks, contrary to conventional wisdom.

1. Introduction

Word embeddings, i.e., compact vector representations

of words, are an integral component in many language [46,

14, 23, 38, 36, 48, 43] and vision-language models [28,

52, 53, 2, 41, 40, 49, 12, 47, 6, 55, 16, 27]. These

word embeddings, e.g., GloVe and word2vec, are typically

learned from large-scale text corpora by modeling textual

co-occurrences. However, text often consists of interpreta-

tions of concepts or events rather than a description of vi-

sual appearance. This limits the ability of text-only word

embeddings to represent visual concepts.

To address this shortcoming, we propose to gather co-

occurrence statistics of words based on images and learn

word embeddings from these visual co-occurrences. Con-

cretely, two words co-occur visually if both words are ap-

plicable to the same image or image region. We use four

types of co-occurrences as shown in Fig. 1: (1) Object-

Region Object Words Attribute Words

man, person, adult, mammal muscular, smiling

woman, person, adult, mammal lean, smiling

table, tablecloth, furniture striped, oval

rice, carbohydrates, food white, grainy, cooked

salad, roughage, food leafy, chopped, healthy, red, green

glass, glassware, utensil clear, transparent, reflective, tall

plate, crockery, utensil ceramic, white, round, circular

fork, cutlery, utensil metallic, shiny, reflective

spoon, cutlery, utensil serving, metallic, shiny, reflective

Type Visual Co-occurrences

Object-Attribute salad-chopped | table-oval | rice-white | salad-healthy 

| glass-clear | plate-ceramic | fork-metallic …

Attribute-Attribute grainy-cooked | green-leafy | leafy-healthy | clear-

transparent | metallic-shiny | shiny-reflective …

Context man-woman | person-table | fork-spoon | plate-glass | 

table-tablecloth | rice-salad | plate-food …

Object-Hypernym man-mammal | woman-adult | table-furniture | rice-

food | glass-utensil | fork-utensil | fork-cutlery …

Figure 1. Visual co-occurrences are a rich source of informa-

tion for learning word meanings. The figure shows regions an-

notated with words and attributes in an image, and the four types

of visual co-occurrences used for learning ViCo embeddings.

Attribute co-occurrence between an object in an image re-

gion and the region’s attributes; (2) Attribute-Attribute co-

occurrence of a region; (3) Context co-occurrence which

captures joint object appearance in the same image; and (4)

Object-Hypernym co-occurrence between a visual category

and its hypernym (super-class).

Ideally, for reliable visual co-occurrence modeling of a

sufficiently large vocabulary (a vocabulary size of 400K is

typical for text-only embeddings), a dataset with all applica-

ble vocabulary words annotated for each region in an image

is required. While no visual dataset exists with such exhaus-
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tive annotations (many non-annotated words may still be

applicable to an image region), large scale datasets like Vi-

sualGenome [17] and ImageNet [8] along with their Word-

Net [32] synset annotations provide a good starting point.

We use ImageNet annotations augmented with WordNet

hypernyms to compute Object-Hypernym co-occurrences

while the remaining types of co-occurrence are computed

from VisualGenome’s object and attribute annotations.

To learn ViCo, i.e., word embeddings from Visual Co-

occurrences, we could concatenate GloVe-like embeddings

trained separately for each co-occurrence type via a log-

bilinear model. However, in this naı̈ve approach, the di-

mensionality of the learned embeddings scales linearly with

the number of co-occurrence types. To avoid this linear

scaling, we extend the log-bilinear model by formulating a

multi-task problem, where learning embeddings from each

co-occurrence type constitutes a different task with com-

pact trainable embeddings shared among all tasks. In this

formulation the embedding dimension can be chosen inde-

pendently of the number of co-occurrence types.

To test ViCo’s ability to capture similarities and differ-

ences between visual concepts, we analyze performance

in an unsupervised clustering, supervised partitioning (see

supplementary material), and a zero-shot-like visual gener-

alization setting. The clustering analysis is performed on

a set of most frequent words in VisualGenome which we

manually label with coarse and fine-grained visual cate-

gories. For the zero-shot-like setting, we use CIFAR-100

with different splits of the 100 categories into seen and un-

seen sets. In both cases, ViCo augmented GloVe outper-

forms GloVe, random vectors, vis-w2v, or their combina-

tions. Through a qualitative analogy question answering

evaluation, we also find ViCo embedding space to better

capture relations between visual concepts than GloVe.

We also evaluate ViCo on five downstream tasks – a dis-

criminative attributes task, and four vision-language tasks.

The latter includes Caption-Image Retrieval, VQA, Refer-

ring Expression Comprehension, and Image Captioning.

Systems using ViCo outperform those using GloVe for al-

most all tasks and metrics. While learned embeddings are

typically believed to be important for vision-language tasks,

somewhat surprisingly, we find random embeddings com-

pete tightly with learned embeddings on all vision-language

tasks. This suggests that either by nature of the tasks, model

design, or simply training on large datasets, the current

state-of-the-art vision-language models do not benefit much

from learned embeddings. Random embeddings perform

significantly worse than learned embeddings in our cluster-

ing, partitioning, and zero-shot analysis, as well as the dis-

criminative attributes task, which does not involve images.

To summarize our contributions: (1) We develop a multi-

task method to learn a word embedding from multiple

types of co-occurrences; (2) We show that the embeddings

learned from multiple visual co-occurrences, when com-

bined with GloVe, outperform GloVe alone in unsupervised

clustering, supervised partitioning, and zero-shot-like anal-

ysis, as well as on multiple vision-language tasks; (3) We

find that performance of supervised vision-language models

is relatively insensitive to word embeddings, with even ran-

dom embeddings leading to nearly the same performance

as learned embeddings. To the best of our knowledge, our

study provides the first empirical evidence of this unintu-

itive behavior for multiple vision-language tasks.

2. Related Work

Here we describe non-associative, associative, and the

most recent contextual models of word representation.

Non-Associative Models. Semantic Differential (SD) [34]

is among the earliest attempts to obtain vector representa-

tions of words. SD relies on human ratings of words on

50 scales between bipolar adjectives, such as ‘happy-sad’

or ‘slow-fast.’ Osgood et al. [34] further reduced the 50

scales to 3 orthogonal factors. However, the scales were

often vague (e.g., is the word ‘coffee’ ‘slow’ or ‘fast’)

and provided a limited representation of the word mean-

ing. Another approach involved acquiring word similarity

annotations followed by applying Multidimensional Scal-

ing (MDS) [21] to obtain low dimensional (typically 2-4)

embeddings and then identifying meaningful clusters or in-

terpretable dimensions [45]. Like SD, the MDS approach

lacked representation power, and embeddings and their in-

terpretations varied based on words (e.g., food names [45],

animals [44], etc.) to which MDS was applied.

Associative Models. The hypothesis underlying associative

models is that word-meaning may be derived by modeling

a word’s association with all other words. Early attempts

involved factorization of word-document [7] or word-

word [26] co-occurrence matrices. Since raw co-occurrence

counts can span several orders of magnitude, transforma-

tions of the co-occurrence matrix based on Positive Point-

wise Mutual Information (PPMI) [4] and Hellinger dis-

tance [22] have been proposed. Recent neural approaches

like the Continuous Bag-of-Words (CBOW) and the Skip-

Gram models [29, 31, 30] learn from co-occurrences in lo-

cal context windows as opposed to global co-occurrence

statistics. Unlike global matrix factorization, local con-

text window based approaches use co-occurrence statistics

rather inefficiently because of the requirement of scanning

context windows in a corpus during training but performed

better on word-analogy tasks. Levy et al. [24] later showed

that Skip-Gram with negative-sampling performs implicit

matrix factorization of a PMI word-context matrix.

Our work is most closely related to GloVe [37] which

combines the efficiency of global matrix factorization ap-

proaches with the performance obtained from modelling lo-

cal context. We extend GloVe’s log-bilinear model to simul-

taneously learn from multiple types of co-occurrences. We
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(ii) Multi-task Log-bilinear

Learning a shared, more compact embedding 

across different co-occurrence types

Figure 2. Log-bilinear models and our multi-task extension. We show loss computation of different approaches for learning word

embeddings wi and wj for words i and j. The embeddings are denoted by colored vertical bars. (i) shows GloVe’s log-bilinear model.

(ii) is our multi-task extension to learn from multiple co-occurrence matrices. Word embeddings wi and wj are projected into a dedicated

space for each co-occurrence type t through transformation φt. Log-bilinear losses are computed in the projected embedding spaces.

(iii) shows an approach where the different colored regions of wi (or wj) are allocated to learn from different co-occurrence types. This

approach, equivalent to training separate embeddings followed by concatenation, can be implemented in our multi-task formulation using

a select transform (Tab. 1). Tab. 4 shows that an appropriate choice of φ (e.g., linear) in the multi-task framework leads to more compact

embeddings than (iii) without sacrificing performance since the correlation between different co-occurrence types is utilized.

also demonstrate that visual datasets annotated with words

are a rich source of co-occurrence information that comple-

ments the representations learned from text corpora alone.

Visual Word Embeddings. There is some work on incor-

porating image representations into word embeddings. vis-

w2v [18] uses abstract (synthetic) scenes to learn visual re-

latedness. The scenes are clustered and cluster membership

is used as a surrogate label in a CBOW framework. Ab-

stract scenes have the advantage of providing good seman-

tic features for free but are limited in their ability to match

the richness and diversity of natural scenes. However, nat-

ural scenes present the challenge of extracting good seman-

tic features. Our approach uses natural scenes but bypasses

image feature extraction by only using co-occurrences of

annotated words. ViEW [13] is another approach to visu-

ally enhance existing word embeddings. An autoencoder is

trained on pre-trained word embeddings while matching in-

termediate representations to visual features extracted from

a convolutional network trained on ImageNet. ViEW is also

limited by the requirement of good image features.

Contextual Models. Embeddings discussed so far repre-

sent individual words. However, many language under-

standing applications demand representations of words in

context (e.g., in a phrase or sentence) which in turn requires

to learn how to combine word or character level represen-

tations of neighboring words or characters. The past year

has seen several advances in contextualized word represen-

tations through pre-training on language models such as

ELMo [39], OpenAI GPT [42], and BERT [9]. However,

building mechanisms for representing context is orthogonal

to our goal of improving representations of individual words

(which may be used as input to these models).

3. Learning ViCo

We describe the GloVe formulation for learning em-

beddings from a single co-occurrence matrix in Sec. 3.1

and introduce our multi-task extension to learn embeddings

jointly from multiple co-occurrence matrices in Sec. 3.2.

Sec. 3.3 describes how co-occurrence count matrices are

computed for each of the four co-occurrence types.

3.1. GloVe: Log­bilinear Model

Let Xij denote the co-occurrence count between words

i and j in a text corpus. Also let N be the list of word pairs

with non-zero co-occurrences. GloVe learns d-dimensional

embeddings wi ∈ R
d for all words i by optimizing

min
w,b

∑

(i,j)∈N

f(Xij)(w
T
i wj + bi + bj − logXij)

2, (1)

where f : R → R is a weighting function that assigns lower

weight to less frequent, noisy co-occurrences and bi is a

learnable bias term for word i.
Intuitively, the program in Eq. (1) learns word em-

beddings such that for any word pair with non-zero co-

occurrence, the dot product wT
i wj approximates the log

co-occurrence count up to an additive constant. The word

meaning is derived by simultaneously modeling the degrees

of association of a single word with a large number of other

words [33]. We also refer the reader to [37] for more details.

Note the slight difference between the objective in

Eq. (1) and the original GloVe objective: GloVe replaces wj

and bj with w̃j (context vector) and b̃j which are also train-

able. The GloVe vectors are obtained by averaging wi and

w̃i. However, as also noted in [37], given the symmetry in

7427



Transforms d dt φt

select (200) 200 50 ∀ t

φt(w) = [w[it0], · · · , w[it49]]
where {it0, · · · , i

t
49} are indices

pre-allocated for t in {0, · · · , 200}

linear (50) 50 50 ∀ t
φt(w) = Atw

where At ∈ R
50×50

linear (100) 100 50 ∀ t
φt(w) = Atw

where At ∈ R
50×100

linear (200) 200 50 ∀ t
φt(w) = Atw

where At ∈ R
50×200

Table 1. Description and parametrization of transforms.

φt : R
d → R

dt is a transform for co-occurrence type t ∈ T .

select corresponds to approach (iii) in Fig. 2 that concatenates sep-

arately trained dt dimensional embeddings.

the objective, both vectors should ideally be identical. We

did not observe a significant change in performance when

using separate word and context vectors.

3.2. Multi­task Log­bilinear Model

We now extend the log-bilinear model described above

to jointly learn embeddings from multiple co-occurrence

count matrices Xt, where t ∈ T refers to a type from the set

of types T . Also let Nt and Zt be the list of word pairs with

non-zero and zero co-occurrences of type t respectively. We

learn ViCo embeddings wi ∈ R
d for all words i by mini-

mizing the following loss function

∑

t∈T

∑

(i,j)∈Nt

(φt(wi)
Tφt(wj) + bti + btj − logXt

ij)
2 +

∑

t∈T

∑

(i′,j′)∈Zt

max(0, φt(wi′)
Tφt(wj′) + bti′ + btj′). (2)

Here φt : R
d → R

dt is a co-occurrence type-specific

transformation function that maps ViCo embeddings to

a type-specialized embedding space. bti is a learned bias

term for word i and type t. We set function f(X) in

Eq. (1) to the constant 1 for all X . Next, we discuss the

transformations φt, benefits of capturing different types

of co-occurrences, use of the second term in Eq. (2), and

training details. Fig. 2 illustrates (i) GloVe and versions of

our model (ii,iii).

Transformations φt. To understand the role of the trans-

formations φt in learning from multiple co-occurrence ma-

trices, consider the naı̈ve approach of concatenating |T | dt-
dimensional word embeddings learned separately for each

type t using Eq. (1). Such an approach would yield an em-

bedding with d ≥ |T |mint dt dimensions. For instance,

4 co-occurrence types, each producing embeddings of size

dt = 50, leads to d = 200 dimensional final embeddings.

Thus, a natural question arises – Is it possible to learn a

more compact representation by utilizing the correlations

between different co-occurrence types?

Word Pair ViCo Obj-Attr Attr-Attr Obj-Hyp Context GloVe

crouch / squat 0.61 0.74 0.72 0.18 0.25 0.05

sweet / dessert 0.66 0.78 0.76 0.56 0.79 0.43

man / male 0.71 0.98 0.8 0.38 1 0.34

purple / violet 0.75 0.93 1 0.24 0.03 0.52

hosiery / sock 0.52 0.27 0.18 0.87 0.07 0.23

aeroplane / aircraft 0.73 0.43 0.07 0.87 0.75 0.43

bench / pew 0.63 0.67 0.09 0.79 -0.14 0.1

keyboard / mouse 0.19 0.63 0.19 0.09 0.95 0.52

laptop / desk 0.39 0.23 0.24 0.1 0.94 0.28

window / door 0.59 0.46 0.35 0.53 0.93 0.67

hair / blonde 0.16 0.56 0.32 -0.15 0.17 0.51

thigh / ankle 0.09 0.19 0.03 0.01 0.39 0.74

garlic / onion 0.36 -0.03 0.3 0.37 0.56 0.77

driver / car 0.27 0.16 0.26 0.12 0.53 0.71

girl / boy 0.41 0.38 0.22 0.44 0.74 0.83

Figure 3. Rich sense of relatedness through multiple co-

occurrences. Different notions of word relatedness exist but cur-

rent word embeddings do not provide a way to disentangle those.

Since ViCo is learned from multiple types of co-occurrences with

dedicated embedding spaces for each (obtained through transfor-

mations φt), it can provide a richer sense of relatedness. The

figure shows cosine similarities computed in GloVe, ViCo(linear)

and embedding spaces dedicated to different co-occurrence types

(components of ViCo(select)). For example, ‘hosiery’ and ‘sock’

are related through an object-hypernym relation but not related

through object-attribute or a contextual relation. ‘laptop’ and

‘desk’ on the other hand are related through context.

Eq. (2) is a multi-task learning formulation where learn-

ing from each type of co-occurrence constitutes a different

task. Hence, φt is equivalent to a task-specific head that

projects the shared word embedding w ∈ R
d to a type-

specialized embedding space φt(w) ∈ R
dt . A log-bilinear

model equivalent to Eq. (1) is then applied for each co-

occurrence type in the corresponding specialized embed-

ding space. We learn the embeddings w and parameters of

φt simultaneously for all t in an end-to-end manner.

With this multi-task formulation the dimensions of w
can be chosen independently of |T | or dt. Also note that the

new formulation encompasses the naı̈ve approach which is

implemented in this framework by setting d =
∑

t dt, and

φt as a slicing operation that ‘selects’ dt non-overlapping

indices allocated for type t. In our experiments, we

evaluate this naı̈ve approach and refer to it as the select

transformation. We also assess linear transformations of

different dimensions as described in Tab. 1. We find that

100 dimensional ViCo embeddings learned with linear

transform achieve the best performance vs. compactness

trade-off.

Role of max term. Optimizing only the first term given in

Eq. (2) can lead to accidentally embedding a word pair from

Zt (zero co-occurrences) close together (high dot product).

To suppress such spurious similarities, we include the max
term which encourages all word pairs (i′, j′) ∈ Zt to have

a small predicted log co-occurrence

log X̃t
i′j′ = φt(wi′)

Tφt(wj′) + bti′ + btj′ . (3)
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Obj-Attr Attr-Attr Obj-Hyp Context Overall

Unique Words 15, 548 11, 893 11, 981 25, 451 35, 476

Non-zero entries

(in millions)
1.37 1.37 0.61 8.12 11.48

Table 2. Co-occurrence statistics showing the number of words

and millions of non-zero entries in each co-occurrence matrix. For

reference, GloVe uses a vocabulary of 400, 000 words with 8-40

billion non-zero entries.

In particular, the second term in the objective linearly pe-

nalizes positive predicted log co-occurences of word-pairs

that do not co-occur.

Training details. Pennington et al. [37] report Adagrad to

work best for GloVe. We found that Adam leads to faster

initial convergence. However, fine-tuning with Adagrad

further decreases the loss. For both optimizers, we use

a learning rate of 0.01, a batch size of 1000 word pairs

sampled from Nt and Zt each for all t, and no weight decay.

Multiple notions of relatedness. Learning from multiple

co-occurrence types leads to a richer sense of relatedness

between words. Fig. 3 shows that the relationship between

two words may be better understood through similarities

in multiple embedding spaces than just one. For example,

‘window’ and ‘door’ are related because they occur in con-

text in scenes, ‘hair’ and ‘blonde’ are related through an

object-attribute relation, ‘crouch’ and ‘squat’ are related be-

cause both attributes apply to similar objects, etc.

3.3. Computing Visual Co­occurrence Counts

To learn meaningful word embeddings from visual co-

occurrences, reliable co-occurrence count estimates are cru-

cial. We use Visual Genome and ImageNet for estimating

visual co-occurrence counts. Specifically, we use object

and attribute synset (set of words with the same meaning)

annotations in VisualGenome to get Object-Attribute (oa),

Attribute-Attribute (aa), and Context (c) co-occurrence

counts. ImageNet synsets and their ancestors in WordNet

are used to compute Object-Hypernym (oh) counts. Tab. 2

shows the number of unique words and non-zero entries in

each co-occurrence matrix.

Let T = {oa, aa, c, oh} denote the set of four co-

occurrence types and Xt
ij denote the number of co-

occurrences of type t ∈ T between words i and j. We

denote a synset and its associated set of words as S . All co-

occurrences are initialized to 0. We now describe how each

co-occurrence matrix Xt is computed.

• Let O and A be the sets of object and attribute synsets

annotated for an image region. For each region in Vi-

sualGenome, we increment Xoa
ij by 1, for each word

pair (i, j) ∈ So×Sa, and for all synset pairs (So,Sa) ∈

O ×A. Xoa
ji is also incremented unless i = j.

• For each region in VisualGenome, we increment Xaa
ij

by 1, for each word pair (i, j) ∈ Sa1
×Sa2

, and for all

synset pairs (Sa1
,Sa2

) ∈ A×A.

• Let C be the union of all object synsets annotated in

an image. For each image in VisualGenome, Xc
ij is

incremented by 1, for each word pair (i, j) ∈ Sc1 ×
Sc2 , and for all synset pairs (Sc1 ,Sc2) ∈ C × C.

• Let H be a set of object synsets annotated for an image

in ImageNet and its ancestors in WordNet. For each

each image in ImageNet, Xoh
ij is incremented by 1, for

each word pair (i, j) ∈ Sh1
× Sh2

, and for all synset

pairs (Sh1
,Sh2

) ∈ H ×H.

4. Experiments

We analyze ViCo embeddings with respect to the fol-

lowing properties: (1) Does unsupervised clustering re-

sult in a natural grouping of words by visual concepts?

(Sec. 4.1); (2) Do the word embeddings enable transfer of

visual learning (e.g., visual recognition) to classes not seen

during training? (Sec. 4.2); (3) How well do the embed-

dings perform on downstream applications? (Sec. 4.3); (4)

Does the embedding space show word arithmetic properties

(land− car + aeroplane = sky)? (Sec. 4.4).1

Data for clustering analysis. To answer (1) we manu-

ally annotate 495 frequent words in VisualGenome with 13
coarse (see legend in the t-SNE plots in Fig. 4) and 65 fine

categories (see appendix for the list of categories).

Data for zero-shot-like analysis. To answer (2), we

use CIFAR-100 [20]. We generate 4 splits of the 100 cat-

egories into disjoint Seen (categories used for training vi-

sual classifiers) and Unseen (categories used for evaluation)

sets. We use the following scheme for splitting: The list of

5 sub-categories in each of the 20 coarse categories (pro-

vided by CIFAR) is sorted alphabetically and the first k cat-

egories are added to Seen and the remaining to Unseen for

k ∈ {1, 2, 3, 4}.

4.1. Unsupervised Clustering Analysis

The main benefit of word vectors over one-hot or ran-

dom vectors is the meaningful structure captured in the

embedding space: words that are closer in the embedding

space are semantically similar. We hypothesize that ViCo

represents similarities and differences between visual cate-

gories that are missing from GloVe.

Qualitative evidence to support this hypothesis can be

found in t-SNE plots shown in Fig. 4, where concatenation

of GloVe and ViCo embeddings leads to tighter, more ho-

mogenous clusters of the 13 coarse categories than GloVe.

1We also perform a supervised partitioning analysis which is included

in the supplementary material. The results show that a supervised classifi-

cation algorithm partitions words into visual categories more easily in the

ViCo embedding space than in the GloVe or random vector space.
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(a) GloVe+ViCo(linear) (b) GloVe (c) Fine Categories (d) Coarse Categories

t-SNE Plots Clustering Analysis

Figure 4. Unsupervised Clustering Analysis. (a,b) Qualitative evaluation with t-SNE: Plots show that ViCo augmented GloVe results in

tighter, more homogenous clusters than GloVe. Marker shape encodes the annotated coarse category and color denotes if the word is used

more frequently as an object or an attribute; (c,d) Quantitative evaluation: Plots show clustering performance of different embeddings

measured through V-Measure at different number of clusters. All ViCo based embeddings outperform GloVe for both fine and coarse

annotations (Sec. 4.1). See Tab. 3 and Tab. 4 for average performance across cluster numbers. Best viewed in color on a screen.

To test the hypothesis quantitatively, we cluster word

embeddings with agglomerative clustering (cosine affinity

and average linkage) and compare to the coarse and fine

ground truth annotations using V-Measure which is the har-

monic mean of Homogeneity and Completeness scores. Ho-

mogeneity is a measure of cluster purity, assessing whether

all points in the same cluster have the same ground truth

label. Completeness measures whether all points with the

same label belong to the same cluster2.

Plots (c,d) in Fig. 4 compare random vectors, GloVe,

variants of ViCo and their combinations (concatenation)

for different number of clusters using V-Measure. Aver-

age performance across different cluster numbers is shown

in Tab. 3 and Tab. 4. The main conclusions are as follows:

ViCo clusters better than other embeddings. Tab. 3

shows that ViCo alone outperforms GloVe, random, and

vis-w2v based embeddings. GloVe+ViCo improves perfor-

mance further, especially for coarse categories.

WordNet is not the sole contributor to strong perfor-

mance of ViCo. To verify that ViCo’s gains are not sim-

ply due to the hierarchical nature of WordNet, we evalu-

ate a version of ViCo trained on co-occurrences computed

without using WordNet, i.e., using raw word annotations

in VisualGenome instead of synset annotations and with-

out Object-Hypernym co-occurrences. Tab. 3 shows that

GloVe+ViCo(linear,100,w/o WordNet) outperforms GloVe

for both coarse and fine categories on both metrics.

ViCo outperforms existing visual word embeddings.

Tab. 3 evaluates performance of existing visual word em-

beddings which are learned from abstract scenes [18]. wiki

and coco are different versions of vis-w2v depending on the

dataset (Wikipedia or MS-COCO [25, 5]) used for train-

ing word2vec for initialization. After initialization, both

models are trained on an abstract scenes (clipart images)

dataset [56]. ViCo(linear,100) outperforms both of these

embeddings. GloVe+vis-w2v-wiki performs similarly to

2Analysis with other metrics and methods yields similar conclusions

and is included in the supplementary material.

GloVe and GloVe+vis-w2v-wiki-coco performs only slightly

better than GloVe, showing that the majority of the informa-

tion captured by vis-w2v may already be present in GloVe.

Learned embeddings significantly outperform ran-

dom vectors. Tab. 3 shows that random vectors

perform poorly in comparison to learned embeddings.

GloVe+random performs similarly to GloVe or worse. This

implies that gains of GloVe+ViCo over GloVe are not just an

artifact of increased dimensionality.

Linear achieves similar performance as Select with

fewer dimensions. Tab. 4 illustrates the ability of the

multi-task formulation to learn a more compact represen-

tatio than select (concatenating embeddings learned from

each co-occurrence type separately) without sacrificing per-

formance. 50, 100, and 200 dimensional ViCo embed-

dings learned with linear transformations, all achieve per-

formance similar to select.

4.2. Zero­Shot­like Analysis

The ability of word embeddings to capture relations

between visual categories enables to generalize visual

models trained on limited visual categories to larger sets

unseen during training. To assess this ability, we evaluate

embeddings on their zero-shot-like object classification

performance using the CIFAR-100 dataset. Note that our

zero-shot-like setup is slightly different from a typical

zero-shot setup because even though the visual classifier

is not trained on unseen class images in CIFAR, anno-

tations associated with images of unseen categories in

VisualGenome or ImageNet may be used to compute word

co-occurrences while learning word embeddings.

Model. Let f(I) ∈ R
n be the features extracted from im-

age I using a CNN and let wc ∈ R
m denote the word em-

bedding for class c ∈ C. Let g : R
m → R

n denote a

function that projects word embeddings into the space of

image features. We define the score sc(I) for class c as

cosine(f(I), g(wc)), where cosine(·) is the cosine similar-
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Embeddings Dim. Fine Coarse

random(100) 100 0.34 0.15

GloVe 300 0.50 0.52

GloVe+random(100) 300+100 0.50 0.49

vis-w2v-wiki [18] 200 0.41 0.43

vis-w2v-coco [18] 200 0.45 0.4

GloVe+vis-w2v-wiki 300+200 0.5 0.52

GloVe+vis-w2v-coco 300+200 0.52 0.55

ViCo(linear,100) 100 0.60 0.59

GloVe+ViCo(linear,100) 300+100 0.61 0.65

GloVe+ViCo(linear,100, w/o WN) 300+100 0.54 0.58

Table 3. Comparing ViCo to other embeddings. All ViCo

based embeddings outperform GloVe and random vectors.

ViCo(linear,100) also outperforms vis-w2v. GloVe+vis-w2v per-

forms similarly to GloVe while GloVe+ViCo outperforms both

GloVe and ViCo. Using WordNet yields healthy performance

gains but is not the only contributor to performance since

GloVe+ViCo(linear,100, w/o WN) also outperforms GloVe. Best

and second best numbers are highlighted in each column.

Embeddings Dim. Fine Coarse

ViCo(linear,50) 50 0.57 0.56

ViCo(linear,100) 100 0.60 0.59

ViCo(linear,200) 200 0.59 0.60

ViCo(select,200) 200 0.59 0.60

GloVe 300 0.50 0.52

GloVe+ViCo(linear,50) 300+50 0.60 0.66

GloVe+ViCo(linear,100) 300+100 0.61 0.65

GloVe+ViCo(linear,200) 300+200 0.60 0.65

GloVe+ViCo(select,200) 300+200 0.57 0.63

Table 4. Effect of transformations on clustering performance.

The table compares average performance across number of clus-

ters. The linear variants achieve performance similar to select with

fewer dimensions. In fact, when used in combination with GloVe,

linear variants outperform select. Best and second best numbers

are highlighted in each column.

ity. The class probabilities are defined as

pc(I) =
exp(sc(I)/ǫ)∑

c′∈C exp(sc′(I)/ǫ)
, (4)

where ǫ is a learnable temperature parameter. In our

experiments, f(I) is a 64-dimensional feature vector

produced by the last linear layer of a 34-layer ResNet

(modified to accept 32 × 32 CIFAR images) and g is a

linear transformation.

Learning. The model (parameters of f , g, and ǫ) is

trained on images from the set of seen classes S ⊂ C. We

use the Adam [17] optimizer with a learning rate of 0.01.

The model is trained with a batch size of 0.01 for 50 epochs.

Model Selection and Evaluation. The best model (among

iteration checkpoints) is selected based on seen class ac-

curacy (classifying only among classes in S) on the test

set. The selected model is evaluated on unseen category

( U = C \ S) prediction accuracy computed on the test set.

Fig. 5 compares chance performance (1/|U|), random

vectors, GloVe, and GloVe+ViCo on four seen/unseen splits.

Figure 5. Zero-Shot Analysis. The histogram compares the trans-

fer learning ability of a simple word embedding based object clas-

sification model. The x-axis denotes the number of CIFAR-100

classes (m) used during training. During test, we evaluate the

classifier on its ability to correctly classify among the remaining

(100−m) unseen classes. Results show that GloVe+ViCo leads to

better transfer to unseen classes than GloVe alone (Sec. 4.2).

We show mean and standard deviation computed across

four runs (7 × 4 × 4 = 112 models trained in all). The

key conclusions are as follows:

ViCo generalizes to unseen classes better than GloVe.

ViCo based embeddings, especially 200-dim. select and lin-

ear variants show healthy gains over GloVe. Note that this is

not just due to higher dimensions of the embeddings since

GloVe+random(200) performs worse than GloVe.

Learned embeddings significantly outperform ran-

dom vectors. Random vectors alone achieve close to

chance performance, while concatenating random vectors

to GloVe degrades performance.

Select performs better than Linear. Compression to

100-dimensional embeddings using linear transformation

shows a more noticeable drop in performance as compared

to the select setting. However, GloVe+ViCo(linear,100) still

outperforms GloVe in 3 out of 4 splits.

4.3. Downstream Task Evaluation

We now evaluate ViCo embeddings on a range of down-

stream tasks. Generally, we expect tasks requiring bet-

ter word representations of objects and attributes to bene-

fit from our embeddings. When using existing models, we

initialize and freeze word embeddings so that performance

changes are not due to fine-tuning embeddings of different

dimensions. The rest of the model is left untouched except

for the dimensions of the input layer where the size of the

input features needs to match the embedding dimension.

Tab. 5 compares performance of embeddings on a word-

only discriminative attributes task and 4 vision-language

tasks. On all tasks GloVe+ViCo outpeforms GloVe and

GloVe+random. Unlike the word-only task which depends

solely on word representations, vision-language tasks are

less sensitive to word embeddings, with performance of ran-
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Discr. Attr. Im-Cap Retrieval VQA Ref. Exp. Image Captioning

Avg. F1 Recall@1 Accuracy Loc. Accuracy Captioning Metrics

Embeddings Dim. m± σ Im2Cap Cap2Im Overall Y/N Num. Other Val TestA TestB B1 B4 C S

random 300 50.03 ± 2.26 43.1 30.6 66.1 82.0 44.8 57.5 71.3 73.5 66.3 0.714 0.296 0.910 0.170

GloVe 300 63.85 ± 0.04 44.8 33.5 67.5 83.8 46.5 58.3 72.2 75.3 66.8 0.708 0.290 0.891 0.167

GloVe + random 300+100 63.88 ± 0.03 44.3 34.4 67.5 84.1 45.9 58.2 72.5 75.1 67.5 0.707 0.288 0.881 0.166

GloVe + ViCo (linear) 300+100 64.46 ± 0.17 46.3 34.2 67.7 84.4 46.6 58.4 72.7 75.5 67.5 0.711 0.291 0.894 0.168

Table 5. Comparing ViCo to GloVe and random vectors. GloVe+ViCo(linear) outperforms GloVe and GloVe+random for all tasks and

outperforms random for all tasks except Image Captioning. While random vectors perform close to chance on the word-only task, they

compete tightly with learned embeddings on vision-language tasks. This suggests that vision-language models are relatively insensitive to

the choice of word embeddings. Best and second best numbers in each column are highlighted.

dom embeddings approaching learned embeddings 3.

Discriminative Attributes [19] is one of the SemEval

2018 challenges. The task requires to identify whether an

attribute word discriminates between two concept words.

For example, the word “red” is a discriminative attribute

for word pair (“apple”, “banana”) but not for (“apple”,

“cherry”). Samples are presented as tuples of attribute and

concept words and the model makes a binary prediction.

Performance is evaluated using class averaged F1 scores.

Let w1, w2, and a be the word embeddings (GloVe or

ViCo) for the two concept words and the attribute word.

We compute the scores sg and sv for GloVe and ViCo us-

ing function s(a, w1, w2) = cosine(a, w1)− cosine(a, w2),
where cosine(·) is the cosine similarity. We then learn a lin-

ear SVM over sg for the GloVe only model and over sg and

sv for the GloVe+ViCo model.

Caption-Image Retrieval is a classic vision-language

task requiring a model to retrieve images given a caption or

vice versa. We use the open source VSE++ [10] implemen-

tation which learns a joint embedding of images and cap-

tions using a Max of Hinges loss that encourages attending

to hard negatives and is geared towards improving top-1 Re-

call. We evaluate the model using Recall@1 on MS-COCO.

Visual Question Answering [3, 11] systems are re-

quired to answer questions about an image. We com-

pare the performance of embeddings using Pythia [55, 15]

which uses bottom-up top-down attention for computing a

question-relevant image representation. Image features are

then fused with a question representation using a GRU oper-

ating on word embeddings and fed into an answer classifier.

Performance is evaluated using overall and by-question-

type accuracy on the test-dev split of the VQA v2.0 dataset.

Referring Expression Comprehension consists of lo-

calizing an image region based on a natural language de-

scription. We use the open source implementation of MAt-

tNet [54] to compare localization accuracy with different

embeddings on the RefCOCO+ dataset using the UNC split.

MAttNet uses an attention mechanism to parse the refer-

ring expression into phrases that inform the subject’s ap-

pearance, location, and relationship to other objects. These

phrases are processed by corresponding specialized local-

ization modules. The final region scores are a linear combi-

3See supplementary material for our hypothesis and test for why ran-

dom vectors work well for vision-language tasks.

nation of module scores using predicted weights.

Image Captioning involves generating a caption given

an image. We use the Show and Tell model of Vinyals et

al. [51] which feeds CNN extracted image features into an

LSTM followed by beam search to sample captions. We

report BLEU1 (B1), BLEU4 (B4), CIDEr (C), and SPICE

(S) metrics [35, 50, 1] on the MS-COCO test set.

4.4. Exploring Embedding Space Structure

Previous work [31] has demonstrated linguistic regulari-

ties in word embedding spaces through analogy tasks solved

using simple vector arithmetics. Fig. 6 shows qualitatively

that ViCo embeddings possess similar properties, capturing

relations between visual concepts well.

Analogy Answer Candidates GloVe ViCo

car:land::aeroplane:? ocean, sky, road, railway ocean sky

clock:circle::tv:? triangle, square, octagon, round triangle square

park:bench::church:? door, sofa, cabinet, pew door pew

sheep:fur::person:? hair, horn, coat, tail coat hair

monkey:zoo::cat:? park, house, church, forest park house

leg:trouser::wrist:? watch, shoe, tie, bandana bandana watch

yellow:banana::red:? strawberry, lemon, mango, orange mango strawberry

rice:white::spinach:? blue, green, red, yellow blue green

train:railway::car:? land, desert, ocean, sky land land

can:metallic::bottle:? wood, glass, cloth, paper glass glass

man:king::woman:? queen, girl, female, adult queen girl

can:metallic::bottle:? wood, plastic, cloth, paper plastic wood

train:railway::car:? road, desert, ocean, sky road ocean

Table 6. Answering Analogy Questions. Out of 30 analogy pair-

ings tested, we found both GloVe and ViCo to be correct 19 times,

only ViCo was correct 8 times, and only Glove was correct 3 times.

Correct answers are highlighted.

5. Conclusion

This work shows that in addition to textual co-

occurrences, visual co-occurrences are a surprisingly

effective source of information for learning word represen-

tations. The resulting embeddings outperform text-only

embeddings on unsupervised clustering, supervised parti-

tioning, zero-shot generalization, and various supervised

downstream tasks. We also develop a multi-task extension

of GloVe’s log-bilinear model to learn a compact shared

embedding from multiple types of co-occurrences. Type-

specific embedding spaces learned as part of the model

help provide a richer sense of relatedness between words.
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[36] Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob

Uszkoreit. A decomposable attention model for natural lan-

guage inference. In EMNLP, 2016. 1

[37] Jeffrey Pennington, Richard Socher, and Christopher Man-

ning. Glove: Global vectors for word representation. In

EMNLP, 2014. 2, 3, 5

[38] Matthew E Peters, Waleed Ammar, Chandra Bhagavatula,

and Russell Power. Semi-supervised sequence tagging with

bidirectional language models. ACL, 2017. 1

7433



[39] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gard-

ner, Christopher Clark, Kenton Lee, and Luke S. Zettle-

moyer. Deep contextualized word representations. In

NAACL-HLT, 2018. 3

[40] Bryan A. Plummer, Paige Kordas, M. Hadi Kiapour, Shuai

Zheng, Robinson Piramuthu, and Svetlana Lazebnik. Con-

ditional image-text embedding networks. In ECCV, 2018.

1

[41] Bryan A Plummer, Arun Mallya, Christopher M Cervantes,

Julia Hockenmaier, and Svetlana Lazebnik. Phrase local-

ization and visual relationship detection with comprehensive

image-language cues. In ICCV, 2017. 1

[42] Alec Radford. Improving language understanding by gener-

ative pre-training. 2018. 3

[43] Hannah Rashkin, Maarten Sap, Emily Allaway, Noah A.

Smith, and Yejin Choi. Event2mind: Commonsense infer-

ence on events, intents, and reactions. In ACL, 2018. 1

[44] Lance J Rips, Edward J Shoben, and Edward E Smith. Se-

mantic distance and the verification of semantic relations.

Journal of verbal learning and verbal behavior, 1973. 2

[45] Brian H. Ross and Gregory L. Murphy. Food for thought:

Cross-classification and category organization in a complex

real-world domain. Cognitive Psychology, 1999. 2

[46] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Han-

naneh Hajishirzi. Bidirectional attention flow for machine

comprehension. ICLR, 2017. 1

[47] Kevin J Shih, Saurabh Singh, and Derek Hoiem. Where to

look: Focus regions for visual question answering. In CVPR,

2016. 1

[48] Gabriel Stanovsky, Julian Michael, Luke S. Zettlemoyer, and

Ido Dagan. Supervised open information extraction. In

NAACL-HLT, 2018. 1

[49] Mariya I Vasileva, Bryan A Plummer, Krishna Dusad,

Shreya Rajpal, Ranjitha Kumar, and David Forsyth. Learn-

ing type-aware embeddings for fashion compatibility. In

ECCV, 2018. 1

[50] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi

Parikh. Cider: Consensus-based image description evalua-

tion. In CVPR, 2015. 8

[51] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-

mitru Erhan. Show and tell: A neural image caption gen-

erator. In CVPR, 2015. 8

[52] Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik.

Learning two-branch neural networks for image-text match-

ing tasks. TPAMI, 2019. 1

[53] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot

recognition via semantic embeddings and knowledge graphs.

In CVPR, 2018. 1

[54] Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu,

Mohit Bansal, and Tamara L Berg. Mattnet: Modular at-

tention network for referring expression comprehension. In

CVPR, 2018. 8

[55] Yu Jiang*, Vivek Natarajan*, Xinlei Chen*, Marcus

Rohrbach, Dhruv Batra, and Devi Parikh. Pythia v0.1: the

winning entry to the vqa challenge 2018. arXiv preprint

arXiv:1807.09956, 2018. 1, 8

[56] C Lawrence Zitnick and Devi Parikh. Bringing semantics

into focus using visual abstraction. In CVPR, 2013. 6

7434


