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Abstract

Developing deep learning techniques for geometric data

is an active and fruitful research area. This paper tackles

the problem of sphere-type surface learning by developing a

novel surface-to-image representation. Using this represen-

tation we are able to quickly adapt successful CNN models

to the surface setting.

The surface-image representation is based on a covering

map from the image domain to the surface. Namely, the map

wraps around the surface several times, making sure that

every part of the surface is well represented in the image.

Differently from previous surface-to-image representations,

we provide a low distortion coverage of all surface parts

in a single image. Specifically, for the use case of learning

spherical signals, our representation provides a low distor-

tion alternative to several popular spherical parameteriza-

tions used in deep learning.

We have used the surface-to-image representation to ap-

ply standard CNN architectures to 3D models including

spherical signals. We show that our method achieves state

of the art or comparable results on the tasks of shape re-

trieval, shape classification and semantic shape segmenta-

tion.

1. Introduction

Adapting deep learning methods to geometric data (e.g.,

shapes) is a vibrant research area that has already produced

state of the art algorithms for several geometric learning

tasks (e.g., [32, 33, 38]).

Two prominent approaches are: (i) mapping the geomet-

ric data to tensors (e.g., images) and using off-the-shelf

convolutional neural network (CNN) architectures and op-

timization techniques [38, 45, 36, 25]; and (ii) developing

novel architectures and optimization techniques that are tai-

lored to the geometric data [26, 32, 33]. An important bene-

fit of (i) is in reducing the geometric learning task to an im-

age learning one, allowing to harness the huge algorithmic

∗Equal contribution

progress of neural networks for images directly to geomet-

ric data.

Some previous attempts, following (i), to perform learn-

ing tasks on geometric data use projections to 2D planes,

e.g., by rendering the shapes [38]. Such projections are not

injective and suffer from occlusions, thus often require a

collection of projections for a single shape. Other methods

embed the shape in an encapsulating 3D grid [45, 27]; these

methods require dealing with higher dimensional tensors

and are usually less robust to deformations. Other meth-

ods [36, 25] try to find low distortion 2D mappings to an

image domain. In this case the intrinsic dimensionality of

the data is preserved, however, these maps suffer from high

distortion and/or ignore the difference in the topologies of

the surface (no boundary) and the image (with boundary).

In this paper, we advocate a novel 2D mapping method

for representing sphere-type (genus zero, e.g., the human

model in Figure 1a, left) surfaces as images. The challenge

in using an image to represent a surface has two aspects: ge-

ometrical and topological. Geometrically, a general curved

surface cannot be mapped to a flat domain (i.e., the image)

without introducing a significant distortion. Topologically,

an image has a boundary while sphere-type surfaces do not;

hence, any mapping between the two will introduce cuts and

discontinuities. Furthermore, a naive application of 2D con-

volution to the image would be ambiguous on the surface

(see Figure 2 and Subsection 3.1).

To address these challenges we think of the image as a

periodic domain (i.e., a torus) and relax the notion of a one-

to-one mapping to that of a covering map from the image

domain onto the surface. That is, we construct a mapping

from the image domain to the surface that covers the surface

several times. For example, Figure 1a visualizes a degree-

5 covering map. Meaning, the surface appears 5 times in

the image; note how each part of the surface appears with

low distortion at-least once in the image. The image gen-

erated by our covering map is periodic, namely its left and

right boundaries as well as its bottom and top boundaries

correspond, making the image boundaryless. Importantly,
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since image convolution is well defined on a torus, it will

translate to a continuous convolution-like operator on the

surface [25].

Applying our method to surface learning is easy: use a

covering map to transfer functions of interest over the input

surfaces (e.g., the coordinate functions) to images and apply

one’s favorite CNN with periodic padding.

We tested our method in two scenarios: spherical sig-

nal learning [9, 7], and surface collection learning. For

spherical signal learning, our approach provided state of

the art results among all spherical methods on a shape re-

trieval dataset (SHREC17 [35]) and a shape classification

dataset (ModelNet40 [45]). For surface collection learning,

our method produced state of the art results on a surface

segmentation dataset (Humans [25]).

Our contributions are:

• We introduce a broad family of low distortion surface-

to-toric image representations. The toric image repre-

sentation allows applying off-the-shelf CNNs to gen-

eral genus-zero surfaces.

• In particular, we provide a framework for learning

spherical signals using CNNs.

• We introduce a practical algorithm for computing toric

covers of genus zero surfaces.

2. Previous work

Applying deep learning techniques to geometric data has

proved to be a huge success in the last few years. A wide

variety of methods were suggested, where the most popular

approaches are: volumetric based methods (e.g., [45, 27]),

rendering based methods (e.g., [38, 44, 47]), spectral based

methods (e.g., [5, 10]) and methods that operate directly on

the surface itself (e.g., [26]). A popular related problem is

the problem of learning on point clouds which received a

lot of attention lately (see e.g., [32, 2, 23]).

Here, we restrict our attention to intrinsic or

parameterization-based surface methods and refer the

reader to the above mentioned works and a recent survey

[4] for further information.

Local parameterization. Such methods (e.g., [26, 3,

28]) extract local surface patches and use them in order to

learn point representations. In [26] the authors use local po-

lar coordinates as the patch operator. In a follow-up work,

[3] use projections on oriented anisotropic diffusion kernels,

where [28] learn the patch operator using a Gaussian mix-

ture model. In contrast to these works, we employ a global

parameterization which represents the shape using a single

image.

Global parameterization. Other methods use global

parametrization of the surface to a canonical domain. [36,

37] use an area-preserving parameterization and map sur-

faces to a planar domain (going through a sphere); the

global area-preserving parameterization cannot cover the

(a)

(b)

Figure 1. (a) A periodic general cover with k = 5 branch points

(colored dots) and degree d = 5 of a human model, computed us-

ing our method. (b) The orbifold cover of [1] with k = 3 branch

points and degree d = 4. Note that the cover in (b) has four (ro-

tated) repetitions of the same mapping; is missing the head and

right arm; and the torso (blue) suffers from a considerable down-

scale.

surface with low distortion everywhere and depends on the

specific cut made on the surface.

The most similar method to ours is [25] that proposes

gluing four copies of the surface into a torus and map it

conformally (i.e., preserving angles) to a flat torus, where

the convolution is well defined. Their map is defined by a

choice of three points on the surface, and suffers from sig-

nificant angle and scale distortion, see Figure 1b (e.g., the

head, right arm and torso). In order to cover each point

on the surface reasonably well, the authors sample multiple

triplets of points from each surface where each triplet fo-

cuses on a different part of the surface. In a follow up work,

[14] use the same parameterization as a surface representa-

tion for Generative Adversarial Networks (GANs) [13]. In

order to deal with the high distortion of each single parame-

terization, the authors devise a multi-chart structure and rely

on given sparse correspondences between the surfaces.
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Convolutions on tangent planes. [42] define convolu-

tions on surfaces by working on the tangent planes. [29]

also define the convolutions on tangent planes and relate

convolutions on nearby points using parallel transport. [30]

define convolutions on surfaces by extending the notion of

a signal on a surface into a directional signal and build lay-

ers that are equivariant to the choice of reference directions.

[16] utilizes 4-rotational symmetric field to define a domain

for convolution on a surface.

Convolutions of spherical signals. Our work targets

learning of general genus zero surfaces. In particular, it

can facilitate learning of spherical signals, a task that has

received growing interest in the last few years. [39, 9, 48]

note that an equirectangular projection of a spherical sig-

nal suffers from large distortions and suggest network ar-

chitectures that try to compensate for these distortions. [6]

perform 2D convolution on spherical strips extracted from

the spherical signal. [17] suggest to define the convolution

of a spherical signal as a linear combination of differen-

tial operators with learned weights. In a different line of

work, [7, 12, 21] propose networks that are invariant to the

natural action of SO(3) on spherical signals. [8] advocate

the notion of gauge equivariance as the correct equivariance

notion on manifolds, and construct gauge equivariant net-

works on spheres.

Other methods. [46] tackle the shape segmentation

problem by a novel architecture that operates on local fea-

tures (such as normals) and global features (such as dis-

tances) and then fuses them together. [22] propose an im-

proved graph neural network model based on the Dirac op-

erator.

3. Preliminaries
In this section we discuss our choice of periodic images

(i.e. images with toric topology) and introduce branched

covering maps, the main mathematical tool used in our ap-

proach.

3.1. Convolutions on flattened spheres

A standard way to apply CNNs to a signal on a sphere-

type surface is to represent it as an image and apply standard

2D convolution. Since representing a sphere as an image

requires cutting and duplicating the cuts, different boundary

segments in the image represent the same segment on the

sphere.

In the case where the transformation in the image do-

main between the two duplicated boundary segments is a

pure translation then the result of applying 2D convolution

at any two matching points on these segments will result in

exactly the same value. In other cases, such as equirectangu-

lar spherical projection [39] or octahedron spherical projec-

tion [31, 36], 2D convolution on two matching points result

in two different values. Figure 2 shows an example where

duplicated image boundary segments are marked with the
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Figure 2. Standard 2D convolution applied to image representa-

tions (bottom row) of spherical topology (top row). In each ex-

ample, the points indicated by P represent the same point on the

sphere. Only for the toric topology the convolution in the image

domain defines a consistent, continuous operator everywhere on

the sphere.

same color arrows; a pair of matching points (marked P)

are shown in each example along with an illustration of a

convolution kernel. Note that only in the toric topology the

kernel is consistent at the duplicated points. A similar point

of view for toric images was suggested in [25]. We extend

it to a more general family for toric images of sphere-type

surfaces.

3.2. Branched covering maps

This section provides a brief introduction to branched

covering maps (for more details see [15]). We start with

a formal definition:

Definition 1. Let X and Y be topological spaces. A map

E : X → Y is a branched covering map if every point

y ∈ Y except for a finite set of points {b1, . . . , bk} has a

neighborhood U ⊆ Y , such thatE−1(U) is a disjoint union

of homeomorphic 1 copies of U .

The set of points {b1, . . . , bk} are called branch points.

A simple example for a branched covering map is

E(z) = zd, for X = Y = C, and for some integer

d. The function E has one branch point at b1 = 0.

Every point y ∈ Y \ {0}, has d distinct pre-images

E−1(y) = {x1, . . . , xd} ⊂ X . However, the point y = 0
has a single pre-image E−1(y) = {0}. We say that the

point y = 0 has d pre-images located at 0, or that 0 is

a pre-image with multiplicity d. The ramification index

of x over E(x) is the multiplicity at x, namely 1 for all

x ∈ E−1(Y \ {0}) and d for x = E−1(b1) = 0. We denote

it as r(x|E(x)). Figure 3b shows this example for d = 4.

In fact, this example captures all the local behaviors of cov-

1A homeomorphism is continuous map with a continuous inverse.
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Figure 3. (a) A branch point b1 (in black) with ramification struc-

ture ρ1 = [2, 1, 3]. Note that all other points, such as the marked

red point, have six distinct pre-images. (b) Shows an example of

a branched covering map with degree 4 on a triangular mesh; The

central point has a single pre-image (above it, also in black). The

map looks like the map z 7→ z4. Each color represents a different

copy of the neighborhood of the branch point. A triangle and its

pre-images are marked with the same letter.

ering maps: around a point x ∈ X with r(x|E(x)) = r the

map E looks like the map z 7→ zr.

Let us give another example: Consider the function

E(z) = z2(z − 7). It has a branch point at y = 0 with

two distinct pre-images. Namely, E−1(0) = {0, 7}. Here,

the ramification index of 0 over E(0) is 2 and the ramifica-

tion index of 7 over E(7) is 1. We say that the ramification

structure of 0 is [2, 1], formally:

Definition 2. Let E : X → Y be a branched covering

map, bi a branch point and li = |E−1(bi)|, the number of

pre-images of bi. The ramification structure of bi is the

multi-set of ramification indices of its pre-images, denoted

by ρi = [ri,1, . . . ri,li ]. The ramification type of E is the

collection of its ramification structures, ρ = [ρ1, . . . , ρk].

Figure 3a depicts a branch point b1 with three distinct

pre-images, l1 = 3, and ramification structure ρ1 = [2, 1, 3].
Note that the ramification structure of a non-branch point is

a trivial multi-set of ones: [1 . . . 1], see e.g., the red dot in

Figure 3a.

The sum of the ramification indices of any point in X
is independent of the choice of the point (see [11], page 44

Proposition 7), namely

li
∑

j=1

ri,j = d. (1)

Lastly, d is called the degree of the covering. Intuitively,

the degree of the covering counts how many timesX covers

Y , or alternatively how many copies of Y can be found in

X .

3.3. Riemann­Hurwitz formula

A key fact about ramification types of branched cover-

ing maps between (boundaryless) surfaces is the Riemann-

 

Figure 4. Construction of the covering map E : I → M .

Hurwitz formula (RH), which connects the genus (i.e.,

number of handles) of the surfaces with the ramification

type. In our case, we map a torus to a sphere-type surface

and get the corresponding RH formula:

k
∑

i=1

li
∑

j=1

(ri,j − 1) = 2d (2)

A quick derivation of this formula is given in the Supple-

mentary

Therefore, the RH formula sets a necessary condition on

the possible ramification types ρ of such branched covering

maps. For example, the ramification type [[2], [2], [2], [2]]
satisfies the RH equations but the ramification type [[2], [2]]
does not (in this case d = 2, k = 2, li = 1), implying

that there is no covering map with this ramification type.

We note that Equations (1) and (2) are necessary but not

sufficient conditions.

4. Approach

Our goal is transferring signals (i.e., functions) from a

sphere-type surface M to the image domain I (i.e., the

flat torus: unit square [0, 1]2 with opposite ends identified).

This is done by constructing a branched covering map

E : I →M (3)

and pulling back the signals to the image using E. That is,

given a signal f : M → R
n that we want to transfer, the

value of a pixel p ∈ I is set to f(E(p)). We represent the

surface M using a triangular mesh.

We build the covering map E : I → M in two steps, as

a composition of two functions:

E = Ψ ◦ Φ

Φ : I → T

Ψ : T →M.

where T is a torus-type surface built out of d copies of M ,

Ψ is a branched covering map, and Φ is a homeomorphism

between the two tori I and T (see Figure 4 for illustration).

4.1. Computing the branched covering map Ψ

In this section we describe how we construct the mesh T
out of the meshM and the branched covering map Ψ : T →
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M . The idea is to cut and glue together several copies of

the input surface M in a way that generates a toric covering

space corresponding to a specific choice of ρ.

First, we choose k branch points b1, . . . , bk from the set

of vertices of M (using farthest point sampling), a degree d
and a valid ramification type ρ satisfying Equations (1)-(2).

Our algorithm then consists of the following steps:

Step (i): We cut the mesh along k disjoint paths, all ema-

nating from the same (arbitrary) vertex v0 in M and ending

at the branch points bi for i ∈ [k]. Figure 5 shows this for

k = d = 5. Topologically, Mdisk is a disk, with all branch

points at its boundary.

Step (ii): Mdisk is then duplicated d times, to form

copies M (1)

disk, . . . ,M
(d)

disk. Figure 5 shows the 5 copies with

v0 as a white dot and the branch points as colored dots.

1

A1B1

2

A2B2

4

A4B4

5

A5B5

3

A3B3

Figure 5. Illustration of the mesh cutting (top-left), and the gluing

algorithm. Branch points are visualized as colored dots.

Step (iii): We glue the d copies of Mdisk to create the

surface T as follows. Consider a branch point bi; it has d
copies located in each of the copies of Mdisk, see e.g., the

blue dots in Figure 5. Denote by Bj and Aj the two bound-

ary edges emanating from the j-th copy of bi. Note that on

the original surface Aj is glued to Bj ; since every Bj′ is a

duplicate ofBj ,Aj can be glued to anyBj′ , j
′ ∈ [d]. There-

fore, to describe the gluing of the edges emanating from bi
we use a permutation σi ∈ Sd (a permutation is a bijection

[d] → [d]): Aj is glued to Bσi(j). The collection of all

permutations (one permutation per branch point)

Σ = {σ1, . . . , σk} (4)

is called the gluing instructions. Given gluing instructions

Σ we use it to stitch the boundary of the d copies ofMdisk to

construct the toric surface T (i.e., genus one). The mapping

Ψ : T → M is then defined by: map v ∈ T to its original

version inM , and extend linearly in each triangle (i.e., face)

of T . Ψ is a well defined branched covering map. The glu-

ing procedure is summarized in Algorithm 1. In Subsection

4.1.1 we describe the algorithm for computing the gluing

instructions given the desired ramification type ρ.

Data: cut mesh copies M (j)

disk, j ∈ [d];
gluing instructions Σ = {σ1, . . . , σk}

Result: The torus T and a branched covering map

Ψ : T →M with ramification type ρ
for every branch point bi, i ∈ [k] do

for every copy j ∈ [d] do

stitch A(i)

j and B(i)

σi(j)

end

end

ψ : T →M is defined by mapping v to the unique

vertex in M that originated v.

Algorithm 1: Gluing algorithm.

4.1.1 Computing the gluing instructions

In this paper we limit our attention to ramification types of

the form

ρ =
[

[1d−r, r]k
]

, (5)

where d is the cover degree, k is the number of branch

points, and r is the maximal multiplicity of the branch

points’ pre-images. The motivation in choosing these ram-

ification types is two-fold: First, we want all branch points

to be treated equally by the cover. Second, applying higher

ramification order improves area distortion of protruding

parts (see e.g., [19]); See Figure 1 and Subsection 4.3 for

an example.

First, let us compute necessary conditions for ρ defined

in (5) to be a feasible ramification type. Equation (1) is

automatically satisfied since d − r + r = d. Plugging ρ in

(2) we get

k(r − 1) = 2d. (6)

This sets a trade-off between r and d: higher values of r,

while reducing distortion of protruding parts would force

higher degree d of the cover, which will produce more

copies of M in the image. Practically, we found that

k = 5, r = 5, d = 10 and k = 6, r = 2, d = 3 are both

good options that strike a good balance between r and d.

To compute gluing instructions Σ we start with k, r, d
satisfying (6). The next theorem (proved in the Supplemen-

tary) provides a necessary and sufficient condition for the

gluing instructions Σ to furnish a cover with ramification

type ρ:

Theorem 1. A set of gluing instructions Σ = {σ1, . . . , σk}
yields a branched covering map with ramification type ρ if

and only if the following conditions hold:

(i) The cycle structure of σi equals the ramification struc-

ture of bi, i.e., ρi = [ri,1, . . . , ri,li ].

(ii) Σ is a product one tuple. That is, σ1 · σ2 · · ·σk = Id.
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(iii) The group G generated by Σ is a transitive subgroup

of Sd. Namely, for each i, j ∈ [d] there exists σ ∈ G
so that j = σ(i).

Theorem 1 indicates that we should search for permuta-

tions σi with prescribed cycle structures. That is, the permu-

tations σi, if exist, are in some prescribed conjugacy classes

of the permutation group. Algorithm 2 (in the Supplemen-

tary) performs such a search, more or less exhaustively, us-

ing conditions (ii) and (iii) to prune options that cannot lead

to a solution Σ.

Since theoretically not all k, r, d satisfying Equation (6)

have a corresponding covering map, Algorithm 2 can ter-

minate without finding gluing instructions. In this case, ac-

cording to Theorem 1 we know that there is no covering

map with ramification type ρ. Nevertheless, it is rare to find

such examples in practice and indeed we did not encounter

such a case in our experiments. In the Supplementary, we

present a table containing the results of Algorithm 2 for any

permissible k, r, d with k ≤ 6, d ≤ 10 so that they can be

used as input to Algorithm 1.

4.2. Flattening the toric surface

The last part of our covering map computation is the

computation of the map Φ : I → T . Equivalently, we

compute Φ−1. To that end we use a version of the Orbifold-

Tutte embedding [1]. We first cut T along the two gener-

ating loops of the torus (using [18], Algorithm 5) to get a

disk-type surface Tdisk. Second, we compute a bijective

piecewise affine map Φ−1 : T → I by solving a sparse

linear system of equations Ax = b, where A ∈ R
m×m

and x, b ∈ R
m×2, and m is the number of vertices in the

disk-like mesh Tdisk. This system is a discrete version of

the Poisson equation [24], see Supplementary for details on

how to construct A, b. We use x to map the vertices of T to

I and extend linearly to get the piecewise affine map Φ−1.

The resulting map is discrete harmonic [24], approx-

imately conformal up to a linear transformation, and as

proven in [1], a bijection.

4.3. Example

Figure 1a depicts the case k = 5, r = 3, d = 5. Thus

ρ =
[

[1, 1, 3]5
]

; every branch point bi has three distinct

pre-images, where two have ramification one, and one with

order-3 ramification. The gluing instructions in this case,

computed using Algorithm 2 in the Supplementary, are:

Σ = {(1)(2)(345), (1)(4)(235), (3)(4)(152),

(3)(4)(125), (1)(5)(243)} .

Note that each of these permutations has a cycle structure

[1, 1, 3] as required in Theorem 1 (i); conditions (ii)-(iii) can

be checked as well. These gluing instructions were used

to glue the 5 copies of Mdisk (as shown in Figure 5 and
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Figure 6. Area and scale distortion (log scale) of our method (right,

in blue), equirectangular parametrization [39] and parametrization

by octahedron unfolding [31].

described in Algorithm 1) to generate the representation E :
I →M shown in Figure 1a.

5. Experiments

To evaluate the efficacy of our method we tested it in two

main scenarios: learning signals on the sphere, and learning

sphere-type surface data.

5.1. Evaluation

In this section we compare the geometric properties of

our representation to standard or existing techniques. Fig-

ure 6 shows the area and scale distortion of our method

(right, in blue) and two other popular methods for sphere

flattening: Equirectangular projection (see e.g., [39]) and

octahedron unfolding projection, see [31]. Area distortion

is computed as the determinant of the differential of the

cover mapE (treated as affine over each triangle ofM ), and

angle distortion is the condition number of the differential.

Since our image representation contains several copies of

each triangle ofM we use the least distorted one for the his-

togram, as we want each part of the surface to appear in the

image at-least once with low distortion. As can be seen in

Figure 6, our projection has better angle preservation with

only a mild sacrifice to area distortion.

In Figure 7 we repeat this experiment with a sphere-type

model of a human and compare the area and angle distor-

tion of five different types of image representations. While

the method of [36] (leftmost, in red) preserves area better, it

suffers from significant angle distortion. The orbifold cov-

ering of [25] (second to the left, in red) is angle-preserving,

but suffers from notable area shrinking. Our covering maps

(green and blue) strike a balance between angle and area

preservation. The covering of type [[15, 5]5] (middle, in

blue) has the least area distortion and we chose it for the

segmentation task (below).
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Table 1. Comparison of our method and the top results in each category of the SHREC17 shape retrieval task.

Method P@N R@N F1@N mAP NDCG

FURUYA_DLAN 0.814 0.683 0.706 0.656 0.754

Tatsuma_ReVGG 0.705 0.769 0.719 0.696 0.783

SHREC16-Bai_GIFT 0.678 0.667 0.661 0.607 0.735

Deng_CM-VGG-6DB 0.412 0.706 0.472 0.524 0.642

Spherical CNN [7] 0.701 0.711 0.699 0.676 0.756

SO(3) Equivariant CNNs [12] 0.717 0.737 - 0.685 -

Ours 0.749 (2nd) 0.741 (2nd) 0.734 0.709 0.794

Sinha et al. [36] - OursOrbifold [25]
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Figure 7. Top row: meshes reproduced from image representations

of several methods (left to right): area preserving method of [36],

orbifold covering of [25] and three different covering maps pro-

duced by our method, of ramification types [[15, 5]5], [[15, 4]6] and

[[14, 6]4]. Middle and bottom rows: area and angle distortion (log

scale). The histograms are taken from ten randomly chosen human

models.

The top row of Figure 7 compares the different im-

age representations by reconstructing the original model.

Specifically, for each vertex of the mesh we sampled its

x, y, z coordinates directly from the image at the vertex lo-

cation (we used 512× 512 images here). In our representa-

tion, we take the coordinates from the vertex copy with the

least area distortion. Note that the image representations of

[36] and [25] do not represent well significant parts of the

surface (e.g., the right leg and the head).

5.2. 3D shape retrieval

The first application of our method is 3D shape re-

trieval. We use the SHREC2017 benchmark [35] that con-

tains 51162 3D models from 55 different categories. There

are two separate challenges: (i) the shapes are consistently

aligned (ii) the shapes are randomly rotated. We tackle the

(harder) second challenge.

Since the shapes are not of genus zero we follow the pro-

tocol of [7] that project the meshes on a bounding sphere

using ray casting, and record six functions on this sphere:

Figure 8. Left: A guitar mesh inside an encapsulating sphere.

Right: The image representation of a spherical signal for this mesh.

The signal is generated as follows: for each point on the sphere we

cast a ray towards the origin and record the ray length at the inter-

section with the mesh.

distance to the model, cos/sin of the model angles (this

is done for both the model and its convex-hull). We then

use our method to transfer these six spherical signals to pe-

riodic images (flat torus). See Figure 8 for an example of

such shape representation.

We compare our method to the top methods in each cat-

egory, the Spherical CNN method [7], and the recent SO-3

equivariant networks suggested in [12]. The results are sum-

marized in Table 1; note that in the F1 measure we score

first among all methods.

For this application we use a slight modification of the

inception v3 architecture [41]. We train the network with

ADAM optimizer [20] for 100 epochs with learning rate

0.05, batch size of 32, and learning rate decay of 0.995.

Training took 15 minutes per epoch on a Tesla V100 Nvidia

GPU. In evaluation time we average the output of the net-

work on 5 randomly rotated copies of the query model.

5.3. Surface classification

We apply our method to the ModelNet40 surface classifi-

cation benchmark [45] that contains 12311 3D models from

40 different categories. As in the shape retrieval task, we fol-

low the protocol of [7] to generate input signals on a sphere.

We then use our method to represent the spherical signals

as periodic images and apply the same inception v3 model

as in the shape retrieval task. We present peak performance

results (following [17]) for two scenarios that are popular

in the literature: (i) the shapes are rotated randomly about
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Table 2. Results on ModelNet40 dataset.
Method Inputs Accuracy

Learning Gims [36] mesh 83.9%

3DShapeNets [45] voxels 84.7%
VoxNet [27] voxels 85.9%
Pointnet[32] points 89.2%
Pointnet++ [33] points 91.9%
Dynamic graph CNN [43] points 92.2%
PCNN [2] points 92.3%

Spherical CNN [7] spherical 85.0%
SO(3) Equivariant CNNs [12] spherical 88.9%
Spherical on unstructured grid [17] spherical 90.5%
Octahedron unfolding (rot z) spherical 90.2%
Equirectangular projection (rot z) spherical 90.1%
Ours spherical 91.6%
Ours (rot z) spherical 91.0%

the z axis; and (ii) the shapes are learned in their original

orientation. We train the network with ADAM optimizer

[20] for 100 epochs for scenario (1) and 300 for scenario

(ii) with learning rate 0.0005, batch size 16, and learning

rate decay 0.995. Training took 19 minutes per epoch for

the first scenario (that contains 10 rotation augmentations)

and 3 minutes per epoch for the second scenario on a Tesla

V100 Nvidia GPU.

Table 2 compares our results with several recent methods

including the baselines of equirectangular projection (e.g.,

[39]) and octahedron unfolding projection [31]. Our results

are the best among all spherical learning methods.

5.4. Surface segmentation

While our first two application targeted spherical sig-

nals, our last applications learns signals defined on general

sphere-type human models. In particular, we perform hu-

man model semantic segmentation. We use the benchmark

from [25] that consists of 373 train models from multiple

sources and 18 test models. 5% randomly sampled train

models were used as a validation set (18 models). All mod-

els are given as triangular meshes. For each model, each

face is labeled according to a predefined partition of the

human body (e.g., head, torso, hands, total of 8 labels).

The task is to label the triangles of a new unseen human

model with these labels. For each model we generate an

augmented set of 120 images per mesh, by permuting the

order of the branch points, multiplying the vertices by a ran-

dom orthogonal matrix and a uniform scale sampled from

[0.85, 1.15] as suggested in [30], and small periodic image

translations of ±15 pixels. In evaluation, as the toric image

contains d values for each triangle on the original mesh, we

use the label of the triangle with the largest area. Further-

more, we use 10 random augmentations of test images and

label each mesh face using a majority vote. Table 3 sum-

Figure 9. Segmentation results of our method. For each pair: left

is our result and right is ground truth.

Table 3. Results on the human segmentation dataset.

Method Inputs Accuracy

Toric CNN [25] WKS,AGD,curv 88.00%
Geodesic Conv [26] 3D coords 76.49%
Pointnet++ [33] 3D coords 90.77%
Dynamic graph CNN [43] 3D coords 89.72%
Multi-directional Conv [30] 3D coords 88.61%
Learning Gims [36] 3D coords 84.53%
Ours 3D coords 91.31%

marizes the results of this experiment, where our method

outperformed previous methods; Figure 9 shows typical seg-

mentation results.

For this application we used the U-net architecture [34]

with 16 layers (see Table 2 for details). We used a weighted

loss with equal probability labels, and trained the network

using stochastic gradient descent with momentum [40] for

50 epochs with learning rate 0.2, batch size 2, and learning

rate decay of 0.995. Training takes ∼ 3 hours per epoch on

a Tesla V100 Nvidia GPU.

6. Conclusions

In this paper, we introduce a new method for represent-

ing sphere-type surfaces as toric images that can be used

in standard Convolutional Neural Network frameworks for

shape learning tasks. The method allows faithful represen-

tation of all parts of the surface in a single image, thus al-

leviating the need to generate multiple maps to cover each

surface. Our method is general and can target both spherical

signal learning tasks as well as more general learning tasks

that involve signals on different genus zero surfaces. Prac-

tically, we showed that off-the-shelf CNN models applied

to images generated with our method lead to state of the art

performance in the tasks of shape retrieval, shape classifica-

tion and surface segmentation.

The main limitation of this work is its restriction to

genus-zero surfaces. This kind of models are abundant, but

certainly do not exhaust all 3D models. We would like to

seek a generalization of this method to point clouds, depth

images and more general topological types.
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