
Unsupervised Multi-Task Feature Learning on Point Clouds

Kaveh Hassani

Autodesk AI Lab

Toronto, Canada

kaveh.hassani@autodesk.com

Mike Haley

Autodesk AI Lab

San Francisco, USA

mike.haley@autodesk.com

Abstract

We introduce an unsupervised multi-task model to jointly

learn point and shape features on point clouds. We define

three unsupervised tasks including clustering, reconstruc-

tion, and self-supervised classification to train a multi-scale

graph-based encoder. We evaluate our model on shape clas-

sification and segmentation benchmarks. The results sug-

gest that it outperforms prior state-of-the-art unsupervised

models: In the ModelNet40 classification task, it achieves

an accuracy of 89.1% and in ShapeNet segmentation task,

it achieves an mIoU of 68.2 and accuracy of 88.6%.

1. Introduction

Point clouds are sparse order-invariant sets of interact-

ing points defined in a coordinate space and sampled from

surface of objects to capture their spatial-semantic informa-

tion. They are the output of 3D sensors such as LiDAR

scanners and RGB-D cameras, and are used in applications

such as human-computer interactions [21], self-driving cars

[51], and robotics [60]. Their sparse nature makes them

computationally efficient and less sensitive to noise com-

pared to volumetric and multi-view representations.

Classic methods craft salient geometric features on point

clouds to capture their local or global statistical properties.

Intrinsic features such as wave kernel signature (WKS) [6],

heat kernel signature (HKS) [7], multi-scale Gaussian cur-

vature [66], and global point signature [57]; and extrin-

sic features such as persistent point feature histograms [59]

and fast point feature histograms [58] are examples of such

features. These features cannot address semantic tasks re-

quired by modern applications and hence are replaced by

the unparalleled representation capacity of deep models.

Feeding point clouds to deep models, however, is not

trivial. Standard deep models operate on regular-structured

inputs such as grids (images and volumetric data) and

sequences (speech and text) whereas point clouds are

permutation-invariant and irregular in nature. One can ras-

terize the point clouds into voxels [81, 43, 53] but it de-

mands excessive time and memory, and suffers from infor-

mation loss and quantization artifacts [78].

Some recent deep models can directly consume point

clouds and learn to perform various tasks such as classifi-

cation [78], semantic segmentation [89, 17], part segmen-

tation [78], image-point cloud translation [19], object de-

tection and region proposal [97], consolidation and surface

reconstruction [92, 45, 47], registration [16, 74, 34], gener-

ation [68, 67], and up-sampling [93]. These models achieve

promising results thanks to their feature learning capabili-

ties. However, to successfully learn such features, they re-

quire large amounts of labeled data.

A few works explore unsupervised feature learning on

point sets using autoencoders [88, 13, 39, 96, 2, 16] and

generative models, e.g., generative adversarial networks

(GAN) [68, 67, 2], variational autoencoders (VAE) [20],

and Gaussian mixture models (GMM) [2]. Despite their

good feature learning capabilities, they suffer from not

having access to supervisory signals and targeting a sin-

gle task. These shortcomings can be addressed by self-

supervised learning and multi-task learning, respectively.

Self-supervised learning defines a pretext task using only

the information present in the data to provide a surrogate su-

pervisory signal whereas multi-task learning uses the com-

monalities across tasks by jointly learning them [95].

We introduce a multi-task model that exploits

three regimes of unsupervised learning including self-

supervision, autoencoding, and clustering as its target tasks

to jointly learn point and shape features. Inspired by [9, 22],

we show that leveraging joint clustering and self-supervised

classification along with enforcing reconstruction achieves

promising results while avoiding trivial solutions. The key

contributions of our work are as follows:

• We introduce a multi-scale graph-based encoder for

point clouds and train it within an unsupervised multi-

task learning setting.

• We exhaustively evaluate our model under various

learning settings on ModelNet40 shape classification

and ShapeNetPart segmentation tasks.

8160

• We show that our model achieves state-of-the-art re-

sults w.r.t prior unsupervised models and narrows the

gap between unsupervised and supervised models.

2. Related Work

2.1. Deep Learning on Point Clouds

PointNet [52] is an MLP that learns point features inde-

pendently and aggregates them into a shape feature. Point-

Net++ [54] defines multi-scale regions and uses PointNet

to learn their features and then hierarchically aggregates

them. Models based on KD-trees [37, 94, 20] spatially par-

tition the points using kd-trees and then recursively aggre-

gate them. RNNs [31, 89, 17, 41] are applied to point clouds

by the assumption that “order matters” [72] and achieve

promising results on semantic segmentation tasks but the

quality of the learned features is not clear.

CNN models introduce non-Euclidean convolutions to

operate on point sets. A few models such as RGCNN [70],

SyncSpecCNN [91] and Local Spectral GCNN [75] operate

on spectral domain. These models tend to be computation-

ally expensive. Spatial CNNs learn point features by aggre-

gating the contributions of neighbor points. Pointwise con-

volution [30], Edge convolution [78] , Spider convolution

[84], sparse convolution [65, 25], Monte Carlo convolu-

tion [27], parametric continuous convolution [76], feature-

steered graph convolution [71], point-set convolution [63],

χ-convolution [40], and spherical convolution [38] are ex-

amples of these models. Spatial models provide strong lo-

calized filters but struggle to learn global structures [70].

A few works train generative models on point sets. Mul-

tiresolution VAE [20] introduces a VAE with multiresolu-

tion convolution and deconvolution layers. PointGrow [68]

is an auto-regressive model that can generate point clouds

from scratch or conditioned on given semantic contexts. It

is shown that GMMs trained on PointNet features achieve

better performance compared to GANs [2].

A few recent works explore representation learning us-

ing autoencoders. A simple autoencoder based on Point-

Net is shown to achieve good results on various tasks [2].

FoldingNet [88] uses an encoder with graph pooling and

MLP layers and introduces a decoder of folding operations

that deform a 2D grid onto the underlying object surface.

PPF-FoldNet [13] projects the points into point pair feature

(PPF) space and then applies a PointNet encoder and a Fold-

ingNet decoder to reconstruct that space. AtlasNet[26] ex-

tends the FoldingNet to multiple grid patches whereas SO-

Net [39] aggregates the point features into SOM node fea-

tures to encode the spatial distributions. PointCapsNet [96]

introduces an autoencoder based on dynamic routing to ex-

tract latent capsules and a few MLPs that generate multiple

point patches from the latent capsules with distinct grids.

2.2. SelfSupervised Learning

Self-supervised learning defines a proxy task on unla-

beled data and uses the pseudo-labels of that task to provide

the model with supervisory signals. It is used in machine vi-

sion with proxy tasks such as predicting arrow of time [79],

missing pixels [50], position of patches [14], image rota-

tions [23], synthetic artifacts [33], image clusters [9], cam-

era transformation in consecutive frames [3], rearranging

shuffled patches [48], video colourization [73], and track-

ing of image patches[77] and has demonstrated promising

results in learning and transferring visual features.

The main challenge in self-supervised learning is to de-

fine tasks that relate most to the down-stream tasks that use

the learned features [33]. Unsupervised learning, e.g., den-

sity estimation and clustering, on the other hand, is not do-

main specific [9]. Deep clustering [4, 44, 86, 28, 83, 22,

61, 87, 29] models are recently proposed to learn cluster-

friendly features by jointly optimizing a clustering loss with

a network-specific loss. A few recent works combine these

two approaches and define deep clustering as a surrogate

task for self-supervised learning. It is shown that alternat-

ing between clustering the latent representation and predict-

ing the cluster assignments achieves state-of-the-art results

in visual feature learning[9, 22].

2.3. MultiTask Learning

Multi-task learning leverages the commonalities across

relevant tasks to enhance the performance over those tasks

[95, 18]. It learns a shared feature with adequate ex-

pressive power to capture the useful information across

the tasks. Multi-task learning has been successfully used

in machine vision applications such as image classifica-

tion [42], image segmentation [12], video captioning [49],

and activity recognition [85]. A few works explore self-

supervised multi-task learning to learn high level visual fea-

tures [15, 55]. Our approach is relevant to these models

except we use self-supervised tasks in addition to other un-

supervised tasks such as clustering and autoencoding.

3. Methodology

Assume a training set S = [s1, s2, ..., sN] of N point

sets where a point set si = {pi1, p
i
2, ..., p

i
M} is an order-

invariant set of M points and each point pij ∈ R
din . In the

simplest case pij = (xij , y
i
j , z

i
j) only contains coordinates,

but can extend to carry other features, e.g., normals. We

define an encoder Eθ : S 7−→ Z that maps input point

sets from R
M×din into the latent space Z ∈ R

dz such that

dz ≫ din. For each point pij , the encoder first learns a point

(local) feature zij ∈ R
dz and then aggregates them into a

shape (global) feature Zi ∈ R
dz . It basically projects the

input points to a feature subspace with higher dimension

to encode richer local information than the original space.

8161

Any parametric non-linear function parametrized by θ can

be used as the encoder. To learn θ in unsupervised multi-

task fashion, we define three parametric functions on the

latent variable Z as follows:

Clustering function Γc : Z 7−→ Y maps the latent

variable into K categories Y = [y1, y2, ..., yn] such that

yi ∈ {0, 1}
K and yTn1k = 1. This function encourages

the encoder to generate features that are clustering-friendly

by pushing similar samples in the feature space closer and

pushing dissimilar ones away. It also provides the model

with pseudo-labels for self-supervised learning through its

hard cluster assignments.

Classifier function fψ : Z 7−→ Ŷ predicts the cluster

assignments of the latent variable such that the predictions

correspond to the hard clusters assignments of Γc. In other

words, fψ maps the latent variable into K predicted cate-

gories Ŷ = [ŷ1, ŷ2, ..., ŷn] such that ŷi ∈ {0, 1}
K . This

function uses the pseudo-labels generated by the clustering

function, i.e., cluster assignments, as its proxy train data.

The difference between the cluster assignments and the pre-

dicted cluster assignments provides the supervisory signals.

Decoder function gφ : Z 7−→ Ŝ reconstructs the orig-

inal point set from the latent variable, i.e., maps the latent

variable Z ∈ R
dz to a point set Ŝ ∈ R

M×din . Training

a deep model with a clustering loss collapses the features

into a single cluster [9]. Some heuristics such as penalizing

the minimal number of points per cluster and randomly re-

assigning empty clusters are introduced to prevent this. We

introduce the decoder function to prevent the model from

converging to trivial solutions.

3.1. Training

The model alternates between clustering the latent vari-

able Z to generate pseudo-labels Y for self-supervised

learning, and learning the model parameters by jointly pre-

dicting the pseudo-labels Ŷ and reconstructing the input

point set Ŝ . Assuming K-means clustering, the model learns

a centroid matrix C ∈ R
dz×K and cluster assignments yn

by optimizing the following objective clustering [9]:

min
{C,θ}

1

N

N∑

n=1

min
yn∈{0,1}K

‖zn − Cyn‖
2
2 (1)

where zn = Eθ(sn) and yTn1k = 1. The centroid matrix is

initialized randomly. It is noteworthy that: (i) when assign-

ing cluster labels, the centroid matrix is fixed, and (ii) the

centroid matrix is updated epoch-wise and not batch-wise

to prevent the learning process from diverging.

For the classification function, we minimize the cross-

entropy loss between the cluster assignments and the pre-

dicted cluster assignments as follows.

min
{θ,ψ}

−1

N

N∑

n=1

yn log ŷn (2)

where yn = Γc(zn) and ŷn = fψ(zn) are the cluster assign-

ments and the predicted cluster assignments, respectively.

We use Chamfer distance to measure the difference be-

tween the original point cloud and its reconstruction. Cham-

fer distance is differentiable with respect to points and is

computationally efficient. It is computed by finding the

nearest neighbor of each point of the original space in the

reconstructed space and vice versa, and summing up their

Euclidean distances. Hence, we optimize the decoding loss

as follows.

min
{θ,φ}

1

2NM

N∑

n=1

M∑

m=1

min
p̂∈ŝn
‖pnm − p̂‖

2
2 + min

p∈sn
‖p̂nm − p‖

2
2

(3)

where ŝn = gφ(zn) and, sn and ŝn are the original and

reconstructed point sets, respectively. N and M denote the

number of point sets in the train set and the number of points

in each point set, respectively.

Let’s denote the clustering, classification, and decoding

objectives by LΓ, Lf , and Lg , respectively. we define the

multi-task objective as a linear combination of these objec-

tives: L = αLΓ+βLf +γLg and train the model based on

that. The training process is shown in Algorithm 1.

We first randomly initialize the model parameters and as-

sume an arbitrary upper bound for the number of clusters.

We show through experiments that the model converges to a

fixed number of clusters by emptying some of the clusters.

This is especially favorable when the true number of cate-

gories is unknown. We then randomly select K point sets

from the training data and feed them to the randomly ini-

tialized encoder and set the extracted features as the initial

centroids. Afterwards we optimize the model parameters

w.r.t the multi-task objective using mini-batch stochastic

gradient descent. Updating the centroids with the same fre-

quency as the network parameters can destabilize the train-

ing. Therefore, we aggregate the learned features and the

cluster assignments within each epoch and update the cen-

troids after an epoch is completed.

3.2. Architecture

Inspired by Inception [69] and Dynamic Graph CNN

(DGCNN) [78] architectures, we introduce a graph-based

architecture shown in Figure 1 which consists of an en-

coder and three task-specific decoders. The encoder uses

a series of graph convolution, convolution, and pooling lay-

ers in a multi-scale fashion to learn point and shape fea-

tures from an input point cloud jittered by Gaussian noise.

For each point, it extracts three intermediate features by ap-

plying graph convolutions on three neighborhood radii and

concatenates them with the input point feature and its con-

volved feature. The first three features encode the interac-

tions between each point and its neighbors where as the last

two features encode the information about each point. The

8162

Algorithm 1: Unsupervised Multi-task training algo-

rithm.

1 θ, φ, ψ←− Random() Initial parameters

2 K ←− KUB Upper bound #clusters

3 C ←− Eθ (Choice (S,K)) Initial centroids

4 for epoch in epochs do

5 while epoch not completed do

6 Forward pass

7 Sx ←− Sample(S) Mini-batch

8 Zx ←− Eθ (Sx) Encoding

9 Yx ←− Γc (Zx) Cluster assignment

10 Ŷx ←− fψ (Zx) Cluster prediction

11 Ŝx ←− gφ (Zx) Decoding

12 (Z,Y)←− Aggregate (Zx,Y)
13 Backwards pass

14 ▽θ,φ,ψ(αLΓ(Zx, C; θ)+ Compute gradients

15 βLf (Yx, Ŷx; θ, ψ)+

16 γLg(Sx, Ŝx; θ, φ))
17 Update(θ, φ, ψ) Update with gradients

18 end

19 C ←− Update(Z,Y) Update centroids

20 end

concatenation of the intermediate features is then passed

through a few convolution and pooling layers to learn an-

other level of intermediate features. These point-wise fea-

tures are then pooled and fed to an MLP to learn the final

shape feature. They are also concatenated with the shape

feature to represent the final point features. Similar to [78],

we define the graph convolution as follows:

zi =
∑

pk∈N (pi)

hθ ([pi ‖ pk − pi]) (4)

where zi is the learned feature for point pi based on its

neighbor contributions, pk ∈ N (pi) are the k nearest points

to the pi in Euclidean space, hθ is a nonlinear function pa-

rameterized by θ and ‖ is the concatenation operator. We

use a shared MLP for hθ. The reason to use both pi and

pk − pi is to encode both global information (pi) and local

interactions (pk − pi) of each point.

To perform the target tasks, i.e., clustering, classification,

and autoencoding, we use the following. For clustering, we

use a standard implementation of K-means to cluster the

shape features. For self-supervised classification, we feed

the shape features to an MLP to predict the category of the

shape (i.e., cluster assignment by the clustering module).

And for the autoencoding task, we use an MLP to recon-

struct the original point cloud from the shape feature. This

MLP is denoising and reconstructs the original point cloud

before the addition of the Gaussian noise. All these models

along with the encoder are trained jointly and end-to-end.

Note that all these tasks are defined on the shape features.

Because a shape feature is an aggregation of its correspond-

ing point features, learning a good shape feature pushes the

model to learn good point features too.

4. Experiments

4.1. Implementation Details

We optimize the network using Adam [36] with an initial

learning rate of 0.003 and batch size of 40. The learning rate

is scheduled to decrease by 0.8 every 50 epochs. We apply

batch-normalization [32] and ReLU activation to each layer

and use dropout [64] with p = 0.5. To normalize the task

weights to the same scale, we set the weights of clustering

(α), classification (β), and reconstruction(γ) to 0.005, 1.0,

500, respectively. For graph convolutions, we use neighbor-

hood radii of 15, 20, and 25 (as suggested in [78]) and for

normal convolutions we use 1×1 kernels. We set the up-

per bound number of clusters (KUB) to 500. We also set

the size of the MLPs in prediction and reconstruction tasks

to [2048, 1024, 500] and [2048, 1024, 6144], respectively.

Note that the size of the last layers correspond to the upper

bound number of clusters (500) and the reconstruction size

(6144: 2048×3). Following [2] we set the shape and point

feature sizes to 512 and 1024, respectively.

For preprocessing and augmentation we follow [52, 78]

and uniformly sample 2048 points and normalize them to

a unit sphere. We also apply point-wise Gaussian noise of

N ∼ (0, 0.01) and shape-wise random rotations between

[-180, 180] degrees along z-axis and random rotations be-

tween [-20, +20] degrees along x and y axes.

The model is implemented with Tensorflow [1] on a

Nvidia DGX-1 server with 8 Volta V100 GPUs. We used

synchronous parallel training by distributing the training

mini-batches over all GPUs and averaging the gradients to

update the model parameters. With this setting, our model

takes 830s on average to train one epoch on the ShapeNet

(i.e, ∼55k samples of size 2048×3). We train the model

for 500 epochs. At test time, it takes 8ms on an input point

cloud with size 2048×3.

4.2. Pretraining for Transfer Learning

Following the experimental protocol introduced in [2],

we pre-train the model across all categories of the ShapeNet

dataset [10] (i.e., 57,000 models across 55 categories) , and

then transfer the trained model to two down-stream tasks

including shape classification and part segmentation. After

pre-training the model, we freeze its weights and do not

fine-tune it for the down-stream tasks.

Following [9], we use Normalized Mutual Information

(NMI) to measure the correlation between cluster assign-

ments and the categories without leaking the category in-

8163

Clustering Task Prediction Task

Shared Multi-scale Graph-Based Encoder

KNN
K=15

Graph
Conv

Max

Mean

1x1
Conv

64 Co
nc

at

Co
nc

at

1x1
Conv

64

1x1
Conv

64

KNN
K=20

Graph
 Conv

Max

Mean

1x1
Conv

64 Co
nc

at 1x1
Conv

64

KNN
K=25

Graph
 Conv

Max

Mean

1x1
Conv

64 Co
nc

at 1x1
Conv

64

1x1
Conv
256

Max

Mean

1x1
Conv
512 Co

nc
at MLP

(1024, 512)

Concat

Σ

Cross-Entropy
Loss

Multi-Task Loss

MLP

Reconstruction Task
Chamfer

Loss MLP K-Means
Loss K-Means

Σ

Ga
us

sia
n

No
ise

Po
int

 C
lou

d

Point Feature

Shape Feature

Figure 1. Proposed Architecture for unsupervised multi-task feature learning on point clouds. It consists of a multi-scale graph-based

encoder that generates point and shape features for an input point cloud and three task decoders that jointly provide the architecture with a

multi-task loss.

formation to the model. This measure gives insight on the

capability of the model in predicting category level informa-

tion without observing the ground-truth labels. The model

reaches an NMI of 0.68 and 0.62 on the train and validation

sets, respectively which suggests that the learned features

are progressively encoding category-wise information.

We also observe that the model converges to 88 clus-

ters (from the initial 500 clusters) which is 33 more clusters

compared to the number of ShapeNet categories. This is

consistent with the observation that “some amount of over-

segmentation is beneficial” [9]. The model empties more

than 80% of the clusters but does not converge to the trivial

solution of one cluster. We also trained our model on the

10 largest ShapeNet categories to investigate the clustering

behavior where the model converged to 17 clusters. This

confirms that model converges to a fixed number of clusters

which is less than the initial upper bound assumption and is

more than the actual number of categories in the data.

To investigate the dynamics of the learned features, we

selected the 10 largest ShapeNet categories and randomly

sampled 200 shapes from each category. The evolution of

the features of the sampled shapes visualized using t-SNE

(Figure 2) suggests that the learned features progressively

demonstrate clustering-friendly behavior along the training

epochs.

4.3. Shape Classification

To evaluate the performance of the model on shape fea-

ture learning, we follow the experimental protocol in [2] and

report the classification accuracy on transfer learning from

the ShapeNet dataset [10] to the ModelNet40 dataset [82]

(i.e., 13,834 models across 40 categories divided to 9,843

and 3,991 train and test samples, respectively). Similar to

[2], we extract the shape features of the ModelNet40 sam-

ples from the pre-trained model without any fine-tuning,

train a linear SVM on them, and report the classification

accuracy. This approach is a common practice in evaluat-

ing unsupervised visual feature learning [9] and provides in-

sight about the effectiveness of the learned features in clas-

sification tasks.

Results shown in Table 1 suggest that our model achieves

state-of-the-art accuracy on the ModelNet40 shape classifi-

cation task compared to other unsupervised feature learning

models. It is noteworthy that the reported result is without

any hyper-parameter tuning. With random hyper-parameter

search, we observed an 0.4 absolute increase in the accu-

racy (i.e., 89.5%). The results also suggest that the unsu-

pervised model is competitive with the supervised models.

Error analysis reveals that the misclassifications occur be-

tween geometrically similar shapes. For example, the three

most frequent misclassifications are between (table, desk),

(nightstand, dresser), and (flowerpot, plant) categories. A

similar observation is reported in [2] and it is suggested that

stronger supervision signals may be required to learn subtle

details that discriminate these categories.

To further investigate the quality of the learned shape

features, we evaluated them in a zero-shot setting. For this

purpose, we cluster the learned features using agglomera-

8164

epoch 1 epoch 100 epoch 250 epoch 500

Figure 2. Evolution of the learned features along the training epochs (visualized using t-SNE) showing progressive clustering-friendly

behavior.

Unsupervised transfer learning Supervised learning

Model Accuracy Model Accuracy

SPH [35] 68.2 PointNet [52] 89.2

LFD [11] 75.5 PointNet++ [54] 90.7

T-L Network [24] 74.4 PointCNN [30] 86.1

VConv-DAE [62] 75.5 DGCNN [78] 92.2

3D-GAN [80] 83.3 KCNet [63] 91.0

Latent-GAN [2] 85.7 KDNet [37] 91.8

MRTNet-VAE [20] 86.4 MRTNet [20] 91.7

FoldingNet [88] 88.4 SpecGCN [75] 91.5

PointCapsNet [96] 88.9

Ours 89.1

Table 1. Left: Accuracy of classification by transfer learning from

the ShapeNet on the ModelNet40 data. Right: Classification ac-

curacy of supervised learning on the ModelNet40 data. Our model

narrows the gap with supervised models.

tive hierarchical clustering (AHC) [46] and then align the

assigned cluster labels with the ground truth labels (Mod-

elNet40 categories) based on majority voting within each

cluster. The results suggest that the model achieves 68.88%

accuracy on the shape classification task with zero supervi-

sion. This result is consistent with the observed NMI be-

tween cluster assignments and ground truth labels in the

ShapeNet dataset.

4.4. Part Segmentation

Part segmentation is a fine-grained point-wise classifica-

tion task where the goal is to predict the part category label

of each point in a given shape. We evaluate the learned point

features on the ShapeNetPart dataset [90], which contains

16,881 objects from 16 categories (12149 train, 2874 test,

and 1858 validation). Each object consists of 2 to 6 parts

with total of 50 distinct parts among all categories. Fol-

lowing [52], we use mean Intersection-over-Union (mIoU)

as the evaluation metric computed by averaging the IoUs

of different parts occurring in a shape. We also report part

classification accuracy.

Model 1% of train data 5% of train data

Accuracy IoU Accuracy IoU

SO-Net[39] 78.0 64.0 84.0 69.0

PointCapsNet[96] 85.0 67.0 86.0 70.0

Ours 88.6 68.2 93.7 77.7

Table 2. Results on semi-supervised ShapeNetPart segmentation

task.

Following [96], we randomly sample 1% and 5% of the

ShapeNetPart train set to evaluate the point features in a

semi-supervised setting. We use the same pre-trained model

to extract the point features of the sampled training data,

along with validation and test samples without any fine-

tuning. We then train a 4-layer MLP [2048, 4096, 1024,

50] on the sampled training sets and evaluate it on all test

data. Results shown in Table 2 suggest that our model

achieves state-of-the-art accuracy and mIoU on ShapeNet-

Part segmentation task compared to other unsupervised fea-

ture learning models. Also comparisons between our model

(trained on 5% of the training data) and the fully supervised

models are shown in Table 3. The results suggest that our

model achieves an mIoU which is only 8% less than the

best supervised model and hence narrows the gap with su-

pervised models.

We also performed intrinsic evaluations to investigate

the consistency of the learned point features within each

category. We sampled a few shapes from each category,

stacked their point features, and reduced the feature dimen-

sion from 1024 to 512 using PCA. We then co-clustered the

features using the AHC method. The result of co-clustering

on the airplane category is shown in Figure 3. We observed

a similar consistent behavior over all categories. We also

used AHC and hierarchical density-based spatial clustering

(HDBSCAN) [8] methods to cluster the point features of

each shape. We aligned the assigned cluster labels with the

ground truth labels based on majority voting within each

cluster. A few sample shapes along with their ground truth

8165

Model %train Cat. Ins. Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table

data mIoU mIoU phone board

PointNet [52] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ [54] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

DGCNN [78] 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0

KCNet [63] 82.2 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

RSNet [31] 81.4 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2

SynSpecCNN [91] 100% 82.0 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

RGCNN [70] 79.5 84.3 80.2 82.8 92.6 75.3 89.2 73.7 91.3 88.4 83.3 96.0 63.9 95.7 60.9 44.6 72.9 80.4

SpiderCNN [84] 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

SPLATNet [65] 83.7 85.4 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8

FCPN [56] 84.0 84.0 84.0 82.8 86.4 88.3 83.3 73.6 93.4 87.4 77.4 97.7 81.4 95.8 87.7 68.4 83.6 73.4

Ours 5% 72.1 77.7 78.4 67.7 78.2 66.2 85.5 52.6 87.7 81.6 76.3 93.7 56.1 80.1 70.9 44.7 60.7 73.0

Table 3. Comparison between our semi-supervised model and supervised models on ShapeNetPart segmentation task. Average mIoU over

instances (Ins.) and categories (Cat.) are reported.

Figure 3. Co-clustering of the learned point features within the Air-

plane category using hierarchical clustering which demonstrates

the consistency of the learned point features within the category.

part labels, predicted part labels by the trained MLP, AHC,

and HDBSCAN clustering are illustrated in Figure 4. As

shown, HDBSCAN clustering results in a decent segmenta-

tion of the learned features in a fully unsupervised setting.

4.5. Ablation Study

We first investigate the effectiveness of the graph-based

encoder on the shape classification task. In the first experi-

ment, we replace the encoder with a PointNet [52] encoder

and keep the multi-task decoders. We train and test the

network with the same transfer learning protocol which re-

sults in a classification accuracy of 86.2%. Compared to

the graph-based encoder with accuracy of 89.1%, this sug-

gests that our encoder learns better features and hence con-

tributes to the state-of-the-art results that we achieve. To

investigate the effectiveness of the multi-task learning, we

compare our result against the results reported on a PointNet

Encoder Decoder Accuracy

PointNet Reconstruction 85.7

PointNet Multi-Task 86.2

Ours Reconstruction 86.7

Ours Multi-Task 89.1

Table 4. Effect of encoder and multi-task learning on accuracy on

the ModelNet40.

autoencoder (i.e., single reconstruction decoder) [2] which

achieves classification accuracy of 85.7%. This suggests

that using multi-task learning improves the quality of the

learned features. The summary of the results is shown in

Table 4.

We also investigate the effect of different tasks on the

quality of the learned features by masking the task losses

and training and testing the model on each configuration.

The results shown in Table 5 suggest that the reconstruc-

tion task has the highest impact on the performance. This is

because contrary to [9], we are not applying any heuristics

to avoid trivial solutions and hence when the reconstruction

task is masked both clustering and classification tasks tend

to collapse the features to one cluster which results in de-

graded feature learning.

Moreover, the results suggest that masking the cross-

entropy loss degrades the accuracy to 87.6% (absolute de-

crease of 1.5%) whereas masking the k-means loss has a

less adverse effect (degraded loss of 88.3%, i.e., absolute

decrease of 0.8%). This implies that the cross-entropy loss

(classifier) plays a more important role than the clustering

loss. Furthermore, the results indicate that having both K-

means and cross-entropy losses along with the reconstruc-

tion task yields the best result (i.e., accuracy of 89.1%).

This may seems counter-intuitive as one may assume that

using the clustering pseudo-labels to learn a classification

function would push the classifier to replicate the K-means

behavior and hence the k-means loss will be redundant.

8166

