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Abstract

Multi-scale representation provides an effective way to

address scale variation of objects and stuff in semantic seg-

mentation. Previous works construct multi-scale represen-

tation by utilizing different filter sizes, expanding filter sizes

with dilated filters or pooling grids, and the parameters of

these filters are fixed after training. These methods often

suffer from heavy computational cost or have more param-

eters, and are not adaptive to the input image during in-

ference. To address these problems, this paper proposes a

Dynamic Multi-scale Network (DMNet) to adaptively cap-

ture multi-scale contents for predicting pixel-level semantic

labels. DMNet is composed of multiple Dynamic Convolu-

tional Modules (DCMs) arranged in parallel, each of which

exploits context-aware filters to estimate semantic represen-

tation for a specific scale. The outputs of multiple DCMs

are further integrated for final segmentation. We conduct

extensive experiments to evaluate our DMNet on three chal-

lenging semantic segmentation and scene parsing datasets,

PASCAL VOC 2012, Pascal-Context, and ADE20K. DMNet

achieves a new record 84.4% mIoU on PASCAL VOC 2012

test set without MS COCO pre-trained and post-processing,

and also obtains state-of-the-art performance on Pascal-

Context and ADE20K.

1. Introduction

Semantic segmentation is an important yet challenging

task in computer vision which aims at assigning a cate-

gory label to every pixel in an image. It plays an impor-

tant role in scene understanding [51, 52], medical image

analysis [36], self-driving [40, 45], and many other appli-

cations. Recently, approaches based on deep convolutional

neural networks (DCNNs) , especially fully convolutional

networks (FCNs) [32], have achieved great success in se-

mantic segmentation. However, the existence of objects
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and stuff with large scale variations often cause difficulty in

pixel-level dense prediction, especially for extremely small

or large scale objects and stuff. So it is not reasonable to

predict the labels of all pixels with a single scale representa-

tion. Therefore, multi-scale representations are desired for

robust and accurate semantic segmentation [39, 5, 6, 51]. In

DCNNs, different scales of objects and stuff can be captured

by filters with different receptive fields. The most appropri-

ate receptive field usually corresponds to the sizes of objects

and stuff. If the receptive field can only cover a small part

of a large scale object or stuff, inconsistent segmentation

result may happen. While the receptive field is extremely

larger than the object or stuff with small scale, background

may dominate the predictions, leading to invisible of small

object and stuff. Thus, using multiple receptive fields to

capture multi-scale objects and stuff with large variation is

critical for dense image prediction in DCNNs.

An intuitive way toward this problem is to utilize multi-

ple kernels with different sizes in parallel. Inception block

proposed in [39] adopts multiple branches with different

kernel sizes to capture multi-scale information. However,

it is inefficient to use large receptive filed for large scale ob-

jects, due to the parameters and computational cost increase

exponentially to the kernel size. It also increases the risk of

over-fitting. Pyramid Pooling Module (PPM) proposed in

PSPNet [51], performs pooling operation at different grids

which can be seen as a series different non-parametric con-

volutions with large kernel sizes and strides. It provides an

effective method to capture multi-scale context information.

But PPM puts equal weights at every position and the fine-

detail information may lose in pooling operation, which can

hamper the final performance.

Atrous convolution can enlarge the receptive field with-

out adding extra parameters and computational cost, com-

pared with regular convolution with larger filters. [5] pro-

posed Atrous Spatial Pyramid Pooling (ASPP) module to

capture multi-scale information by employing multiple di-

lated filters with different dilation rates which lays out in

parallel. It can handle scale variations to some extent, but
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Figure 1. Three architectures to capture multi-scale feature repre-

sentations. (a) multiple kernels with different kernel sizes in In-

ception. (b) multiple kernels with the same kernel sizes but dif-

ferent dilation rates in ASPP (atrous spatial pyramid pooling). (c)

multiple context-aware kernels with different kernel sizes whose

weights are estimated from the input, in contrast to previous two

methods whose weights are fixed after training.

it is hard to achieve a tradeoff between dilation rates and

the range of scale variations. Moreover, the sparse sam-

pling method will lose neighbor information and larger di-

lation rate may cause gridding artifacts. [6] shows that

ASPP is sensitive to input image size, and small crop size

leads to boundary effect even degeneration. Moreover, the

aforementioned methods use fixed parameters after training,

which is not adaptive to input images in reference.

In this paper, we advocate an alternative approach for

multi-scale feature learning by exploring dynamic multi-

scale filters. Specially, we propose a simple yet effective

Dynamic Multi-scale Network (DMNet) to handle scale

variations of objects and stuff for semantic segmentation.

DMNet consists of several Dynamic Convolutional Mod-

ules (DCMs), each of which exploit context-aware filters to

handle a specific scale related to input. The context-aware

filters are generated from input multi-scale features in a dy-

namic way, which allows them to embed high-level seman-

tics and capture rich contents. Furthermore, our DCM is

efficient due to depthwise convolution, which requires less

model parameters. Figure 1 shows the key difference of our

method from aforementioned methods Inception and ASPP

on multi-scale feature representations. The main contribu-

tions are as follows.

• We propose DMNet to exploit dynamic multi-scale fil-

ters for semantic segmentation in an end-to-end fash-

ion. Compared with previous methods, DMNet are

adaptive to image contents.

• We introduce several Dynamic Convolutional Modules

to captures multi-scale semantics with context-aware

filters. Each DCM can handle a specific scale variation

related to the input.

• Our methods achieve state-of-the-art performance on

three widely used benchmarks, including PASCAL

VOC 2012, Pascal-Context, and ADE20K datasets,

and reach a new record of 84.4% mIoU 1 on PASCAL

VOC 2012 test set without MS COCO pre-trained and

any post-processing.

2. Related Work

Multi-scale features. Due to large scale variations of

objects and stuffs in complex scenes [51], it is necessary to

adopt multi-scale representations for accurate and effective

dense pixel-level image segmentation. Image pyramid is

an intuitive way to obtain multi-scale image representations

where multiple resized input images are feed to the same

model and the results are finally fused [15, 5, 50, 27]. But

the increased time in training and inference makes the im-

age pyramid methods inefficient in particular. [36, 2, 7] de-

sign the Encoder-Decoder architecture to fuse features from

different layers, while [28, 29] predict results from differ-

ent layers with different receptive fields to capture different

scales. The main drawback of these methods is that they

ignore the consistency of feature representations across dif-

ferent scales. [5, 6] propose Atrous Spatial Pyramid Pooling

(ASPP) module which applies multiple atrous convolutional

filters with different dilation rates in parallel, while PSPNet

[51] employs Pyramid Pooling Module (PPM) to perform

pooling operations at different grid scales. These sparse

sampling methods are unable to capture neighbor informa-

tion and details. [20] utilizes pyramid context to construct

multi-scale representations, which are adapted to input im-

ages. In contrast to aforementioned methods, we propose

an alternative approach to exploit dynamic multi-scale fil-

ters for multi-scale features learning. Each branch of our

model can capture a specific scale feature related to the in-

put image which is more flexible and adaptive.

1Result link on PASCAL VOC 2012 test set without coco pre-

trained: http://host.robots.ox.ac.uk:8080/anonymous/

GOQMVH.html.
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Dynamic filters. Previous works have explored dynamic

filters to boost the performance of DCNNs. SAC [50] pre-

dicts position-adaptive scale coefficients to relax the fixed-

size receptive field, thus it can tackle the problems of in-

visible small objects and inconsistent large objects seg-

mentation to some extent. [4] explicitly constructs filters

bank encoded with objective content which can transform

the input image to a specific style. [9, 55] learn offsets

for each element of regular convolutional filters to enlarge

the sampling field with arbitrary form which can discover

geometric-invariant features. DFN [23] exploits dynamic

filters to capture different motion patterns within the inputs

for video and stereo prediction, and [41] also uses dynamic

filters aiming at constructing large receptive fields and re-

ceiving local gradients, to produce sharper and more seman-

tic feature maps. [18] generates contrastive convolutional

filters conditioned on input image pairs to focus on the dis-

tinct characteristics. Whereas, our method generates filters

of different kernel sizes from different scale region-based

context, which is more effective than previous multi-scale

feature learning methods, due to specific scale representa-

tion related to input image is captured. Moreover, in our

proposed DCM, we adopt depthwise convolution which is

more efficient with less parameters.

3. Method

Due to large scale variations of objects and stuff in com-

plex scenes, it is often challenging to make dense pixel-level

prediction. Also, it is difficult to represent every pixel with

a single scale feature, thus multi-scale representations are

necessary for accurate and robust semantic segmentation

and scene parsing. In contrast to previous works [5, 51, 39],

we propose a simple yet effective Dynamic Multi-scale Net-

work (DMNet), which is an alternative approach for multi-

scale feature learning by exploring dynamic multi-scale fil-

ters. In the next, we will describe it in detail.

3.1. Overview of Dynamic Multi­scale Network

The architecture of DMNet is shown in Figure 2. DMNet

consists of a backbone convolutional neural network (CNN)

and several Dynamic Convolutional Modules (DCMs). The

backbone CNN for feature extraction can be VGG, ResNet,

DenseNet or Xception. While each DCM can capture a spe-

cific scale feature representation related with the input im-

age, different DCMs of DMNet can obtain multiple scale

feature representations, which is more flexible and adap-

tive. We arrange DCMs in parallel, thus not sacrifice the

consistency of feature representation power across different

scales. The outputs of each specific feature representation

are aggregated with the original feature extracted by back-

bone CNN to form the final feature representations for ev-

ery pixel. Then, these aggregated robust multi-scale feature

representations are feed to pixel-level predictor for dense

image segmentation.

3.2. Dynamic Convolutional Module

The goal of DCM is to capture a specific scale represen-

tation for the input image adaptively. In DCNNs, differ-

ent receptive fields are suitable for obtaining different scale

representations, so we explore multi-scale filters for multi-

scale feature learning. We name these filters as context-

aware filters which are dynamically generated from region

context conditioned on the input image. The context-aware

filters are embedded with rich contents and high-level se-

mantics intrinsically, in spite of dense small kernel sizes. It

is adaptive to the input image, and more flexible than tra-

ditional filters, thus it can capture internal variation of the

input image. Next, we describe the context-aware filters and

DCM in detail.

Given a feature map x ∈ R
h×w×c extracted by backbone

CNN as the input of DCM, we first apply feature reduction

fk to it and get the reduced feature map fk(x) ∈ R
h×w×c′ ,

where h,w, c are the height, width and number of chan-

nels respectively. c′ is the number of channels of the re-

duced input feature map (c′ < c) and k is the kernel size

of context-aware filters. Denote gk as kernel generator with

kernel size k, and the generated filters gk(x) ∈ R
k×k×c′

are referred as context-aware filters. And then the reduced

feature map is convolved with the generated context-aware

filters with depthwise convolution to obtain a specific scale

representation.

hk = fk(x)⊗ gk(x), (1)

where symbol ⊗ is the depthwise convolution. Then hk

is processed with 1 × 1 convolution to fuse the channel

information, as depthwise separable convolution. The fi-

nal output of the Dynamic Convolutional Module (DCM) is

Ok ∈ R
h×w×c′ .

In our implementation, the feature reduction fk is a 1×1
convolution operation and the filter generator gk consists

of one adaptive average pooling operation (AAP) and one

1 × 1 convolution operation. For a specific DCM with ker-

nel size k, k × k region-based context is first obtained by

applying AAP to the input of DCM, and convolved with

the 1 × 1 convolution to generate the k × k context-aware

filters. Then, the generated context-aware filters convolve

with the reduced feature map fk(x) to get hk. Finally, a

1×1 convolution is applied to fuse channel information, and

the specific scale representation Ok is obtained as the out-

put of DCM. As mentioned above, we can obtain arbitrary

size of context-aware filters with only one 1×1 convolution

layer. Therefore, we can generate context-aware filters with

different kernel sizes for different DCMs to capture multi-

scale contents.
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Figure 2. The pipeline of Dynamic Multi-scale Network (DMNet). DMNet consists of a backbone convolutional neural network (CNN)

and several Dynamic Convolutional Modules (DCMs). The backbone CNN for feature extraction can be VGG, ResNet, DenseNet or

Xception. While each DCM can capture a specific scale feature representation related with the input image, different DCMs of DMNet can

obtain multiple scale feature representations. The outputs of each specific feature representations are aggregated with the original feature

extracted by backbone CNN to form the final feature representations for every pixel. Finally, these aggregated robust multi-scale feature

representations are feed to pixel-level predictor for dense image segmentation.

3.3. Discussion

Comparison with other network architectures. Many

previous works [5, 6, 7, 51] use fixed filters which are not

adapted to the input image and only capture a series of pre-

set scale feature representations. ASPP [5] and PPM [51]

which adopt predefined atrous convolution with different

dilation rates and pooling operations with different grids

respectively. These two methods are not only sensitive to

input image size, but also sensitive to the scale difference

between images in training and inference phrase. The fixed

weights, preset dilation rates and pooling grids cannot cap-

ture the internal scale variations of input images with arbi-

trary scales and sizes.

Comparison with other kinds of filters. Previous

works lie in enlarging the kernel size to obtain large recep-

tive field. Inception [39] expands the kernel size in a dense

way while ASPP expands the kernel size in a sparse way.

Therefore, multi-scale representations can be obtained by

different kernels with different expansion rates. However,

with receptive field increases larger, the parameters of the

former one is exploded and suffers overfitting and heavy

computational cost. Thought the latter one can arbitrary en-

large the receptive field, the sparse sampling way may lose

fine-detail information and cause gridding artifacts. We can

obtain dense context-aware filters with arbitrary size adding

only one 1× 1 convolution layer.

4. Experiments

To show the effectiveness of our proposed DMNet, ex-

tensive experiments are conducted on PASCAL VOC 2012

[13], Pascal-Context [33], and ADE20K [54] datasets.

4.1. Implementation Details

We use ImageNet [37] to pre-train our backbone CNN,

i.e. ResNet [21]. The stride of the backbone CNN is re-

moved and the dilation rate is set to 2 and 4 for its last

two stages, which is the same as [48, 5, 49]. This modi-

fication makes the size of output feature map to be 1/8 of

the input image. At training stage, the crop size of input

image is 512×512 on PASCAL VOC 2012 [13] and Pascal-

Context [33] dataset. For ADE20K [54], since its average

image size is larger than other two datasets [5, 51, 49], we

set larger crop size of 576×576 accordingly. In addition,

the input image is randomly flipped and scaled to perform
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data augmentation. The scaling rate ranges from 0.5 to 2.0.

When evaluating the CNN model, we also flip and resize

the testing images to multiple scales. To predict seman-

tic labels of each pixel, bilinear interpolation is applied to

the output predictions to obtain target size. Finally, we use

averaged predictions of different scales as final prediction

[30, 51, 38, 46, 17, 10, 20, 12, 11] and adopt mean of class-

wise intersection over union (mIoU) as our evaluation met-

ric .

We set the initial learning rate to 0.01 for PASCAL VOC

2012 [13] and ADE20K dataset [54], 0.005 for Pascal-

Context dataset [33]. The initial learning rate is multiplied

by (1− iter
total iter

)power at different training iteration, where

the power is 0.9 [49]. We adopt SGD [3] with momentum

of 0.9 and weight decay of 0.0001 as the optimizer. It takes

about 80 epochs for our CNN model to converge on PAS-

CAL VOC 2012 [13] and Pascal-Context dataset [33], and

120 epochs on ADE20K dataset [54]. We implement all ex-

periments based on PyTorch [35] with synchronized batch

normalization [22].

4.2. PASCAL VOC 2012

PASCAL VOC 2012 [13] is a widely used benchmark

dataset for semantic segmentation which contains 21 object

classes (including a background class). Since there are only

1,464 training images in original PASCAL VOC 2012, most

works [5, 49, 7] use an augmented training set of PASCAL

VOC 2012 [19] whose training set includes 10,582 images.

In our experiments, we also take the same augmented train-

ing set as these works.

Firstly, we conduct the ablation study to illustrate the ef-

fectiveness of our proposed modules, and then compare our

DMNet with the state-of-the-art methods. We implement

our method with different sets of kernel sizes including {1},

{1, 3}, {1, 3, 5}, {1, 3, 5, 7} and the backbone is ResNet50

pre-trained on ImageNet. In each set, the number of ele-

ments equals to the number of DCM, and the element cor-

responds to the kernel size of context-aware filters in DCM.

Context-aware filters v.s. traditional filters. We re-

place context-aware filters in each DCM with traditional fil-

ters of the same kernel size whose paremeters is fixed after

training. Depthwise convolution is adopted in DCM, so we

conduct both regular convolution and depthwise convolu-

tion in traditional filters for thorough studies. From Table

1, we can see that the performance of traditional filters with

depthwise convolution is slightly worse than regular con-

volution, since depthwise convolution has less parameters.

Our method outperforms traditional filters with regular con-

volution and depthwise convolution in setting with a large

margin. Our context-aware filters improve the results of tra-

ditional filters by about 7% for kernel size {1} and {1,3}
setting with mIoU 77.75% and 78.52%, respectively. It is

noting that our methods use depthwise convolution with less

parameters, but clearly outperform traditional filters with

regular convolution. We owe the superior performance to

the fact that context-aware filters of DCM can capture a

specific scale representation related to input image. These

results indicate that DCM is effective and adaptive.

Kernel size {1} {1,3} {1,3,5} {1,3,5,7}

Regular conv 70.76 71.41 72.65 72.37

Depthwise conv 70.59 71.12 72.24 71.88

Ours 77.75 78.52 78.76 78.21

Table 1. Comparison between Dynamic convolution in DCM with

context-aware filters and traditional convolution (regular convo-

lution and depthwise convolution), i.e. replacing context-aware

filters with traditional filters. Depthwise convolution is adopted

in our DCM. Four sets of kernel sizes are implemented. In each

set, the number of elements equals to the number of branches of

models, and the element corresponds to the kernel size. And the

number of elements is also the number of DCMs.

Context-aware filters v.s. dilated filters. Following

DeepLab [5] and PSPNet [51], we adopt four branches in

our model to learning multi-scale features for fair compari-

son. Here, the context-aware filters are replaced by dilated

filters with the kernel size unchanged (3 × 3) and dilation

rates varied in each branch. We also conduct both regular

convolution and depthwise convolution with dilated filters.

To comprehensively study the effectiveness of DMNet, we

set a series of dilation rates. The dilation rates are set as {2,

4, 8, 12} and {6, 12, 18, 24} corresponding to ASPP-S and

ASPP-L in DeeplabV2 [5] respectively. But there are some

differences: we insert these dilation filters in the inter-media

convolution before the score map to capture multi-scale fea-

ture representations, while DeepLabV2 [5] inserts them in

the last convolutional layer used for predicting final multi-

scale score maps.

From Table 2, we can observe that the performances are

highly related with dilation rates. As the dilation rates in-

crease, the performance of atrous convolution increases, but

it begins to decline with too large dilation rates due to de-

generation of artous convolution. Note that the performance

of dilation rates {2, 4, 8, 12} (ASPP-S) is better than {6,

12, 18, 24} (ASPP-L), which is different from the obser-

vation in DeepLabV2 [5]. The difference may be because

atrous convolution is sensitive to insert positions. Our four-

branch model with kernel sizes {1,3,5,7} of context-aware

filters outperforms all atrous convolution with different di-

lation rates, which exhibits that the context-aware filters are

more effective to capture rich contents for segmentation.

Parameters and flops of different methods. Compared

with traditional filters based method Inception (filter sizes

{1,3,5,7}) and dilated filters based method ASPP (filter

sizes {3,3,3,3}, dilation rates {6,12,24,36}), the proposed

context-aware filters based method DMNet has less param-

eters and flops, as shown in Table 3 (without backbone and

classifier, input size 512*512).
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Filter types Dilation rates Regular Depthwise

Dilated

{1,2,3,4} 73.37 72.98

{1,3,5,7} 76.22 74.29

{2,4,8,12} 77.18 77.30

{6,12,18,24} 76.94 76.26

{6,12,24,36} 77.60 77.34

{12,24,36,48} 77.17 77.10

{18,30,42,54} 76.88 76.92

Context-aware - 78.21
Table 2. Performance of baselines with different dilation rates. The

kernel size of each branch is 3, yet with different dilation rates. In

each set, the number of elements equals to the number of branches

of models, and the element corresponds to the dilation rate. ‘Reg-

ular’ means regular convolution and ‘depthwise’ means depthwise

convolution.

Methods Inception ASPP Ours

Parameters 26M 14M 9M

Flops 104G 56G 20G
Table 3. Parameters and flops of different methods.

Context from different stages. We also explore how

context from different stages (to generate context-aware fil-

ters) influence the context-aware filters and the final seg-

mentation results. Feature maps from different stages of

ResNet50 are adopted to generate context-aware filters. It

shows in Table 4 that the higher layer feature maps are uti-

lized, the better performance is achieved. Indeed, the fea-

ture maps of higher layers usually contain higher level se-

mantics and richer contents which can be intrinsically inher-

ited by context-aware filters. Therefore, high-level context

features are more effective for generating context-aware fil-

ters.

Different stage mIoU(%)

Stage5 78.21

Stage4 75.85

Stage3 73.27

Stage2 73.13
Table 4. Comparison of context-aware filters generated by context

from different stages of ResNet.

Different backbones. With the kernel sizes {1,3,5,7} of

context-aware filters in our DMNet, we show the mIoU(%)

of DMNet with different backbones, i.e. ResNet50 and

ResNet101, in Table 5. It is obvious that the mIoU of our

DMNet can be improved by using deeper backbones. To

further show the significance of our multiple DCMs, we re-

move these DCMs from the DMNet and get the FCN. The

mIoU of FCN is shown in the second column of Table 5.

Without DCMs, the performance decreases by 8.38% and

3.58% for ResNet50 and ResNet101 respectively, which

verifies the effectiveness of our multi-scale DCMs. More-

over, the performance of FCN decreases by 6.41% when its

backbone of ResNet101 is replaced by ResNet50 (76.24%

v.s. 69.83%), which means FCN is more dependent on

the stronger backbone to achieve good performance. For

DCMs, its performance does not change much with differ-

ent backbone.
Backbone FCN DMNet

ResNet50 69.83 78.21

ResNet101 76.24 80.82
Table 5. Influence of different backbones. Note that we get the

FCN by removing all DCMs from DMNet.

Training and evaluation strategies. As shown in Ta-

ble 6, we further explore the influence of different train-

ing and evaluation strategies. Table 6 shows that introduc-

ing deep supervision to ResNet101 can improve the perfor-

mance. We argue that this is because deep supervision opti-

mizes the learning process. Moreover, horizontally flipping

or scaling the image for evaluation also contributes to the

improvement of mIoU. Fine-tuning the trained model with

original training set can also improve the result. The final

result on PASCAL VOC 2012 validation set without MS

COCO pre-trained is 82.82% mIoU .

Backbone DS Flip MS FT mIoU%

ResNet101 80.87

ResNet101 X 81.08

ResNet101 X X 81.50

ResNet101 X X X 82.15

ResNet101 X X X X 82.82
Table 6. Influence of different strategies in training and evalua-

tion. The kernel sizes of context-aware filters in different branches

are {1,3,5,7}. DS: deep supervision [51], Flip: horizontally flip-

ping input image for evaluation, MS: multi-scale evaluation. FT:

fine tune the trained model on PASCAL VOC 2012 original train-

ing set.The results are evaluated on the validation set of PASCAL

VOC 2012 dataset.

Comparison with state-of-the-arts. To further demon-

strate the effectiveness of our DMNet, we compare it with

the state-of-the-art methods on the test set of PASCAL VOC

2012. For evaluation, we set kernel sizes to {1,3,5,7} of

context-aware filters for the four branches of DMNet and

adopt the deep supervision, flip, and multi-scale strategies.

DMNet takes ResNet101 pre-trained on ImageNet as its

backbone. We first train DMNet on the augmented train-

ing set, and then fine-tune on original training and vali-

dation set. From Table 7, we can observe that our DM-

Net outperforms other methods on most categories of PAS-

CAL VOC 2012. Especially for the objects which are rela-

tively small, e.g. bike and motorbike, our DMNet can cap-

ture more details of these objects partly because context-

aware filters densely sample over the feature maps. Further-

more, our DMNet achieves the state-of-the-art performance

without MS COCO pre-trained, i.e. 84.4% mIoU, since it

can capture more details and multi-scale semantics. With

MS COCO pretrained, our proposed method also achieves

the best performance of 87.06% mIoU among the methods

based on backbone ResNet101.
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU%

FCN [32] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

DeepLabv2 [5] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

CRF-RNN [53] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

DeconvNet [34] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

DPN [31] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1

Piecewise [27] 90.6 37.6 80.0 67.8 74.4 92 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3

ResNet38 [43] 94.4 72.9 94.9 68.8 78.4 90.6 90.0 92.1 40.1 90.4 71.7 89.9 93.7 91.0 89.1 71.3 90.7 61.3 87.7 78.1 82.5

PSPNet [51] 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6

EncNet [49] 94.1 69.2 96.3 76.7 86.2 96.3 90.7 94.2 38.8 90.7 73.3 90.0 92.5 88.8 87.9 68.7 92.6 59.0 86.4 73.4 82.9

Ours 96.1 77.3 94.1 72.8 78.1 97.1 92.7 96.4 39.8 91.4 75.5 92.7 95.8 91.0 90.3 76.6 94.1 62.1 85.5 77.6 84.4

Table 7. Results of each categories on PASCAL VOC 2012 test set. Our DMNet gets 84.4% without MS COCO dataset pre-trained.

Figure 3. Visualization of segmentation results on PASCAL VOC 2012 with different multi-scale feature leaning architectures.

4.3. Pascal­Context

Pascal-Context dataset [33] provides additional annota-

tions of the whole scene for PASCAL VOC 2010 [14]. It

includes 4,998 images for training and 5,105 images for

testing. We adopt the same training and test protocol as

[49, 26] and compare different methods in Table 8. Several

observations can be obtained from Table 8. Firstly, our DM-

Net shows better performance than EncNet [49] and DANet

[16] whose backbone model is the same as ours. Secondly,

our DMNet even surpass these methods which either use
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Method Backbone mIoU%

FCN-8S [32] 37.8

CRF-RNN [53] 39.3

ParseNet [30] 40.4

BoxSup [8] 40.5

HO CRF [1] 41.3

Piecewise [27] 43.3

VeryDeep [42] 44.5

DeepLab-v2 [5] ResNet101-COCO 45.7

RefineNet [26] ResNet152 47.3

MSCI [25] ResNet152 50.3

EncNet [49] ResNet101 51.7

DANet [16] ResNet101 52.6

Ours ResNet101 54.4
Table 8. Segmentation results of state-of-the-art methods on

PASCAL-Context dataset.

deeper backbone model [26, 25] or utilize additional MS

COCO dataset to pre-train their model [5]. The superior re-

sult (54.4%) over other state-of-the-art methods again man-

ifests the effectiveness of our DMNet.

4.4. ADE20K

Furthermore, we evaluate our DMNet on a more chal-

lenging dataset, ADE20K [54], to show its effectiveness.

There are 20K training samples, 2K validation and 3K test

images in ADE20K dataset, totally 150 classes with dense

labels. This dataset is more challenging because the scene

in this dataset is more diverse and complex. Table 9 sum-

marizes the mIoU of several state-of-the-art methods. Our

DMNet significantly surpasses these methods with deeper

backbone models, e.g. RefineNet [26] and PSPNet [51].

With the same backbone of ResNet101, our DMNet also

outperforms other state-of-the-art methods, which proves

that DMNet is an effective and efficient method for seman-

tic segmentation.

4.5. Visualization

To better demonstrate the effectiveness of our DMNet,

we visualize the segmentation results of different multi-

scale feature learning methods, including Inception, ASPP,

and our DMNet in Figure 3. The detailed settings of Incep-

tion and DMNet are just the same as 1st row and 3rd row

with kernel size of {1,3,5,7} in Table 1. While for the ASPP,

we adopt the network with dilation rate of {6,12,24,36}
which achieves 77.6% mIoU in Table 2. From Figure 3,

we can see that the Inception may segment the whole ob-

ject with large size into several different categories, e.g. the

bus in the 1st row, the leg of horse (3rd row) and human

(last row) are classified into other objects. The inconsis-

tency of the segmentation results probably comes from its

small receptive field. For ASPP, it ignores the details of a

certain object and leads to the ‘hole’ in the segmentation

Method Backbone mIoU%

FCN [32] 29.39

SegNet [2] 21.64

DilatedNet [47] 32.31

CascadeNet [54] 34.90

RefineNet [26] ResNet152 40.7

PSPNet [51] ResNet101 43.29

PSPNet [51] ResNet269 44.94

EncNet [49] ResNet101 44.65

SAC [50] ResNet101 44.30

PSANet [52] ResNet101 43.77

UperNet [44] ResNet101 42.66

DSSPN [24] ResNet101 43.68

APCNet [20] ResNet101 45.38

Ours ResNet101 45.50
Table 9. Segmentation results of state-of-the-art methods on

ADE20K validation set.

result. For example, ASPP mis-classifies the belly of the

cow (2nd row) and horse (3rd row), and the back of the cat

into background class. This is because the atrous convolu-

tion of ASPP convolves in a sparse sampling method and

ASPP itself is sensitive to input image size. Different from

Inception and ASPP, our DMNet can capture more details

and utilize high-level semantics to achieve consistent seg-

mentation results.

5. Conclusion

In this paper, we introduce a novel DMNet to extract

multi-scale features for semantic segmentation. The DM-

Net incorporates multiple Dynamic Convolutional Modules

(DCMs) which exploit of context-aware filters to handle the

scale variations of objects. The context-aware filters are dy-

namically generated from input image features and embed-

ded with high-level semantics, which makes them capable

to capture more details. Extensive experiments on PAS-

CAL VOC 2012, Pascal-Context and ADE20K show that

our DMNet can not only capture more details but also adapt

to objects of different scales. The state-of-the-art perfor-

mance on these datasets further illustrates the effectiveness

of our DMNet.
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