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Abstract

Gaze redirection is the task of changing the gaze to a

desired direction for a given monocular eye patch image.

Many applications such as videoconferencing, films, games,

and generation of training data for gaze estimation require

redirecting the gaze, without distorting the appearance of

the area surrounding the eye and while producing photo-

realistic images. Existing methods lack the ability to gener-

ate perceptually plausible images. In this work, we present

a novel method to alleviate this problem by leveraging gen-

erative adversarial training to synthesize an eye image con-

ditioned on a target gaze direction. Our method ensures

perceptual similarity and consistency of synthesized images

to the real images. Furthermore, a gaze estimation loss is

used to control the gaze direction accurately. To attain high-

quality images, we incorporate perceptual and cycle consis-

tency losses into our architecture. In extensive evaluations

we show that the proposed method outperforms state-of-the-

art approaches in terms of both image quality and redirec-

tion precision. Finally, we show that generated images can

bring significant improvement for the gaze estimation task

if used to augment real training data.

1. Introduction

In the cognitive sciences it is well understood that gaze

plays a crucial rule in social communication [16], since it

conveys important non-verbal cues such as emotion, inten-

tion and attention. Hence, many applications such as video-

conferencing and movies would benefit from the ability to

redirect the gaze in images to establish eye-contact with

the viewer. Furthermore, learning-based gaze estimation

has recently made significant progress based on in-the-wild

datasets [18, 33]. However, such data is difficult to acquire

and datasets often only cover a restricted range of gaze an-

gles due to the collection devices. A high-fidelity gaze redi-

rection technique could be leveraged to alleviate this issue

(b)(a)

Figure 1: Gaze redirection on Columbia Gaze dataset [26].

(a) Gaze of the subject in the source image is fully centered.

(b) Sequence of eye images with different gaze directions

synthesized by our method.

by synthesizing novel samples to augment existing datasets.

A reliable and robust gaze redirection approach must be

able to (a) redirect the gaze precisely into any given direc-

tion, and (b) produce photo-realistic output images which

preserve shape and texture details from the input images.

Traditional solutions re-render the entire scene by perform-

ing 3D transformations, which requires heavy instrumenta-

tion to acquire the depth information [20, 31, 34, 5]. Re-

cently, Ganin et al. directly rearranged the pixels of the in-

put image to rotate the gaze direction via warping flow gen-

erated by a neural network [8]. However, their method fails

to generate photo-realistic images for large redirection an-

gles, especially in the presence of large dis-occlusions, such

as large parts of the eyeball being covered by the eyelid in

the source image. More importantly, such warping methods

cannot be perceptually plausible in terms of gaze redirec-

tion, since it minimizes pixel-wise differences between the

synthesized and ground-truth images without any geometric

regularization.

To address the limitations of previous methods, we pro-

pose a novel gaze redirection method that builds upon gen-

erative adversarial networks (GANs) [9]. To the best of our

knowledge, this is the first approach applying GANs to gaze

redirection.

As shown in Fig. 1, the proposed method can output
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Figure 2: Overview of our proposed method. (a) Generator G takes the original eye image xr and target gaze direction dg

as input, and outputs the synthesized redirected eye image xg . And then xg and the source gaze direction dr are fed into G

to reconstruct the xrec. (b) Discriminator D is trained to discriminate real and synthesized images, and it also estimates the

gaze direction to calculate the gaze estimation loss. V GG takes synthesized image xg and ground-truth image xt to produces

perceptual losses for the refinement of generated images. Please refer to Sec. 3.1 for details.

photo-realistic eye images from a single monocular RGB

image, while accurately preserving the desired gaze direc-

tions. More specifically, we use a conditional GAN [23] as

backbone for our architecture shown in Fig. 2. The gen-

erator G takes a real eye image as input and generates a

new synthetic eye image. Our main contribution is a novel

discriminator D that serves the dual purpose of i) ensuring

that generated images are realistic, as is common in many

GAN formulations, and ii) ensuring that the gaze direction

in the output coincides with the input gaze direction which

was fed to the generator. This is achieved by incorporating

a gaze estimator into the discriminator network. Further-

more, we seek to enhance the perceptual similarity between

the generated patch and its ground-truth reference. To this

end, we utilize a perceptual loss that penalizes discrepan-

cies between features extracted from the generated images

and the ground-truth images by a separate pre-trained neu-

ral network. Finally, to ensure that personalized features

are not lost in the process of gaze redirection, we use a

cycle-consistency loss that enforces consistency between

the source image and the generated eye-patch.

We evaluate our method in quantitative experiments and

via a qualitative user study. Furthermore, we argue that the

pixel-wise difference as a metric of image quality is not suit-

able for the task of gaze redirection, since it does not cor-

relate with visual perception. To address this, we propose

to use LPIPS [32], image blurriness and gaze estimation er-

ror as metrics for our quantitative evaluations. Providing

further evidence for the high-quality of the generated im-

ages, we show in a controlled experiment that the synthetic

samples can be used to augment the training data for a gaze

estimation network. Our results show significant improve-

ments in terms of angular gaze error compared to training

with real images only. This suggests that our method can be

an important tool to further enhance the accuracy attained

by deep-learning based gaze estimators.

Our main contributions can be summarized as follows:

• We propose a novel gaze redirection approach in

monocular eye images. Technically this is achieved

via a feature loss, gaze regularization, and adversarial

training. To the best of our knowledge, it is the first

GANs-based method for this task.

• We conduct thorough qualitative and quantitative eval-

uations on the gaze redirection task, showing that our

method achieves state-of-the-art performance.

• Finally, we show the potential of leveraging gaze redi-

rection to synthesize training data for the gaze estima-

tion task via training data augmentation.

2. Related Work

Gaze Manipulation Approaches that redirect gaze can

be divided into two groups: novel-view synthesis and

monocular-gaze synthesis.

Novel-view synthesis methods [20, 31, 34, 5] render a

scene containing the face of a subject from a given view-

point to mimic gazing at the camera. These methods re-

quire a depth map of the face, and then synthesize a new
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image of the subject with redirected gaze by performing 3D

transformations. These approaches mainly serve the pur-

pose of correcting gaze in video conferencing, where the

camera is placed at a fixed distance from the screen. How-

ever, these methods require dedicated hardware to acquire

depth. Furthermore, they alter the entire scene, which limits

their applicability.

Monocular-gaze synthesis also aim to change the gaze

within the eye region. Wolf et al. [28] proposes to re-

place the eyes in the image with eyes from the same per-

son while looking into a different direction . Although this

method retains the realism of eyes after editing, it requires

collecting abundant eye images in advance. Furthermore,

the movements of the eyelid are ignored in this approach.

Recently, a number of warping-based methods have been

proposed [8, 17]. These methods use random forests or

deep neural networks to learn a flow field to move pix-

els from the input image to the output image with the de-

sired gaze direction. However, such methods can not han-

dle situations where part of the eye is occluded, since they

only replace pixels with existing pixels from the original

image without generating any new pixels. Euclidean dis-

tance is commonly used as error metric in warping-based

methods [8, 17]. However, this does not accurately reflect

the perceptual difference between images. A number of ap-

proaches based on 3D modeling have been proposed [3, 29].

A 3D model is used to fit both texture and shape of the

source eye patch, and then the synthesized eyeballs are su-

perimposed on the source image. However, modeling meth-

ods make strong assumptions that do not hold in practice.

Therefore, they can not handle images with eyeglasses and

other high-variability inter-personal differences.

Generative Adversarial Networks GANs [9] have suc-

cessfully been applied to many computer vision tasks, such

as image super-resolution [21] and image compression [1],

and a myriad of further variants have been proposed in re-

cent years (e.g., [22, 2, 4, 4, 10]). GAN-based approaches

have also been proposed for the task of image-to-image

translation, resulting in impressive results [23, 12]. How-

ever, these methods typically require paired data to train.

Zhu et al. proposed CycleGAN which functions without

such requirement [35]. Several derivatives of CycleGAN

exist for various tasks [11, 30]. Our method is based on

the GAN model while differing from these works in two as-

pects. First, we focus on a different task, namely that of

gaze redirection. Second, we use a number of special pur-

pose losses, including a perceptual loss between ground-

truth and synthesized images and a gaze direction preser-

vation loss for training, which we show experimentally to

significantly impact the models performance.

3. Approach

3.1. Overview

Our goal is to learn a generator G which can redirect the

eye gaze contained in an image into any direction. Given

an RGB image of an eye patch xr ∈ R
H×W×3 and a tar-

get gaze direction vector dg = [φg, θg], where φg ∈ R and

θg ∈ R denote the target yaw and pitch angles respectively,

the task is to redirect the gaze depicted in xr to correspond

to the angles of the target vector dg , resulting in an output

image xg . This output needs to satisfy two requirements.

First, it needs to look real and consistent. This requires

that both shape and texture of xg are indistinguishable from

those of real data. To this end, we employ a discriminatorD

that discriminates between generated and real eye images.

In order to refine the generated image more, we introduce

a feature-based loss that penalizes discrepancies between

generated images and ground-truth images. Second, the eye

gaze direction in xg should look in the direction that the tar-

get gaze dg indicates. This is accomplished via an auxiliary

eye gaze estimator Dgaze that enforces the gaze direction.

Fig. 2 provides the full overview of the method. We discuss

the components in more detail below.

3.2. Objectives

Our method extends the GAN framework via integra-

tion of novel loss terms discussed below. The backbone is

formed by an existing conditional GAN framework.

Adversarial Loss We build upon WGAN-GP [10] due to

its stable performance and adopt its adversarial loss to train

the discriminator D and generator G, extending G to take

conditional input:

Ladv = E
xr∼pxr (x)

[Dadv(xr)−Dadv(G(xr,dg))]+

λgpEx̂∼px̂(x̂)[(‖∇x̂Dadv(x̂)‖2 − 1)2]
(1)

In Eq. 1, pxr
(x) denotes the probability distribution of real

images. Dadv(x) is the output of the discriminator. The last

term is the gradient penalty, which is used to maintain the

1-Lipschitz continuity of Dadv . The hyperparameter λgp
controls the strength of gradient penalty, and we use λgp =
10 in all experiments.

Gaze Estimation Loss One of our core contributions is

the incorporation of an auxiliary gaze estimator Dgaze into

the GAN framework. Dgaze is trained on real images and

gaze direction pairs (xr,dr) using MSE loss:

LD
gaze = E

xr∼pxr (x)
‖dr −Dgaze(xr)‖

2
2 , (2)

where in practice, Dgaze shares some layers with Dadv .

For training G, the generated image xg = G(xr,dg) is

fed into the gaze estimator Dgaze. Discrepancies between

the estimated gaze Dgaze(xg) and the target gaze dg are

used as a loss to penalize G. More specifically, we add
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the following loss function to the training objective of G,

keeping the weights of Dgaze fixed:

LG
gaze = E

xr∼pxr (x)
‖dg −Dgaze(G(xr,dg))‖

2
2 (3)

Reconstruction Loss The above two loss terms can

force the generated eye patch images to be photo-realistic,

and ensure redirection of the gaze directions simultane-

ously. However, none of these losses ensure that personal-

ized features, such as eyeglasses, skin tone or eyebrow are

maintained during the redirection process. This is an impor-

tant feature in many of the envisioned application scenarios

such as video-conferencing or interactive videos. Follow-

ing [35] we enforce cycle consistency, penalizing bad re-

construction as follows:

xrec = G(G(xr,dg),dr) (4)

Lrec = E
xr∼pxr (x)

‖xr − xrec‖1 (5)

Here we ask the network to first redirect the gaze to a de-

sired direction and consecutively we generate a third image

with the original gaze as target. Above loss ensures that the

input and twice-encoded image are as similar as possible.

By penalizing the reconstruction discrepancies, we force

the generator to maintain personalized features of the eye,

which otherwise would be lost. We use the L1 loss, since it

empirically performed better in comparison to the L2 loss.

Perceptual Loss In our task, human gaze only depends

on pitch and yaw angles, which makes it easy to attain a

ground-truth gaze images by simply asking the subject to

look at the target direction. These ground-truth images can

also be incorporated into the training process. One possi-

ble approach is to use Mean Squared Error (MSE) between

the ground-truth images and generated images as a penalty

term. However, applying a MSE loss on generated images

would be too strict, as it penalizes pixel-wise discrepancies

in all aspects, where minor misalignment could lead to a

large MSE while humans would hardly be able to tell the

differences (see Table. 1). Alternatively, we adopt the per-

ceptual losses proposed in [13] to penalize the generator G

for generating images which do not match ground-truth im-

ages perceptually. For this purpose, we use a VGG-16 net

[25] pre-trained on ImageNet [19].

Let ψ denote the pre-trained VGG-16 network, ψj(x) ∈
R

Hj×Wj×Cj is the activation of j-th layer of ψ. Two per-

ceptual losses, the content loss Lc and style loss Ls, are

defined as follows,

Lc = E
xr∼pxr (x)

[
1

HjWjCj

‖ψj(G(xr,dg))− ψj(xt)‖
2]

(6)

Ls = E
xr∼pxr (x)

[

J
∑

j=1

‖fj(G(xr,dg))− fj(xt)‖
2] (7)

In Equation 7, Ls is the sum of all style losses from the

1-st layer to the J-th layer of the VGG net. fj(x) denotes

the Gram matrix, which is defined as:

fj(x)c,c′ =
1

Nj

Hj
∑

h

Wj
∑

w

ψj(x)h,w,cψj(x)h,w,c′ (8)

Nj = HjWjCj (9)

Optimizing the content loss encourages xg to perceptu-

ally resemble xt in terms of overall structure and spatial

relation. Meanwhile, by minimizing the style loss, the gen-

erator tries to refine the details of xg , such as color and

texture, to increase the similarity to xt. The perceptual loss

is the sum of content loss and style loss:

Lp = Lc + Ls (10)

Overall Objectives The final training objectives consists

of two parts, one for G and D respectively:

LG = −Ladv + λpLp + λgazeL
G
gaze + λrecLrec (11)

LD = Ladv + λgazeL
D
gaze (12)

Where λp, λgaze and λrec are the hyperparameters that con-

trol the contribution of each loss term. In all experiments,

we set them to λp = 100, λgaze = 5, λrec = 50.

4. Implementation

4.1. Network Architecture

Generator The generator takes an RGB eye patch image

x ∈ R
H×W×3 and a gaze direction vector d ∈ R

2 as input.

d is expanded into R
H×W×2 by channel-wise duplication,

such that x and d can be concatenated depth-wise. We use a

modified variant of the generator architecture introduced in

[13], the details of which can be found in the supplementary.

Discriminator We modified the last layer of the discrim-

inator architecture of WGAN-GP [10] to have two output

branches: one performs real/fake discrimination and an-

other one outputs gaze estimates respectively.

VGG-16 We use the standard architecture of VGG-16

introduced in [25]. We use the activation of the 5th layer to

produce the content loss, and the 1st to 4th layers to produce

the style loss.

4.2. Training Details

For all the following experiments, we use Adam [15] op-

timizer with β1 = 0.5, β2 = 0.999. Our model is trained

for 300 epochs with batch size 32. The learning rate is set

to 0.0002 for the first 150 epochs, and linearly decays to 0

during the next 150 epochs. For every update of the gen-

erator, we update the discriminator five times. The training

process takes about 16 hours on a single NVIDIA R© 1080Ti

GPU.
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(a) Eye patch (b) Blurred (c) Noisy (d) Shifted

MSE 69.57 155.36 176.06

LPIPS 0.122 0.106 0.016

Table 1: Examples of image degradations. (a) Eye patch

from training set. (b) Blurred with Gaussian filter. (c) With

random Gaussian noise. (d) Shifted up by one pixel.

5. Experiments

In this section, we detail the quantitative and qualitative

experiments that were conducted to evaluate our approach.

5.1. Metrics

As mentioned before (see Sec. 1), gaze redirection mod-

els are required to be precise in redirecting and to produce

photo-realistic and consistent images. Correspondingly, the

evaluation metrics need to be able to assess these aspects.

In previous work of monocular gaze manipulation [8, 29],

the mean squared error (MSE) was used as the metric to

measure the similarity between the generated eye images

and ground-truth eye images. This was used as a quantita-

tive measure of performance. However, we argue that MSE

is not the ideal metric for this task, as has been observed

previously in related work [27]. To illustrate the issue, we

created three types of image degradations compared to the

ground-truth as shown in Table. 1. Qualitatively, Table. 1

d) is the most similar to the ground-truth Table. 1 a). How-

ever, when calculating the MSE, we see that this does not

correlate well with one’s qualitative judgment.

Instead, we propose to use the following three error met-

rics: LPIPS score, image blurriness and gaze estimation er-

ror.

LPIPS Score. We use the Learned Perceptual Image

Patch Similarity (LPIPS) [32] metric to evaluate the visual

quality of the generated gaze images. Different from tradi-

tional metrics, LPIPS is based on deep networks and aims to

resemble human perception in image evaluation tasks. The

LPIPS score is given as follows:

d(x,x0) =
∑

l

1

HlWl

∑

h,w

‖wl ⊙ (ŷl
hw − ŷl

0hw)‖
2
2 (13)

Where d(x,x0) denotes the LPIPS score between the im-

ages x ∈ R
H×W×3 and x0 ∈ R

H×W×3. The variables

ŷl ∈ R
Hl×Wl×Cl and ŷl

0 ∈ R
Hl×Wl×Cl are the channel-

wise unit-normalized activation from the l-th layer of the

backbone network and wl ∈ R
Cl are the trainable weights

used for scaling the activations. In our work, we use the

pre-trained Alex-Net [19] as a backbone,

When calculating LPIPS on the previous examples in Ta-

ble. 1, we see that the scores agree more with human evalu-

ation.

Image Blurriness (IB). To measure the blurriness of a

generated gaze image, we use a Laplace filter k and perform

convolution on the grayscale gaze image xgray . Image blur-

riness can be acquired by calculating the reciprocal variance

of the filtered image as shown in the following equations:

k =





0 1 0
1 −4 1
0 1 1



 , IB =
1

Var[k ∗ xgray]
. (14)

Gaze Estimation Error. For the assessment of gaze

redirection accuracy, we employ a state-of-the-art gaze es-

timator proposed by Park et al. [24] which was pre-trained

on MPIIGaze [33]. The estimator predicts the gaze direc-

tion of the generated gaze images. The angular error δ be-

tween the target gaze direction dg and the predicted gaze

direction d̂ is used as the gaze estimation error. To attain

δ, the yaw and pitch angles (φ, θ) need to be converted into

three-dimensional Cartesian coordinates first:

v = T (d) = [cosφ cos θ,− sinφ, cosφ sin θ]. (15)

where T (.) denotes the mapping between two coordinate

systems. Then, δ can be obtained via the following calcula-

tions:

vg = T (dg), v̂ = T (d̂) (16)

δ = arccos
vT

g · v̂

‖vg‖ · ‖v̂‖
. (17)

5.2. Dataset

We used the Columbia Gaze dataset [26] for the eval-

uations, which is a high-resolution, publicly available

human gaze dataset collected from 56 subjects. The

head poses of each subject are discrete values in the set

[−30◦,−15◦, 0◦, 15◦, 30◦]. For each head pose, there

are 21 gaze directions, which are the combinations of

three pitch angles [−10◦, 0◦, 10◦], and seven yaw angles

[−15◦,−10◦,−5◦, 0◦, 5◦, 10◦, 15◦]. Here, we only used

the images with frontal faces, i.e. 0◦ head pose. Results

on non-frontal faces are provided in the supplementary. We

split the data into train and test set. The former set includes

50 subjects whereas the latter contains 6 subjects. We first

run face alignment with dlib [14] by parsing the face with

68 facial landmark points. After that, a minimal enclosed

circle with center (x, y) and radiusRwas extracted from the

6 landmark points of each eye. The cropping region of the

eye patch is set as a square box with center (x, y) and side

length 3.4R. We flipped the right eye images horizontally

to align with the left eye images. All eye patch images were
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resized to 64 × 64. Both the pixel values of images and

gaze directions were normalized into the range [−1.0, 1.0].
Other publicly available gaze datasets, such as MPIIGaze

[33] or EYEDIAP [7] only provide low-resolution images

and would therefore introduce a bias towards low quality

images. Therefore, these datasets were not suitable for our

task.

5.3. Evaluation Protocol

We tested each model on the 6 subjects contained in the

test set, which includes 252 eye patch images. For each

image, we redirected the gaze into 20 gaze directions sep-

arately, excluding the gaze direction of the current image.

Intuitively, it would be harder for the model to redirect

the gaze if the target gaze direction is significantly differ-

ent from the original gaze direction. Therefore, we defined

the correction angle γ to indicate the angular difference be-

tween original and target gaze directions. It is calculated as

follows:

vg = T (dg),vr = T (dr) (18)

γ = arccos
vT

g · vr

‖vg‖ · ‖vr‖
(19)

Where T (.) is the aforementioned mapping in Eq. 15.

5.4. Comparison to State­of­The­Art

Baseline Model We adopt DeepWarp [8] as our base-

line model. The original implementation uses 7 eye land-

marks as input, including the pupil center. However, de-

tecting the pupil center is very challenging task. Therefore

we only used 6 landmarks as the input to DeepWarp. Un-

fortunately, evaluating the more recent work GazeDirector

[29] with the proposed error metric is not possible, since

their implementation is not available. Therefore, we did not

compare GazeDirector in our paper.

Qualitative Evaluation Fig. 3 and Fig. 4 show the gen-

erated gaze images examples. Although both methods are

capable of redirecting the gaze, we observe that the gen-

erated images of DeepWarp have several obvious defects.

First, textures such as skin and eyebrows are more blurry.

Second, the shapes of certain parts, such as the edges of

eyelid (see Fig. 4), iris and eyeglasses (see Fig. 3), are dis-

torted. In contrast, the generated gaze images of our pro-

posed method are more faithful to the input images.

Quantitative Evaluation Fig. 5a plots the LPIPS scores

of DeepWarp and our method. The range of correction an-

gle is [4.9◦, 35.9◦]. From the figure we can see that our

method achieves the lower LPIPS score than DeepWarp at

every correction angle, which indicates that our method can

generate gaze images that are perceptually more similar to

the ground-truth images. This observation is consistent with

the qualitative evaluation (Fig. 3 and Fig. 4).

Input TargetDeepWarp Ours

Figure 3: Gaze redirection comparison.

DeepWarp

Ours

Figure 4: Zoom-in detail comparison.

Fig. 5b plots the blurriness of the produced images. Our

method outperforms the related work by a large margin, be-

ing closer to the blurriness observed in real images.

Fig. 5c presents the results of gaze estimation error. The

error of our method is much lower than DeepWarp, which

indicates that our method can redirect the gaze with a higher

precision.

User Study In addition, we conducted a user study to

compare the performance of DeepWarp [8] and our method.

As the overall range of correction angle is [4.9◦, 35.9◦],
we split the generated gaze images into three groups:

[4.9◦, 15.0◦], (15.0◦, 25.0◦], (25.0◦, 35.9◦], which repre-

sent the difficulty of gaze redirection from easy to hard. In

each group, we randomly choose 19 pairs of images gener-

ated by both methods with the same input image and gaze

direction. Two images in a pair were shown side by side to

the user without any further information. The task for the

users is to pick the gaze image that looks more realistic than

the other.

In total, we have 16 users participated in our study. Table

2 shows the results of the user study. We can see that our

method outperforms DeepWarp with a significant margin.

The results of quantitative evaluations shown in Fig. 5 are

consistent with the user assessment, which demonstrates the

the metrics we used are effective in the evaluation of the

gaze redirection task.
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Figure 5: Quantitative evaluation results of DeepWarp and

our method. (a) LPIPS score (lower is better). (b) Image

blurriness (lower is better). (c) Gaze estimation error (lower

is better)

Group DeepWarp [8] Ours

[4.9◦, 15.0◦] 21.9% 78.1%

(15.0◦, 25.0◦] 9.0% 91.0%

(25.0◦, 35.9◦] 13.4% 86.6%

Table 2: Voting results of user study, comparing DeepWarp

with our method. Each row sums up to 100 %.

5.5. Ablation Study

To understand the effect of each component of our pro-

posed model, we performed an ablation study. As men-

tioned in Sec. 3.1, besides the adversarial loss, there are

three other loss terms: gaze estimation loss, reconstruction

loss and perceptual loss. We trained a model for each one

of these additional loss terms, where one of the terms was

removed from the total loss.

Qualitative Results We show the results in Fig. 6. As

can be seen from the second column of Fig. 6, the model

is not able to maintain features from input images without

Lrec. The most significant example is in the first row, where

the model without Lrec does not preserve the rim of the

eyeglasses.

When discarding Lgaze, it can be observed that the

model fails to redirect the gaze entirely. Therefore, we will

not further consider models not using Lgaze in the follow-

ing quantitative evaluations.

Removal of Lp causes reduced image quality as can be

visually verified in the generated images. These show arti-

facts such as distortion of eyelid shape, iris and eyeglasses

(Fig. 6).

Quantitative Results Fig 7a shows the LPIPS scores of

the full model, a model without Lrec and a model without

Lp. It is clear that the LPIPS score increases without either

of Lrec or Lp, which indicates that both terms are essential

for improving the visual quality of redirected gaze images.

The blurriness scores shown in Fig. 7b are also consistent

with what has been observed in qualitative results, where

the full model produces the sharpest images.

Fig. 7c presents the gaze estimation error. Removal of

either Lrec or Lp does not significantly worsen the gaze

estimation error, since the precision of redirection is mainly

controlled by Lgaze.

5.6. Augmenting Gaze Data

Lastly, we investigated the feasibility of leveraging our

method for the purpose of data augmentation for eye gaze

estimation tasks. This is motivated by the rapid progress in

deep-learning based gaze estimation (e.g., [33, 24]). While

appearance-based gaze estimation techniques that use Con-

volutional Neural Networks (CNN) have significantly sur-

passed classical ones [33] in in-the-wild settings, there still

remains a significant gap towards applicability in high-

accuracy domains. The currently lowest reported person-

independent error of 4.3◦ [6] is roughly equivalent to 4.7cm

at a distance of 60cm. One reason for this relatively high

error is the lack of sufficient training data. In particular, it

is known that many datasets only cover a relatively small

range of gaze angles due to hardware limitations. Therefore

we propose to leverage our model for augmenting existing

datasets, in order to expand the range of gaze directions and

leading to better gaze estimation performance. To the best

of our knowledge, this is the first time that potential of gaze

redirecting models to improve gaze estimation models have

been explored.

To assess the applicability of our method in this setting,

we performed a proof-of-concept experiment indicating that

our technique can fill in unseen gaze angles. First, we con-

structed two datasets.

The raw dataset contains all the eye images with 10◦

pitch angles from the Columbia Gaze Dataset [26].

The augmented dataset contains the images from the

raw dataset. Furthermore, we took the images of the 6 test-

ing subjects (see Sec. 5.2), and used them to synthesize new

gaze images with pitch angles −10◦ and 0◦ respectively.

We trained two gaze estimators on the raw and aug-

mented datasets respectively. Both estimators were con-

structed by the same VGG-16 [25] architecture. Since aug-

mented dataset contains more images, we trained the corre-

sponding estimator for less epochs. Implementation details

can be found in the supplementary.

To test the estimators, we used two test sets. (1)

Columbia Gaze. Since the eye images in Columbia Gaze

dataset with pitch angles −10◦ and 0◦ of the 50 training
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Figure 6: Gaze redirection results of (a) model without Lrec and (b) model without Lgaze, (c) model without Lp and (d) full

model.
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Figure 7: Quantitative evaluation results of our full model,

model without Lrec and model without Lp. (a) LPIPS score

(lower is better). (b) Image blurriness (lower is better). (c)

Gaze estimation error (lower is better)

subjects (see Sec. 5.2) have not been seen by the gaze esti-

mators, we use these images as our test set without leaking

information. (2) MPIIGaze. For cross-dataset evaluation,

we take the test set of MPIIGaze [33], where the pitch an-

gles are in the range [−20◦, 1.5◦].

Results As shown in Table 3, the gaze estimator trained

on the augmented dataset always performs better than the

gaze estimator trained on the raw dataset. Intuitively, since

the raw dataset only contains images with positive pitch an-

Dataset Raw Augmented

Columbia 14.3◦ 6.9
◦

MPIIGaze 20.2◦ 14.0
◦

Table 3: Gaze estimation errors. Column name is the train-

ing set, while row name is the testing set.

gles, the trained estimator is expected to generalize poorly

on the test set, where most samples have different pitch an-

gles. In contrast, the augmented images aid the estimator in

generalizing better to unseen angles, improving the test set

performance.

6. Conclusion

In this paper, we propose a novel monocular gaze redi-

rection method leveraging generative adversarial networks.

The proposed method can generate photo-realistic eye im-

ages while preserving the desired gaze direction. In order

to further refine the generated images, we incorporate a per-

ceptual loss into the adversarial training and include a cycle-

consistent loss to preserve personalized features. Extensive

evaluations show that our approach outperforms previous

state-of-the-art methods in terms of both image quality and

redirection precision. Finally, we show that our gaze redi-

rection method can benefit gaze estimation tasks by generat-

ing additional training data with controlled gaze directions.
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[29] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency,

Peter Robinson, and Andreas Bulling. Gazedirector: Fully

articulated eye gaze redirection in video. In Computer

Graphics Forum, volume 37, pages 217–225. Wiley Online

Library, 2018.

[30] Wayne Wu, Yunxuan Zhang, Cheng Li, Chen Qian, and Chen

Change Loy. Reenactgan: Learning to reenact faces via

boundary transfer. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 603–619, 2018.

6940



[31] Ruigang Yang and Zhengyou Zhang. Eye gaze correction

with stereovision for video-teleconferencing. In European

Conference on Computer Vision, pages 479–494. Springer,

2002.

[32] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 586–595, 2018.

[33] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas

Bulling. Appearance-based gaze estimation in the wild. In

Proc. of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 4511–4520, June 2015.

[34] Jiejie Zhu, Ruigang Yang, and Xueqing Xiang. Eye contact

in video conference via fusion of time-of-flight depth sensor

and stereo. 3D Research, 2(3):5, 2011.

[35] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2223–

2232, 2017.

6941


