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Abstract

We investigate the design aspects of feature distilla-

tion methods achieving network compression and propose

a novel feature distillation method in which the distilla-

tion loss is designed to make a synergy among various as-

pects: teacher transform, student transform, distillation fea-

ture position and distance function. Our proposed distilla-

tion loss includes a feature transform with a newly designed

margin ReLU, a new distillation feature position, and a par-

tial L2 distance function to skip redundant information giv-

ing adverse effects to the compression of student. In Ima-

geNet, our proposed method achieves 21.65% of top-1 error

with ResNet50, which outperforms the performance of the

teacher network, ResNet152. Our proposed method is eval-

uated on various tasks such as image classification, object

detection and semantic segmentation and achieves a sig-

nificant performance improvement in all tasks. The code is

available at bhheo.github.io/overhaul

1. Introduction

Experiencing remarkable advances in many machine

learning tasks using neural networks, researchers have

started to work on network compression and enhance-

ment. Several approaches such as model pruning, model

quantization and knowledge distillation have been sug-

gested to make the model smaller and cost-efficient. Among

them, knowledge distillation is being actively investigated.

Knowledge distillation refers to the method that helps the

training process of a smaller network (student) under the

supervision of a larger network (teacher). Unlike other com-

pression methods, it can downsize a network regardless of

the structural difference between the teacher and the student

network. Allowing architectural flexibility, knowledge dis-

tillation is emerging as a next generation approach of net-

∗This work was done when authors were in research internship at Clova

AI Research, NAVER corp.

78.31 
Teacher (ResNet152)

Figure 1. Performance of distillation methods: AT [30], FT [13],

AB [7] and proposed method on ImageNet. The graph shows accu-

racy(%) of ResNet50 trained with each distillation method. Note

that ResNet152 with 78.31% accuracy is used as a teacher.

work compression.

Hinton et al. [8] proposed a knowledge distillation (KD)

method using the softmax output of the teacher network.

This method can be applied to any pair of network archi-

tectures since the dimensions of both outputs are the same.

However, the output of a high-performance teacher network

is not significantly different from the ground truth. Thus,

transferring only the output is similar to training the stu-

dent with the ground truth, making the performance of out-

put distillation limited. To make better use of the informa-

tion contained in the teacher network, several approaches

have been proposed for feature distillation instead of out-

put distillation. FitNets [22] have proposed a method that

encourages a student network to mimic the hidden feature

values of a teacher network. Although feature distillation

was a promising approach, the performance improvement

by FitNets was not significant.

After FitNets, variant methods of feature distillation

have been proposed as follows. The methods in [30, 28]

transform the feature into a representation having a re-

duced dimension and transfer it to the student. In spite of

the reduced dimension, it has been reported that the ab-
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Figure 2. The general training scheme of feature distillation. The

form of teacher transform Tt, student transform Ts and distance d

differ from method to method.

stracted feature representation does lead to an improved per-

formance. Recent methods (FT [13], AB [7]) have been pro-

posed to increase the amount of transferred information in

distillation. FT [13] encodes the feature into a ‘factor’ using

an auto-encoder to alleviate the leakage of information. AB

[7] focuses on activation of a network with only the sign

of features being transferred. Both methods show a better

distillation performance by increasing the amount of trans-

ferred information. However, FT [13] and AB [7] deform

feature values of the teacher, which leaves a further room

for the performance to be improved.

In this paper, we further improve the performance of fea-

ture distillation by proposing a new feature distillation loss

which is designed via investigation of various design as-

pects: teacher transform, student transform, distillation fea-

ture position and distance function. Our method aims to

transfer two factors from features. The first target is the

magnitude of feature response after ReLU, since it carries

most of the feature information. The second is the activation

status of each neuron. Recent studies [20, 7] have shown

that the activation of neurons strongly represents the expres-

siveness of a network, and it should be considered in distil-

lation. To this purpose, we propose a margin ReLU func-

tion, change the distillation feature position to the front of

ReLU, and use a partial L2 distance function to skip the dis-

tillation of unnecessary information. The proposed loss sig-

nificantly improves performance of feature distillation. In

our experiments, we have evaluated our proposed method in

various domains including classification (CIFAR [15], Im-

ageNet [23]), object detection (PASCAL VOC [2]) and se-

mantic segmentation (PASCAL VOC). As shown in Fig. 1,

in our experiments, the proposed method shows a perfor-

mance superior to the existing state-of-the-art methods and

even the teacher model.

2. Motivation

In this section, we investigate the design aspects of fea-

ture distillation methods achieving network compression

and present novel aspects of our approach distinctive to the

preceding methods. First, we describe a general form of loss

function in feature distillation. As shown in Fig. 2, the fea-

ture of the teacher network is denoted as F t and the fea-

ture of the student network is F s. To match the feature di-

mension, Tt and Ts respectively, we transform the feature

F t and F s. A distance d between the transformed features

is used as a loss function Ldistill. In other words, the loss

function of feature distillation is generalized as

Ldistill = d(Tt(F t), Ts(F s)). (1)

The student network is trained by minimizing the distilla-

tion loss Ldistill.

It is desirable to design the distillation loss so as to trans-

fer all feature information without missing any important

information from the teacher. To achieve this, we aim to

design a new feature distillation loss in which all impor-

tant teacher’s information is transferred as much as possible

to improve the distillation performance. To get an idea for

this purpose, we analyze the design aspects of feature dis-

tillation loss. As described in Table 1, the design aspects

of feature distillation loss are categorized into 4 categories:

teacher transform, student transform, distillation feature po-

sition and distance function.

Teacher transform. A teacher transform Tt converts the

teacher’s hidden features into an easy-to-transfer form. It

is an important part of feature distillation and also a main

cause of the information missing in distillation. AT [30],

FSP [28] and Jacobian [26] reduce the dimension of the

feature vector via the teacher transform which causes seri-

ous information missing. FT [13] uses a compression ratio

determined by the user and AB [7] utilizes the original fea-

ture in the form of binarized values, making both methods

to use features different from the original ones. Except Fit-

Nets [22], most teacher transforms of existing approaches

cause an information missing in the teacher’s feature used in

the distillation loss. Since features include both adverse and

beneficial information, it is important to distinguish them

and avoid missing the beneficial information. In the pro-

posed method, we use a new ReLU activation, called margin

ReLU, for the teacher transform. In our margin ReLU, the

positive (beneficial) information is used without any trans-

formation while the negative (adverse) information is sup-

pressed. As a result, the proposed method can perform dis-

tillation without missing the beneficial information.

Student transform. Typically, the student transform Ts

uses the same function as the teacher transform Tt. There-

fore, in methods like AT [30], FSP [28], Jacobian [26] and

FT [13], the same amount of information is lost in both the
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Method
Teacher

transform

Student

transform

Distillation

feature position
Distance

Missing

information

FitNets [22] None 1×1 conv Mid layer L2 None

AT [30] Attention Attention End of group L2 Channel dims

FSP [28] Correlation Correlation End of group L2 Spatial dims

Jacobian [26] Gradient Gradient End of group L2 Channel dims

FT [13] Auto-encoder Auto-encoder End of group L1 Auto-encoded

AB [7] Binarization 1×1 conv Pre-ReLU Marginal L2 Feature values

Proposed Margin ReLU 1×1 conv Pre-ReLU Partial L2 Negative features

Table 1. Difference in various kinds of feature distillation. Most distillation use teacher transform with information loss.

teacher transform and the student transform. FitNets and

AB do not reduce the dimension of teacher’s feature and

use a 1×1 convolutional layer as a student transform to

match the feature dimension with the teacher. In this case,

the feature size of the student does not decrease, but rather

increases, so there is no information missing. In our method,

we use this asymmetric format of transformations as the stu-

dent transform.

Distillation feature position. Besides the types of fea-

ture transformation, we should be careful in picking the lo-

cation in which distillation occurs. FitNets uses the end of

an arbitrary middle layer as the distillation point, which has

been shown to have a poor performance. We refer to a group

of layers with the same spatial size as a layer group [29, 3].

In AT [30], FSP [28] and Jacobian [26], the distillation point

lies at the end of each layer group, whereas in FT it lies at

the end of only the last layer group. This has led to better

results than FitNets but still lacks consideration about the

ReLU-activated values of the teacher. ReLU allows the ben-

eficial information (positive) to pass through and filters out

the adverse information (negative). Therefore, knowledge

distillation must be designed under the acknowledgement of

this information dissolution. In our method, we design the

distillation loss to bring the features in front of the ReLU

function, called pre-ReLU. Positive and negative values are

preserved in the pre-ReLU position without any deforma-

tion. So, it is suitable for distillation.

Distance function. Most distillation methods naively

adopt L2 or L1 distance. However, in our method, we need

to design an appropriate distance function according to our

teacher transform, and our distillation point in the pre-ReLU

position. In our design, the pre-ReLU information is trans-

ferred from teacher to student, but negative values of the

pre-ReLU feature contain adverse information. The neg-

ative values of the pre-ReLU feature are blocked by the

ReLU activation and not used by the teacher network. The

transfer of all values may have an adverse effect to the stu-

dent network. To handle this issue, we propose a new dis-

tance function, called partial L2 distance, which is designed

to skip the distillation of information on a negative region.

Conv
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BatchNorm

BatchNorm

ReLU

Conv

BatchNorm

ReLU

Conv

ReLU

BatchNorm

Simple Block Residual Block Pre-activation
Residual Block

Pyramid 
Residual Block 

End of block
Proposed

Figure 3. Position of distillation target layer. We place the distil-

lation layer between the last block and the first ReLU. The exact

location differs according to the network architecture.

3. Approach

In this section, we describe our distillation method out-

lined in section 2. We first describe the location where the

distillation occurs in our method and then explain about the

newly designed loss function.

3.1. Distillation position

The activation function is a crucial component of neu-

ral networks. The non-linearity of a neural network at-

tributes to this function. The performance of the model is

significantly influenced by the type of activation function.

Among various activation functions, rectified linear unit

(ReLU) [19] is used in most computer vision tasks. Most

networks [16, 25, 27, 5, 6, 29, 3, 9, 24] use ReLU or mod-

ified versions very similar to ReLU [18, 14]. ReLU simply

applies a linear mapping for positive values. For negative

values, it eliminates the values and fixes them to zero, which

prevents the unnecessary information from going backward.

With a careful design of knowledge distillation considering

ReLU, it is possible to transfer only the necessary informa-

tion. Unfortunately, most of the preceding research don’t

take a serious consideration of the activation function. We

define the minimum unit of the network, such as the resid-

ual block in ResNet [5] and the Conv-ReLU in VGG [25],

as a layer block. The distillation in most methods occurs at
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Figure 4. A comparison of the conventional ReLU, teacher trans-

forms in Heo et al. [7] and our proposed method.

the end of the layer block ignoring whether it is related to

ReLU or not.

In our proposed method, the position of the distillation

lies between the first ReLU and the end of layer block. This

positioning enables the student to reach the preserved in-

formation of the teacher before it passes through ReLU.

Fig. 3 depicts the distillation position of some architec-

tures. In case of the simple block [16, 25, 27, 9] and the

residual block [5], the fact of whether the distillation hap-

pens before or after the ReLU constitutes the difference be-

tween our proposed method and other methods. However,

for networks using the pre-activation [6, 29], the difference

is larger. Since there is no ReLU at the end of each block,

our method has to find the ReLU in the next block. In a

structure like PyramidNet [3, 24], our proposed method can

reach the ReLU after the 1×1 convolution layer. Though

the positioning strategy may be complicated according to

the architecture, it has a significant influence on the perfor-

mance. Our new distillation position significantly improves

the performance of the student as demonstrated in our ex-

periments.

3.2. Loss function

Based on the format of section 2, we explain the teacher

transform Tt, student transform Ts and the distance func-

tion d of our proposed method. Since the feature values of

teacher F t are the values before ReLU, positive values have

the information utilized by the teacher while negative values

do not. If a value in the teacher is positive, the student must

produce the same value as in the teacher. On the contrary,

if a value of the teacher is negative, the student should pro-

duce a value less than zero to make same activation status

of neurons. Heo et al. [7] noted that a margin is required to

make the student’s value less than zero. Thus, we propose a

teacher transform that preserves positive values while giv-

ing a negative margin.

σm(x) = max(x,m). (2)

Here, m is a margin value less than zero. We name this func-

tion as margin ReLU. Several types of teacher transforms

are depicted in Fig. 4. Margin ReLU is designed to give a

negative margin which is easier to follow than the negative

value of the teacher. Heo et al. set the margin by an arbi-

trary scalar value, which does not reflect the weight values

of the teacher. In our proposed method, the margin value

m is defined as the channel-by-channel expectation value

of the negative response, and the margin ReLU uses values

that correspond to each channel of the input. For a channel

C and the i-th element of the teacher’s feature F i
t , the mar-

gin value of a channel mC is set to an expectation value over

all training images.

mC = E[F i
t |F

i
t < 0, i ∈ C]. (3)

The expectation value can be calculated directly in the train-

ing process, or it can be calculated using parameters of

the previous batch normalization layer. The margin ReLU

σmC
(·) is used as a teacher transform Tt in our proposed

method and produces the target feature value for the student

network. For the student transform, a regressor consisting of

an 1 × 1 convolution layer [22, 7] and a batch normalization

layer is used.

We now explain our distance function d. Our proposed

method transfers the representation before ReLU. There-

fore, the distance function should be changed considering

ReLU. In the feature of the teacher, the positive responses

are actually used for the network which implies that the

positive responses of the teacher should be transferred by

their exact values. However, negative responses are not. For

a negative teacher response, if the student response is higher

than the target value, it should be reduced, but if the student

response is lower than the target value, it doesn’t need to be

increased since negatives are equally blocked by ReLU re-

gardless of their values. For the feature representation of the

teacher and student, T ,S ∈ R
W×H×C , let the i-th compo-

nent of the tensor be Ti, Si ∈ R. Our partial L2 distance

(dp) is defined as

dp(T ,S) =

WHC
∑

i

{

0 if Si ≤ Ti ≤ 0

(Ti − Si)
2 otherwise.

(4)

where T is the position for the teacher’s feature and S is the

position for the student’s feature.

Our proposed method uses margin ReLU σmC
(x) as a

teacher transform Tt and a regressor r(·) consisting of an

1×1 convolution layer as a student transform Ts, and uses

partial L2 distance (dp) as the distance function. Distillation

loss of the proposed method is:

Ldistill = dp(σmC
(F t), r(F s)). (5)

Our proposed method is conducted as continuous distilla-

tion using the distillation loss Ldistill. Thus, the final loss

function is the sum of distillation loss and task loss:

loss = Ltask + αLdistill. (6)
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The task loss refers to the loss specified by the task of a

network. The feature position for distillation is after the

last block of one spatial size and before ReLU as depicted

in Fig. 3. In a network with a 32×32 input, such as CI-

FAR [15], there are three target layers, and in the case of

ImageNet [23], the number of target layers is four.

3.3. Batch normalization

We further investigate batch normalization in knowledge

distillation. Batch normalization [11] is used in most recent

network architectures to stabilize training. A recent study

on batch normalization [10] explains the difference between

training mode and evaluation mode of batch normaliza-

tion. Each mode of batch-norm layer acts differently in the

network. Therefore, when performing knowledge distilla-

tion, it is necessary to consider whether to use the teacher

in training mode or evaluation mode. Typically, the fea-

ture of the student is normalized batch by batch. There-

fore, the feature from the teacher must be normalized in

the same way. In other words, the mode of the teacher’s

batch normalization layers should be training mode when

distilling the information. To do this, we attach a batch nor-

malization layer after the 1×1 convolutional layer and use

it as a student transform and bring the knowledge from the

teacher in training mode. As a result, our proposed method

achieves additional performance improvements. This issue

holds for all knowledge distillation methods including the

proposed method. We empirically analyze various knowl-

edge distillation methods for batch normalization issues in

Section 4.5.3.

4. Experiments

We have evaluated the efficiency of our distillation

method in several domains. The first task is the classifica-

tion problem which is a fundamental problem in machine

learning. As most of the other distillation methods have re-

ported their performance under this domain, we also have

compared our results to those of others. The performance of

knowledge distillation depends on which network architec-

ture is used, how well the teacher performs and what kind of

training scheme is used. To control other factors and make

a fair comparison, we reproduced the algorithms of other

methods based on their codes and papers. All experiments

were implemented and evaluated on NAVER Smart Ma-

chine Learning (NSML) [12] platform with PyTorch [21].

4.1. CIFAR­100

CIFAR-100 [15] is the dataset that most knowledge dis-

tillation methods use to validate their performance. Com-

posed of 50,000 images with 100 classes, we use CIFAR-

100 to compare various settings of all methods. To be prac-

tically used in any task, knowledge distillation must be ap-

plicable to any network structure. Therefore, we provide the

experimental results of knowledge distillation using various

structures of the teacher and student. Table. 2 shows the set-

tings of each experiment such as the architecture used for

each model, model size and compression rate. Majority of

our experiments utilize Wide Residual Network [29] since

the number of layers and the depth of each layer can be

easily modified. Distillation between different types of ar-

chitectures has also been experimented with the setting (d),

(e), (f). In the case of (f), network names are similar, but

the teacher is based on the bottleneck block and the student

uses the basic block. Note that (e) and (f) use a teacher net-

work PyramidNet-200 [3] trained with the Mixup augmen-

tation [31]. All models have been trained for 200 epochs

with a learning rate of 0.1, multiplied by 0.1 at epoch 100

and 150. To produce the best results from other methods,

some algorithms [22, 13, 7] are trained with an output dis-

tillation loss [8] along with the feature distillation loss.

The rest of the algorithms have shown better results when

trained without the output distillation loss. The results of

each method on every setting are presented in Table 3. Our

proposed method outperforms the state-of-the-art in the set-

tings of depth and channel compression (a), (b), (c) and

different architecture (d), (e), (f). Especially, in the setting

of depth compression (a), the student network trained by

our proposed method outperforms the teacher network. The

proposed method consistently shows a good performance

regardless of the compression rate and even when distilling

to different types of network architecture. Note that the er-

ror rate of 17.8% in (e) is better than any network reported

in the paper of Wide Residual Network [29]. Therefore, our

proposed method can be applied not only to small networks

but also to large networks with high performance.

4.2. ImageNet

The image size of 32×32 in CIFAR is not enough

to represent real world images. For this reason, we have

conducted experiments on the ImageNet dataset [23] as

well. ImageNet includes images with an average size of

469×387, which allows us to verify distillation perfor-

mance in large images. In this paper, we have used the

dataset in ILSVRC 2012 [23]. This dataset consists of 1.2

million training images and 50 thousand validation images.

Images are cropped to the size of 224×224 for training and

evaluation. The student network is trained for 100 epochs,

and the learning rate begins at 0.1 multiplied by 0.1 at ev-

ery 30th epoch. For a fair comparison and a simple repro-

duction, we used the pre-trained model in the PyTorch [21]

library as the teacher network.

The experiments have been conducted on two pairs of

networks. The first one is distillation from ResNet152 [5] to

ResNet50, and the second one is distillation from ResNet50

to MobileNet [9]. In this section, we present the results

of three latest algorithms [30, 13, 7], which have shown
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Setup Compression type Teacher network Student network
# of params

teacher

# of params

student

Compress

ratio

(a) Depth WideResNet 28-4 WideResNet 16-4 5.87M 2.77M 47.2%

(b) Channel WideResNet 28-4 WideResNet 28-2 5.87M 1.47M 25.0%

(c) Depth & channel WideResNet 28-4 WideResNet 16-2 5.87M 0.70M 11.9%

(d) Different architecture WideResNet 28-4 ResNet 56 5.87M 0.86M 14.7%

(e) Different architecture PyramidNet-200 (240) WideResNet 28-4 26.84M 5.87M 21.9%

(f) Different architecture PyramidNet-200 (240) PyramidNet-110 (84) 26.84M 3.91M 14.6%

Table 2. Experiments settings with various network architectures on CIFAR-100. Network architecture is denoted as WideResNet (depth)-

(channel multiplication) for Wide Residual Networks [29] and PyramidNet-(depth) (channel factor) for PyramidNet [3].

Setup Teacher Baseline KD [8] FitNets [22] AT [30] Jacobian [26] FT [13] AB [7] Proposed

(a) 21.09 22.72 21.69 21.85 22.07 22.18 21.72 21.36 20.89

(b) 21.09 24.88 23.43 23.94 23.80 23.70 23.41 23.19 21.98

(c) 21.09 27.32 26.47 26.30 26.56 26.71 25.91 26.02 24.08

(d) 21.09 27.68 26.76 26.35 26.66 26.60 26.20 26.04 24.44

(e) 15.57 21.09 20.97 22.16 19.28 20.59 19.04 20.46 17.80

(f) 15.57 22.58 21.68 23.79 19.93 23.49 19.53 20.89 18.89

Table 3. Performance of various knowledge distillation methods on CIFAR-100. Measurement is error rate (%) of classification. lower is

better. ‘Baseline’ represents a result without distillation.

the best results in the previous subsection. The results

are represented in Table 4. Our proposed method shows

a great improvement. In particular, our method has made

ResNet50 perform better than ResNet152, which is a re-

markable achievement. In addition, it has shown a consider-

able improvement in the recently proposed lightweight ar-

chitecture, MobileNet. In case of MobileNet, it is hard to

reproduce the performance of the paper (29.4) because the

training scheme, such as training epochs, is not reported.

Thus, we measured the performance in a standard setting.

4.3. Object detection

In this section, we apply our method to other computer

vision tasks. The first one is object detection which is one of

the most frequently used neural network techniques. Since

the purpose of distillation is to improve speed, we applied

our proposed method on a high-speed detector, Single Shot

Detector (SSD) [17]. Networks are trained on a mixture of

VOC2007 and VOC2012 [2] trainval set, which are widely

used in object detection. The backbone network in all mod-

els is pre-trained using the ImageNet dataset. Networks

have been trained for 120k iterations with a batch size of 32.

To show the improvement of our method, we set the SSD

trained with no distillation as the baseline, referred to as

‘Baseline’ in Table 5. SSD detector based on ResNet50 [5]

or VGG [25] is used as the teacher network to examine the

difference of performance according to the teacher architec-

ture. As the student networks, SSD based on ResNet18 and

SSD lite based on Mobilenet [9] have been used.

Network
# of param

(ratio)
Method

Top-1

error(%)

Top-5

error(%)

ResNet152 60.19M Teacher 21.69 5.95

ResNet50
25.56M

(42.5%)

Baseline 23.72 6.97

KD [8] 22.85 6.55

AT [30] 22.75 6.35

FT [13] 22.80 6.49

AB [7] 23.47 6.94

Proposed 21.65 5.83

ResNet50 25.56M Teacher 23.84 7.14

MobileNet
4.23M

(16.5%)

Baseline 31.13 11.24

KD [8] 31.42 11.02

AT [30] 30.44 10.67

FT [13] 30.12 10.50

AB [7] 31.11 11.29

Proposed 28.75 9.66

Table 4. Results on ILSVRC 2012 validation set. Networks are

trained and evaluated in 224×224 size with single-crop. ‘Baseline’

represents a result without distillation.

Detection performance has been evaluated in the VOC

2007 test set and all results are presented in Table 5. In

the case of ResNet18, the performance improvement of

ResNet18-T1 using ResNet teacher is larger than T2 using

a VGG teacher. Though both student architectures outper-

form the baseline, the distillation between similar structure
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Network # of params Method mAP(%)

ResNet50-SSD 36.7M Teacher (T1) 76.79

VGG-SSD 26.3M Teacher (T2) 77.50

ResNet18-SSD 20.0M

Baseline 71.61

Proposed-T1 73.08

Proposed-T2 72.38

MobileNet

-SSD lite
6.5M

Baseline 67.58

Proposed-T1 68.54

Proposed-T2 68.45

Table 5. Object detection results of SSD300 [17] in PASCAL

VOC2007 test set [2]. Results are described in mean Average Pre-

cision (mAP). Higher is better.

Backbone # of params Method mIoU

ResNet101 59.3M Teacher 77.39

ResNet18
16.6M

(28.0%)

Baseline 71.79

Proposed 73.24

MobileNetV2
5.8M

(9.8%)

Baseline 68.44

Proposed 71.36

Table 6. Semantic segmentation based on DeepLabV3+ [1] on the

PASCAL VOC 2012 test set [2]. Measurement of performance is

mean Intersection over Union (mIoU).

shows a better quality of knowledge distillation. In the case

of MobileNet, our proposed method shows a constant per-

formance improvement regardless of the type of the teacher.

Student models in all experiments have experienced im-

provements in performance and this implies that our method

can be applied to any SSD-based object detector.

4.4. Semantic segmentation

In this section, we verify the performance of our pro-

posed method on semantic segmentation. Applying distilla-

tion on semantic segmentation is challenging since the out-

put size is much larger than any other task. We have selected

the latest study, DeepLabV3+ [1] as our base model for

semantic segmentation. DeepLabV3+ based on ResNet101

has been used as the teacher network, and DeepLabV3+

based on MobileNetV2 [24] and ResNet18 [5] has been

used as the student network. Experiments have been per-

formed on the PASCAL VOC 2012 segmentation [2]

dataset. We also use an augmentation of the dataset pro-

vided by the extra annotations in [4] as in the baseline pa-

per [1]. All models have been trained for 50 epochs, and

the learning rate schedule is the same as the baseline pa-

per [1]. In similar fashion to our detection task, the student

network is initialized to a network pre-trained on ImageNet

without distillation. Results are presented in Table 6. Our

proposed method significantly improves the performance of

Method
KL divergence

with teacher

Cross-entropy

with GT

Error

rate(%)

Baseline 0.7318 1.0741 27.32

KD [8] 0.7064 1.0758 26.47

FitNets [22] 0.7993 1.1585 26.30

AT [30] 0.7047 1.0303 26.56

Jacobian [26] 0.7122 1.0495 26.71

FT [13] 0.6872 1.0561 25.91

AB [7] 0.7555 1.1197 26.02

Proposed 0.5723 0.9585 24.08

Table 7. Output similarity analysis between teacher and student on

test set of CIFAR-100.

ResNet18 and MobilenetV2. Taking MobileNetV2, in par-

ticular, our proposed method improves the performance by

almost 3 points in mIoU and contributes to computation re-

duction of the segmentation algorithm. We have shown that

our proposed method can be applied to image classification,

object detection and semantic segmentation. Being able to

be applied to many tasks without major changes is an ad-

vantage of feature distillation and shows that our proposed

method has a wide range of applications.

4.5. Analysis

We analyze possible factors which would have lead to

the performance improvement by our proposed method. The

first analysis is the output similarity between the teacher and

the student learned by distillation. By this, we verify how

well our method forces the student to follow the teacher.

After that, we provide an ablation study of our proposed

method. We measure how much each component of our pro-

posed method contributes to the performance. Finally, we

discuss about how the mode of batch normalization affects

knowledge distillation, as mentioned in Section 3.3. All ex-

periments are based on setting (c) of Table 2.

4.5.1 Teacher-student similarity

KD [8] forces the output of the student to be similar to out-

put of the teacher. The purpose of output distillation is quite

intuitive, i.e., if a student produces an output similar to that

of the teacher, its performance will also be similar. How-

ever, in the case of feature distillation, it is necessary to in-

vestigate how the output of the student changes. To see how

well the student mimics the teacher, we measure the simi-

larity of the teacher’s and student’s output under a consis-

tent setting. On the test set of CIFAR-100, we measure the

KL divergence between the teacher and student output. The

cross-entropy with the ground truth has also been measured

since classification performance also contributes to the re-

duction of KL divergence. Results are presented in Table 7.

Methods that apply distillation only in the early stage of the
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Mode of batch-norm KD [8] FitNets [22] AT [30] Jacobian [26] FT [13] AB [7] Proposed

Training mode 26.47 26.61 26.56 26.71 25.91 26.02 24.08

Evaluation mode 26.45 26.92 26.42 26.75 26.15 26.36 24.54

Table 8. Analysis of the mode of batch normalization in teacher network on CIFAR-100. Table shows error rate(%). The first row shows

the results of teacher’s batch-norm in training mode while the second row shows the results of using the batch-norm in evaluation mode.

training, Initial distillation (FitNets [22], AB [7]), increase

the KL divergence both with the teacher and ground-truth.

With this result, it is hard to say that the student networks of

these methods are mimicking their teacher networks. Mean-

while, distillation methods with continuous distillation in

Eq. 6 (KD [8], AT [30], Jacobian [26], FT [13]) as well as

our proposed method reduce the KL divergence, which im-

plies that the similarity between the teacher and student is

relatively high. Specifically, our method shows a consider-

ably high similarity compared to other continuous distilla-

tion methods. In other words, our proposed method trains

the student to produce an output most similar to that of the

teacher. This similarity is one of the main reasons of im-

proved performance of our proposed method.

4.5.2 Ablation study

Ablation experiments were conducted in which the abla-

tion components were added one-by-one to measure their

effects. The result is shown in Table 9. The baseline is a dis-

tillation method based on L2 loss at end of block position.

The version that uses the preReLU position (Section 3.1)

provides the greatest improvement because it is helpful to

transfer the activation boundary effectively with both nega-

tive and positive values before ReLU. The second improve-

ment is achieved by the loss function (Section 3.2), which

prevents the transfer of useless and harmful negative values

of less than a small negative margin. The batch-norm mode

(Section 3.3) also contributes to the performance improve-

ment. In conclusion, a combination of all proposed compo-

nents leads to a significant improvement in performance of

the proposed method.

4.5.3 Batch normalization

In Section 3.3, we mentioned about the issue related to

the mode of the batch normalization in knowledge distilla-

tion. To investigate this, we measure the performance vari-

ation of knowledge distillation methods when differing the

mode of the teacher’s batch norm layer. The experimental

results are shown in Table 8. The distillation methods that

use additional information other than feature (KD [8], Ja-

cobian [26]) show marginal differences between each mode

of batch normalization. AT [30], which uses a diminished

feature for distillation, has shown a better result in the eval-

uation mode. However, methods that do not squeeze the fea-

Baseline +
Position

(Sec.3.1)
+

BN

(Sec.3.3)
+

loss

(Sec.3.2)

Error 26.37 24.81 24.68 24.08

Diff - -1.56 -0.13 -0.60

Table 9. Ablation study of proposed method. The results are pre-

sented in the form of error rate (%).

ture (FitNets [22], FT [13], AB [7]) consistently work better

in the training mode. Our method especially shows a sub-

stantial improvement when using the training mode. Note

that all experiments in previous sections exploit the better

mode of the batch-norm layer as there is no mention about

it in each paper. In conclusion, an appropriate type of batch

normalization should be carefully chosen in many distilla-

tion methods including ours.

5. Conclusion

We propose a new knowledge distillation method along

with several investigations about various aspects of the ex-

isting feature distillation methods. We have discovered the

effectiveness of pre-ReLU location and proposed a new loss

function to improve the performance of feature distillation.

The new loss function consists of a teacher transform (mar-

gin ReLU) and a new distance function (partial L2) and

enables an effective feature distillation at pre-ReLU loca-

tion. We have also investigated about the mode of batch

normalization in teacher network and achieved additional

performance improvements. Through experiments, we ex-

amined the performance of the proposed method using var-

ious networks in various tasks, and proved that the proposed

method substantially outperforms the state-of-the-arts of

feature distillation.
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