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Abstract

This paper leverages a classic prediction technique,

known as parametric overlapped block motion compensa-

tion (POBMC), in a reinforcement learning framework for

video prediction. Learning-based prediction methods with

explicit motion models often suffer from having to estimate

large numbers of motion parameters with artificial regu-

larization. Inspired by the success of sparse motion-based

prediction for video compression, we propose a paramet-

ric video prediction on a sparse motion field composed of

few critical pixels and their motion vectors. The prediction

is achieved by gradually refining the estimate of a future

frame in iterative, discrete steps. Along the way, the identi-

fication of critical pixels and their motion estimation are ad-

dressed by two neural networks trained under a reinforce-

ment learning setting. Our model achieves the state-of-the-

art performance on CaltchPed, UCF101 and CIF datasets

in one-step and multi-step prediction tests. It shows good

generalization results and is able to learn well on small

training data.

1. Introduction

Video prediction is one challenging computer vision

task. It is to predict future frames by observing a sequence

of past frames. The task is complicated by the needs to

address the variety of natural videos in both their motion

dynamics and texture appearance.

There are several prior arts on learning-based video

prediction. One class of approaches [2, 9, 12, 13, 22]

use generative models to synthesize future frames directly.

These models often involve using Long Short-Term Mem-

ory (LSTM) networks to capture motion dynamics from

past frames to assist with the generation of future frames

by convolutional neural networks (CNN). Typical exam-

ples are MCNet [22], PredNet [12] and BeyondMSE [13],

where BeyondMSE [13] additionally introduces a multi-

scale, pyramid generation process. One common problem

with these methods is blurry synthesis results because raw

pixel values often follow a multi-modal distribution that

(a) Conventional dense motion model

(b) Proposed sparse motion model

Figure 1: Comparison of video prediction on (a) a dense

and (b) a sparse motion fields.

calls for subtle training objectives. This downside can be

worsened by multi-step prediction when future frames have

to be predicted recursively.

Instead of generating video frames directly, another class

of methods model the motion dynamics explicitly by esti-

mating a dense motion field [5, 10, 11, 16, 17] that con-

nects pixel values of a future frame to those in the most

recent past frame, as depicted in Fig. 1(a). This dense mo-

tion field can be specified in terms of optical flows/motion

vectors [11, 8], pixel-adaptive kernels [5, 15], or the com-

bination of both [17]. Since the motion parameters have to

be estimated for every target pixel, these methods demand

complex models with artificial regularization.
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Inspired by video compression, where video prediction

is often carried out efficiently on a sparse motion field, we

develop a SME-Net that leverages a classic prediction tech-

nique, known as parametric overlapped block motion com-

pensation (POBMC) [3], in a reinforcement learning (RL)

framework for video prediction. As illustrated in Fig. 1(b),

it gradually refines the estimate of a future frame in iter-

ative, discrete steps based on performing POBMC [3] on a

sparse motion field composed of few critical pixels and their

estimated motion vectors. The identification of critical pix-

els and the estimation of their motion vectors are addressed

by two neural works trained under an RL setting.

Experimental results show that our model achieves the-

state-of-the-art performance on several common datasets in

one-step and multi-step prediction tests, in terms of both

objective and subjective quality. Moreover, our model has

a size that is at least one order of magnitude smaller than

most of the competing methods. It also shows good gener-

alization results and is able to learn well on small training

data. To the best of our knowledge, this the first attempt

that leverages a classic prediction technique in a learning

framework for video prediction.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly reviews related work. Section 3 details the

proposed method, with Section 4 elaborating on our net-

work architectures. Section 5 describes the training proce-

dure. Section 6 evaluates our method against several state-

of-the-art baselines. Section 7 concludes this work.

2. Related Work

Our proposed method aims to perform parametric video

prediction on a sparse motion field. We thus address prior

works with explicit motion models that are most relevant to

our task and scheme. We shall also introduce briefly para-

metric overlapped block motion compensation [3], a clas-

sic parametric video prediction technique that underpins our

framework.

Dense Motion Models. Video prediction that bases

pixel generation of a future frame on explicit motion models

remains the state-of-the-art solution. This class of predic-

tion methods often estimate a dense motion field that con-

nects pixel values of a future frame to those in past frames.

Typical examples are the flow-based (also known as vector-

based) models, such as the deep voxel flow (DVF) [11] and

the spatial transformation (SPT) [7]. The DVF [11], when

operated in extrapolation mode, learns to predict optical

flows between a future frame and a past frame, while the

SPT [7] learns the backward content transformation from

the future to the past through a 6-parameter affine model.

The dense motion field can also be represented in the form

of a pixel-adaptive convolution kernel that convolves with

a past frame to synthesize a future frame. One such ap-

proach is the dynamic neural advection (DNA) [5]. The

kernel-based representation typically shows better synthe-

Figure 2: Illustration of POBMC [3].

sis quality than the flow-based representation because the

convolution kernels can be learned to compensate for fine

motion and suppress noise inherent in video frames. They

however have difficulty modeling large motions due to the

usually small kernel size. More recently, the SDC-Net [17]

proposes to learn a motion vector and a convolution kernel

for each target pixel to gain the merits of both representa-

tions. These dense motion models however face one com-

mon problem that there are an excessive number of optical

flows and/or kernels to estimate, which calls for complex

models and additional regularization especially because the

estimation must rely only on casual information.

Sparse Motion Models. Prediction of a video frame

based on a sparse motion field where only a handful of tar-

get pixels have their motion vectors is prevalent in video

compression. This arises as a trade-off between predic-

tion efficiency and overhead needed to communicate mo-

tion vectors to the decoder. Over the years, the compression

community has developed very efficient prediction tech-

niques that can work on a sparse motion field. One example

is the parametric overlapped block motion compensation

(POBMC) [3]. To produce a prediction În(s) for a target

pixel s = (sx, sy) ∈ In in a future frame In at time instance

n, e.g. the red pixel in Fig. 2, it computes a weighted sum

În(s) =
∑K

j=1 wjIn−1(s + v(sj)) of several hypotheses,

each being a motion-compensated signal In−1(s + v(sj))
from the most recent past frame In−1 using the motion vec-

tor v(sj) = (vx(sj), vy(sj)) ∈ R2 associated with one of

the surrounding critical pixels {sj}
K
j=1 ∈ In, i.e. the blue

pixels in Fig. 2. Under mild conditions, the optimal weight

w∗
j are computed in closed-form to be inversely propor-

tional to the Euclidean distance r(s, sj) between the target

pixel s and the surrounding critical pixels sj [3]:

w∗
j =

r(s, sj)
−α

∑K

i=1 r(s, si)
−α

, j = 1, 2, . . . ,K (1)

where α is a hyper-parameter.

In a sense, POBMC [3] is a more efficient combina-

tion of the kernel-based and flow-based methods. Like

the kernel-based method, it adapts the convolution kernel

{w∗
j }

K
j=1 to every target pixel s (see Eq. (1)). However, its

kernel has a highly variable support, which is determined

by the motion vectors {v(sj)}
K
j=1 of critical pixels {sj}

K
j=1.

Also, like the flow-based method, POBMC [3] needs to es-

timate motion vectors. This is however done with respect

to few critical pixels only. Given these and many other
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Figure 3: Overall architecture of our model.

good properties of POBMC [3], it forms the basis of our

prediction method. To the best of our knowledge, this the

first attempt that leverages a classic prediction technique in

a learning framework for video prediction.

3. Proposed Method

In this section, we begin with an overview of our sparse

motion estimation-based (SME-based) video prediction for

the one-step case, followed by its extension to multi-step

prediction.

3.1. Onestep Prediction

Fig. 3 presents an overall architecture of our SME-based

parametric video prediction. The task is to synthesize one

single future frame In based on N observed past frames

In−1, In−2, . . . , In−N , which we refer collectively to as the

context frames and denote by Ic = {In−l}
N
l=1. Unlike

the flow-based or kernel-based prediction, which typically

performs pixel-based frame synthesis in one single forward

pass on a dense motion field, ours gives an estimate În of

the future frame In in K iterative, discrete steps based on

performing parametric frame synthesis on a sparse motion

field composed of only K pairs {(sj , v(sj))}
K
j=1 of critical

pixels sj ∈ In and their estimated motion vectors v(sj).

The entire process begins with the SME to determine

those critical pixels {(sj , v(sj))}
K
j=1, followed by paramet-

ric frame synthesis. Specifically, in the i-th iteration, the

SME unfolds as follows:

Positioning Network P (·; θp) parameterized by θp takes as

inputs the context frames Ic and the estimate Î
(i−1)
n of the

future frame In(s) obtained in the previous iteration, and

outputs a multinominal distribution over the location of the

i-th critical pixel si. That is,

si ∼ P (s|Ic, Î
(i−1)
n ; θp). (2)

Multi-scale Motion Estimation Network M(·; θm) pa-

rameterized by θm takes as inputs a newly estimated crit-

ical pixel si drawn from P (·; θp) and the image patches

P64
c (si),P

128
c (si) of sizes 64× 64 and 128× 128 cropped

from the context frames Ic at si and outputs an estimated

motion vector v(si) for the critical pixel si. That is,

v(si) = M(P64
c (si),P

128
c (si); θm). (3)

Also produced in the i-th iteration of the SME is an es-

timate Î
(i)
n of the future frame In given by the parametric

frame synthesis:

Parametric Frame Synthesis performs POBMC [3] with

respect to the most recent past frame In−1 by taking into

account all the critical pixels that have been obtained up to

the i-th iteration. In symbols, we have

Î(i)n (s) =
∑

j∈N (s)

w∗
j In−1(s+ v(sj)), ∀s ∈ In, (4)

where in estimating the value Î
(i)
n (s) of a target pixel at

s ∈ In, we have tacitly limit the use of critical pixels to only

the two nearest ones sj ∈ N (s) to s in Euclidean distance.

This design choice is motivated by the general observation

that multi-hypothesis prediction schemes, such as POBMC

[3], may lead to blurry results if the prediction of a target

pixel involves a large number of hypotheses. Note that in

this work, the total number of critical pixels K is variable

and can be as high as 100.

After K iterations, Î
(K)
n forms our final prediction of the

target frame In. It is expected to approximate closely In in

mean squared error sense by training the two networks to

minimize

L(θp, θm) = E[‖In − Î(K)
n ‖22]. (5)

3.2. Multistep Prediction

For the prediction of multiple future frames at time in-

stances starting from n to n + M − 1, where M speci-

fies the time span in which the prediction is to be made,

the single frame (one-step) prediction algorithm described

previously can be applied recursively. For example, given

the last N context frames, In−1, In−2, . . . , In−N , we first

produce an estimate În of the next future frame In. This

newly predicted frame along with the last N − 1 context

frames, i.e. În, In−1, . . . , In−N+1 will then form the new

basis for the prediction of the next consecutive future frame

In+1. To be precise, its estimate În+1 will be synthesized

based on În by observing the critical pixels derived from

În, In−1, . . . , In−N+1. In essence, our multi-step predic-

tion is built from a sliding window-based single frame pre-

diction.

4. Network Architecture

This section describes in detail the design of our posi-

tioning network and multi-scale motion estimation network.
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4.1. Positioning Network

The positioning network P (·; θp) is a 6-layer convolu-

tional neural network, as shown in Fig. 4(a), that recur-

rently observes the temporal coherence between the context

frames Ic and the most recent estimate Î
(i−1)
n of the tar-

get frame In to output the location si of the next critical

pixel. This is achieved by having the network learn to pre-

dict the evolution of video frames along the temporal di-

mension. To this end, we compute its inputs to be the frame

differences formed by subtracting the context frame In−N

at the earliest time instance from the subsequent context

frames In−N+1, In−N+2, . . . , In−1 and Î
(i−1)
n . The result-

ing frame differences have a spatial resolution of W × H ,

where W,H denote their width and height, respectively.

Instead of giving a point estimate of the next critical pixel

si, the positioning network outputs a 2-D map of dimension

W/4 × H/4, representing its probability distribution over

the permissible spatial locations. The reason why the output

is designed to be a probabilistic distribution is that we found

the coordinate regression difficult to converge. In addition,

the output resolution is only one sixteenth of the input’s;

thus, the si drawn from this distribution will be scaled up

before its use for motion estimation and frame synthesis.

Furthermore, a binary mask is placed before the softmax

activation layer to mask out critical pixels that have been

identified previously.

4.2. Multiscale Motion Estimation Network

The multi-scale motion estimation network M(·; θm)
outputs an estimate v(si) of the motion vector for a selected

critical pixel si in the target frame In. This estimated mo-

tion vector establishes under the constant intensity assump-

tion that the pixel value of In at si satisfies

In(si) = In−1(si + v(si)), (6)

where bilinear interpolation is carried out to retrieve

In−1(si + v(si)) when si + v(si) is not on the sampling

grid of In−1.

As shown in Fig. 4(b), The estimation of v(si) involves

extracting features of image patches cropped from context

frames Ic at si. These image patches have two scales,

64 × 64 and 128 × 128, in order to capture both large and

small motions. Before their features are extracted by the

two separate convolutional networks of the same structure,

they are resized to 64× 64 by downsampling whenever ap-

plicable. The features extracted at different scales are then

concatenated, processed by subsequent convolutional lay-

ers, and pooled globally to yield the final estimate v(si).
It is important to note that our multi-scale motion estima-

tion network performs motion estimation for individual crit-

ical pixels {si}
K
i=1 both locally and independently based on

context frames Ic only. There is no regularization imposed

on their estimated motion vectors v(si). Moreover, in our

(a) Positioning network

(b) Multi-scale motion estimation network

Figure 4: Architectures of (a) the positioning and (b) the

motion estimation networks.

current implementation, both the positioning and the mo-

tion estimation networks take only gray-scale inputs. Their

outputs are however used for RGB predictions.

5. Training

For training, we consider the minimization of L(θp, θm)
in Eq. (5) with respect to θp, θm a reinforcement learn-

ing problem. As illustrated in Fig. 3, we view collec-

tively the (si, v(si)) to be output in the i-th iteration as an

action taken by the agent consisting of the two networks

P (·; θp),M(·; θm). The environment with which the agent

interacts implements POBMC [3] and outputs in each itera-

tion i the predicted frame Î
(i)
n based on Eq. (4) together with

the context frames Ic as a state signal for the next iteration.

The process then repeats K times. In this paper, we adopt

a delayed reward mechanism; that is, the agent receives no

immediate reward until the end of K iterations, at which

we compute the reward for the entire action sequence to be

the mean squared error between In and Î
(K)
n to match our

objective in Eq. (5).

We train the positioning and motion estimation networks

jointly with the REINFORCE algorithm [20, 14]. The agent

is made purely stochastic by treating the policy for motion

estimation as a conditional Gaussian distribution with mean
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given by Eq. (3). To facilitate exploration, we add an en-

tropy loss to the training objective for the positioning net-

work [20], and apply the variance reduction strategy [14].

For better learning and faster convergence, we pre-train

both the positioning and motion estimation networks super-

visely, with ground-truths produced by a greedy pixel se-

lection algorithm and EpicFlow [18]. The former chooses

critical pixels based on the prediction residual of POBMC

[3]. In an iteration i, the pixel s ∈ In showing the largest

prediction residual, i.e. si = argmaxs ‖In(s)− Î
(i−1)
n (s)‖,

is chosen as the ground-truth for the critical pixel si, whose

motion vector v(si) is in turn derived from EpicFlow [18].

In the process, we assume having full knowledge of the tar-

get frame In. Another point to be noted is that the training

is carried out for K = 20 only. But, at test time, the number

of critical pixels can be as high as K = 100.

6. EXPERIMENTAL RESULTS

This section evaluates our method against several state-

of-the-art algorithms on the test partition of CaltechPed [4],

UCF101 [19] and common intermediate format (CIF) [1]

datasets for both one-step and multi-step predictions. Since

there is no standardized common test conditions for the

video prediction task, Table 1 summarizes the training sets

used by the competing methods in our tests together with

their model sizes. The objective quality measurements in-

clude Mean Squared Error (MSE), Peak-Signal-to-Noise

Ratio (PSNR), Structure Similarity Index (SSIM), Learned

Perceptual Image Patch Similarity (LPIPS) [23] and Frechet

Video Distance (FVD) [21], where lower (respectively,

higher) values of MSE, LPIPS [23], and FVD [21] (re-

spectively, PSNR and SSIM) indicate better quality. Both

LPIPS [23] and FVD [21] employ CNN features for qual-

ity assessment and were shown to correlate more highly

with subjective quality. For FVD [21], which requires to

extract enough independent sub-sequences features from a

long video, we only apply FVD [21] to CaltechPed [4].

Note that all the methods are trained for one-step predic-

tion only. For tests with multi-step prediction, the sliding

window mechanism in Section 3.2 is applied.

6.1. Comparison on CaltechPed

For this experiment, we train our model on KITTI [6]

dataset by randomly selecting 10000 frames from City and

Road sequences. Both training and test videos are re-sized

Table 1: Training datasets used by the competing methods

in tests on CaltechPed [4], UCF101 [19] and CIF [1].

Method CaltechPed UCF101 CIF #param

Ours KITTI UCF101 UCF101 1M

DVF [11] KITTI UCF101 UCF101 2.2M

BMSE [13] Sport 1M Sport 1M Sport 1M 8.9M

MCNet [22] Sport 1M Sport 1M Sport 1M 6.9M

DualGAN [10] KITTI UCF101 - 113M

PredNet [12] KITTI - - 6.9M

SDC [17] Battlefield-1 - - 160M

Table 2: Comparison of next frame prediction on Caltech-

Ped [4], UCF101 [19] and CIF sequences [1]. MSE results

are in 1e-3 and #ctx indicates the number of context frames.

Method
CaltechPed UCF101 CIF

MSE SSIM #ctx PSNR SSIM PSNR SSIM #ctx

Ours 2.65 0.878 3 30.80 0.910 27.90 0.890 4

BeyondMSE [13] 2.82 0.875 4 26.7 0.820 27.54 0.899 4

MCNet [22] 2.57 0.878 3 30.29 0.913 28.34 0.905 4

DVF [11] 6.65 0.801 3 31.54 0.918 22.75 0.653 4

PredNet [12] 3.13 0.884 4 - - - - -

DualGAN [10] 2.41 0.899 4 - - - - -

SDC [17] 1.62 0.918 5 - - - - -

CopyLast 5.31 0.815 - - - - - -

Table 3: Comparison of FVD [21] for multi-step prediction.

- Ours MCNet Bmse DVF

CaltechPed 132 148 846 819

to 352 × 288. We obtain the results of BeyondMSE [13]

and MCNet [22] by running their test software with pre-

trained weights (see Table 1) on the same re-sized videos.

For the results of DVF [11], we train the model using their

training software on 15k frames from KITTI [6] dataset and

test it following the same protocol. For the remaining meth-

ods including PredNet [12], DualGAN [10], SDC [17], we

simply report their results in the papers.

The left most section of Table 2 summarizes the objec-

tive quality comparison for one-step prediction. It is seen

that with only 3 context frames and a model size almost

one order of magnitude smaller, our model already performs

comparably with MCNet [22] and BeyondMSE [13]. In this

test, it outperforms DVF [11] significantly.

Fig. 5(a), 5(b), and 5(c) further report the PSNR, SSIM,

and LPIPS [23] results, respectively, for the more challeng-

ing five-step prediction. In this task, our model achieves

the best performance. Subjective quality comparison in Fig.

6 further confirms its superiority over the other competing

methods. Our model is seen to be more robust to error prop-

agation along the temporal dimension, producing clearer

images at time instances further into the future than MC-

Net [22] and BeyondMSE [13], of which their images be-

come increasingly blurred. It is also observed that DVF [11]

is very sensitive to errors, rendering almost unrecognizable

images at latter time instances. For FVD [21] measurement,

we randomly pick three long sequences in CaltechPed [4].

In each of these three sequences, 256 features are extracted

from mostly non-overlapping sub-sequences composed of

4 context and 9 predicted frames. The results are presented

in Table 3, where our method is slightly better than MC-

Net [22] and outperforms the others significantly.

As for inference time comparison, our 20 critical pix-

els model requires around 0.43s compared with 0.03s

of DVF [11], 0.06s of MCNet [22] and 1.13s of Be-

yondMSE [13].

6.2. Comparison on UCF101
This experiment compares prediction performance of

BeyondMSE [13], MCNet [22], and DVF [11] on 10% of
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(a) CaltechPed (b) CaltechPed (c) CaltechPed (d) UCF101 (e) UCF101

(f) UCF101 (g) CIF (h) CIF (i) CIF

Figure 5: Five-step prediction results for our model, BeyondMSE [13], MCNet [22] and DVF [11] on CaltechPed [4] (a)(b)(c),

UCF101 [19] (d)(e)(f) and CIF sequences [1] (g)(h)(i).

Figure 6: Subjective comparison of five-step prediction on CaltechPed [4]: left to right, t = 1, 2, ..., 5.

UCF101 test set [19]. For both training and test, we use

original videos of size 320× 240. Specifically, we train our

model on 12000 randomly selected frames, while training

DVF [11] on 240000 frames following the protocol in [11].

We report results of BeyondMSE [13] and MCNet [22] by

running their test software with pre-trained weights. All the

methods adopt 4 context frames for prediction.

From Table 2 (the middle section), we see that DVF [11]

achieves the best PSNR and SSIM performance for one-

step prediction, while ours ranks second performing sim-

ilarly to MCNet [22], with compatible SSIM but slightly

higher PSNR. Since UCF101 [19] has only a small percent-

age of moving images, we conjecture that DVF [11] may

have been overfit to this dataset. This is partly corroborated
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Figure 7: Subjective comparison of five-step prediction on UCF101 [19]: left to right, t = 1, 2, ..., 5.

Figure 8: Subjective comparison of five-step prediction on CIF Mobile [1]: left to right, t = 1, 2, ..., 5.

by the results on CIF dataset [1], where the same model

shows poor generalization.

The multi-step prediction results in Fig. 5(d), 5(e), and

5(f) again validate the robustness of our model to error

propagation. In this task, our objective quality performs

closely with MCNet [22] and DVF [11], and outperforms
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BeyondMSE [13] considerably. In terms of subjective qual-

ity (see Fig. 7), our model shows a clear advantage over

MCNet [22] and BeyondMSE [13] by preserving more tex-

ture details.

6.3. Comparison on CIF

This experiment tests the generalization ability of differ-

ent models by evaluating their prediction performance on

CIF dataset [1], which contains a variety of videos with di-

verse motion characteristics often used for the development

of video codecs. It is however rarely utilized for prediction

tasks. That is the main reason behind our choice. In this

test, we simply apply the models trained for the previous

UCF101 task without any fine tuning.

We see from the right most section of Table 2 that in one-

step prediction, MCNet [22] achieves slightly higher PSNR

than ours and BeyondMSE [13], while all three methods

show similar SSIM. It is however noticed that DVF [11]

shows extremely poor generalization, even thought it is

trained on the same UCF101 dataset [19] as ours is.

In multi-step prediction, as shown in Fig. 5(g), 5(h), and

5(i), our objective quality performs similarly to MCNet [22]

while our subjective quality outperforms all the others sig-

nificantly. Note however in Fig. 8 that the color distortion of

MCNet [22] becomes more apparent as the prediction step

increases.

6.4. Visualization of critical pixels

Fig. 9 visualizes the critical pixels and their motion vec-

tors selected by our agent. The results are overlaid on top of

the (ground-truth) optical flows given by EpicFlow [18], to

verify the accuracy of the estimated motion vectors for crit-

ical pixels. We observe that the locations of critical pixels

crucially depend on the spatial and motion characteristics

of video frames. They are mostly concentrated in highly

textured areas with large motion (see foreground objects in

Fig. 9(a) and 9(b)), or with non-uniform motion (see back-

ground in Fig. 9(c) and 9(d)). It is also interesting to see

that few critical pixels are placed in large motion areas with

less texture variation, such as the road region at the bottom

of Fig. 9d. In these areas, copying pixel values from the

corresponding regions in the last frame still yields a good

prediction result.

6.5. Generalization with variable critical pixels

This experiment showcases the generalization of our

model for a variable number of critical pixels. At training

time, our model is learned with a maximum of 20 critical

pixels. We then test its one-step prediction performance for

a varying number of critical pixels ranging from 20 to 100.

From Fig. 10, our model shows improving PSNR and SSIM

when the number of critical pixels increases, especially on

those fast motion sequences. Coastguard sequence is the

only exception where the SSIM drops slightly with more

critical pixels.

(a) Coastguard (b) Mobile

(c) UCF101 (d) CaltechPed

Figure 9: Visualization of critical pixels (K = 20) and their

motion vectors overlaid on top of the ground-truth optical

flows given by EpicFlow [18].

(a) PSNR (b) SSIM

Figure 10: PSNR and SSIM increments on CIF se-

quences [1] for a varying number of critical pixels.

7. Conclusion

In this paper, we leverage POBMC in a reinforcement

learning framework to enable video prediction on a sparse

motion field. In this way, only few critical pixels and their

motion vectors need to be estimated for prediction, reduc-

ing greatly the model complexity. The identification of crit-

ical pixels and their motion estimation are addressed by two

simple neural works trained with reinforcement learning.

Our model achieves the state-of-the-art prediction perfor-

mance on several common datasets. Its advantage is most

obvious in multi-step prediction, where it produces subjec-

tively more pleasing results than the other competing meth-

ods. Due to its relatively smaller size, our model can gen-

eralize better when learned on small data. The automation

of deciding a proper number of critical pixels for individual

video frames remains an open issue.
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