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Abstract

Training deep models for lane detection is challenging

due to the very subtle and sparse supervisory signals in-

herent in lane annotations. Without learning from much

richer context, these models often fail in challenging sce-

narios, e.g., severe occlusion, ambiguous lanes, and poor

lighting conditions. In this paper, we present a novel knowl-

edge distillation approach, i.e., Self Attention Distillation

(SAD), which allows a model to learn from itself and gains

substantial improvement without any additional supervision

or labels. Specifically, we observe that attention maps ex-

tracted from a model trained to a reasonable level would

encode rich contextual information. The valuable contex-

tual information can be used as a form of ‘free’ supervision

for further representation learning through performing top-

down and layer-wise attention distillation within the net-

work itself. SAD can be easily incorporated in any feed-

forward convolutional neural networks (CNN) and does not

increase the inference time. We validate SAD on three pop-

ular lane detection benchmarks (TuSimple, CULane and

BDD100K) using lightweight models such as ENet, ResNet-

18 and ResNet-34. The lightest model, ENet-SAD, per-

forms comparatively or even surpasses existing algorithms.

Notably, ENet-SAD has 20 × fewer parameters and runs

10 × faster compared to the state-of-the-art SCNN [16],

while still achieving compelling performance in all bench-

marks. Our code is available at https://github.

com/cardwing/Codes-for-Lane-Detection.

1. Introduction

Lane detection [1] plays a pivotal role in autonomous

driving as lanes could serve as significant cues for con-

straining the maneuver of vehicles on roads. Detecting

lanes in-the-wild is challenging due to poor lighting con-

ditions, occlusions caused by other vehicles, irrelevant road

markings, and the inherent long and thin property of lanes.

Contemporary algorithms [5, 8, 14, 16] typically adopt

†: Corresponding author.

a dense prediction formulation, i.e., treat lane detection as a

semantic segmentation task, where each pixel in an image is

assigned with a binary label to indicate whether it belongs

to a lane or not. These methods heavily rely on the seg-

mentation maps of lanes as the supervisory signals. Since

lanes are long and thin, the number of annotated lane pix-

els is far fewer than the background pixels. Learning from

such subtle and sparse annotations becomes a major chal-

lenge in training deep models for the task. A plausible way

is to increase the width of lane annotations. However, it

may degrade the detection performance.

Several schemes have been proposed to relieve the re-

liance of deep models on the sparse annotations, e.g., multi-

task learning (MTL) and message passing (MP). For exam-

ple, Lee et al. [14] exploit vanishing points to guide the

training of deep models and Pan et al. [16] incorporate spa-

tial MP in their lane detection models. MTL can indeed pro-

vide additional supervisory signals but it requires additional

efforts, usually with human intervention, to prepare the an-

notations, e.g., scene segmentation maps, vanishing points,

or drivable areas. MP can help propagate the information

between neurons to counter the effect of sparse supervision

and better capture the scene context. However, it increases

the inference time significantly due to the overhead of MP.

For instance, applying MP in a layer of SCNN [16] con-

tributes 35% of its total feed-forward time.

In this work, we present a simple yet novel approach

that allows a lane detection network to reinforce represen-

tation learning of itself without the need of additional la-

bels and external supervisions. In addition, it does not in-

crease the inference time of the base model. Our approach

is named Self-Attention Distillation (SAD). As the name

implies, SAD allows a network to exploit attention maps

derived from its own layers as the distillation targets for

its lower layers. Such an attention distillation mechanism

is used to complement the usual segmentation-based super-

vised learning.

SAD is motivated by an interesting observation – when

a lane detection network is trained to a reasonable level, at-

tention maps derived from different layers would capture

diverse and rich contextual information that hints the lane
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Figure 1. Attention maps of the ENet [17] before and after applying self attention distillation. Here, we extract the attention maps from the

four stages/blocks following the design of ENet model. Note that self attention distillation is added in the 40 K episodes.

locations and a rough outline of the scene, as shown in

Fig. 1 (before SAD at 40K episodes). By adding SAD to

the learning of this half-trained model, i.e., having the pre-

ceding block to mimic the attention maps of a deeper block,

e.g., block 3
mimic
−−−→ block 4 and block 2

mimic
−−−→ block 3,

the network can learn to strengthen its representations, as

shown in Fig. 1 (after SAD): (1) the attention maps of lower

layers are refined, with richer scene contexts captured by the

visual attention, and (2) the better representation learned at

lower layers in turn benefits the deeper layers. For instance,

although block 4 does not learn from any distillation targets,

its representation is reinforced, as evident from the much

distinct attention at the lane locations. By contrast, without

using SAD, the visual attentions of different layers of the

same network hardly improve despite continual training up

to 60K episodes.

SAD opens a new possibility of training accurate lane

detection networks apart from deploying existing tech-

niques such as multi-task learning and message passing,

which can be expensive. It allows us to train small networks

with excellent visual attention that is on par with very deep

networks. In our experiments, we successfully demonstrate

the effectiveness of SAD on a few popular lightweight mod-

els, e.g., ENet [17], ResNet-18 [10] and ResNet-34 [10].

In summary, our contributions are three-fold: (1) We

propose a novel attention distillation approach, i.e., SAD,

to enhance the representation learning of CNN-based lane

detection models. SAD is only used in the training phase

and brings no computational cost during the deployment.

Our work is the first attempt of using a network’s own at-

tention maps as the distillation targets. (2) We carefully

and systematically investigate the inner mechanism of SAD,

the consideration of choosing among different layer-wise

mimicking paths, and the timepoint of introducing SAD to

the training process for improved gains. (3) We verify the

usefulness of SAD on boosting the performance of small

lane detection networks. We further present several archi-

tectural reformulations to ENet [17] for improved perfor-

mance. Our lightweight model, ENet-SAD, achieves state-

of-the-art lane detection performance on TuSimple [18],

CULane [16] and BDD100K [23]. It can serve as a strong

backbone to facilitate future research on lane detection.

2. Related Work

Lane detection. Lane detection is conventionally handled

via using specialized and hand-crafted features to obtain

lane segments. These segments are further grouped to get

the final results [2, 6]. These methods have many short-

comings, e.g., requiring complex feature selection process,

being lack of robustness and only applicable to relatively

easy driving scenarios.

Recently, deep learning has been employed to omit hand-

crafted features altogether and learn to extract features in an

end-to-end manner [14, 16, 8, 5]. These approaches usu-

ally adopt the dense prediction formulation, i.e., treat lane

detection as a semantic segmentation task, where each pixel

in an image is assigned with a label to indicate whether it

belongs to a lane or not. For example, He et al. [9] pro-

pose Dual-View CNN (DVCNN) to handle lane detection.

The method takes front-view and top-view images as inputs.

Another popular paradigm performs lane detection from the

perspective of instance segmentation. For instance, Neven

et al. [15] divide lane detection into two stages. Specifi-

cally, they first perform binary segmentation that differen-

tiates lane pixels and background pixels. These lane pixels

are then classified into different lane instances.

Several schemes have been proposed to complement the

lane-based supervision and to capture richer scene context,
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e.g., multi-task learning and message passing. For example,

Zhang et al. [25] establish a framework that accomplishes

lane boundary segmentation and road area segmentation si-

multaneously. Geometric constraints that lane boundaries

and lane areas constitute the road are also included to fur-

ther enhance the final performance. Mohsen et al. [8] take

lane labels as extra inputs and integrate generative adversar-

ial network (GAN) into the original framework so that the

segmentation maps resemble labels more. Pan et al. [16]

perform sequential massage passing between the outputs

of top-level layers to better exploit the structural informa-

tion. While the aforementioned methods do bring additional

gains to the performance, multi-task learning requires ex-

tra annotations and message passing is not efficient since

it propagates information in a sequential way. On the con-

trary, the proposed SAD is free from the requirement of ex-

tra annotations and it does not increase the inference time.

Knowledge and attention distillation. Knowledge distilla-

tion was originally proposed by [11] to transfer the knowl-

edge from large networks to small networks. Commonly

in knowledge distillation, a small student network mimics

the intermediate outputs of large teacher networks as well

as the labels. In [7, 21] the student and teacher networks

share the same capacity and mimicking is performed be-

tween pairs of layers with same dimensionality. Hou et

al. [12] also investigate knowledge distillation performed

between heterogeneous networks. Recent studies [24, 19]

have expanded knowledge distillation to attention distilla-

tion. For instance, Sergey et al. [24] introduce two types of

attention distillation, i.e., activation-based attention distilla-

tion and gradient-based attention distillation. In both kinds

of distillation, a student network is trained through learn-

ing attention maps derived from a teacher network. The

proposed SAD differs to [24] in that our method does not

need a teacher network. Distillation is conducted in a layer-

wise and top-down manner, in which attention knowledge is

propagated layer by layer. This is new in the literature. It is

noteworthy that our focus is to investigate the possibility of

distilling layer-wise attention for self-learning. This differs

from existing studies on using visual attention for weighting

features [4, 13, 24].

3. Methodology

Lane detection is commonly formulated as a semantic

segmentation task. More specifically, given an input image

X, the objective is to assign a label lij (lij = 1, ..., Nc) to

each pixel (i, j) of X, comprising the segmentation map s.

Here, Nc is the number of classes. The objective is to learn a

mapping F : X 7→ s. Recent studies use CNN as F for end-

to-end prediction. The task of lane existence prediction is

also introduced to facilitate the evaluation process. We use

b to represent the binary labels that indicate the existence of

lanes. Then, the function becomes F : X 7→ (s, b).

3.1. Self Attention Distillation

Apart from training our lane detection network with

the aforementioned semantic segmentation and lane exis-

tence prediction losses, we aim to perform layer-wise and

top-down attention distillation to enhance the representa-

tion learning process. The proposed SAD does not require

any external supervision or additional labels since attention

maps are derived from the network itself.

In general, attention maps can be divided into two

categories, i.e., activation-based attention maps [24] and

gradient-based attention maps [24]. The activation-based

attention maps are obtained via processing the activation

output of a specific layer while the gradient-based ones are

obtained via using the layer’s gradient output. In the exper-

iment, we empirically find that activation-based attention

distillation yields considerable performance gains while

gradient-based attention distillation barely works. Hence, in

the following sections we only discuss the activation-based

attention distillation.

Activation-based attention distillation. We use Am ∈
RCm×Hm×Wm to denote the activation output of the m-th

layer of the network, where Cm, Hm and Wm denote the

channel, height and width, respectively. Let M denote the

number of layers in the network. The generation of the at-

tention map is equivalent to finding a mapping function G:

RCm×Hm×Wm → RHm×Wm . The absolute value of each

element in this map represents the importance of this el-

ement on the final output. Therefore, this mapping func-

tion can be constructed via computing statistics of these

values across the channel dimension. More specifically,

the following three operations [24] can serve as the map-

ping function: Gsum(Am) =
∑Cm

i=1 |Ami|, G
p
sum(Am) =

∑Cm

i=1 |Ami|
p and Gp

max(Am) = maxi=1,Cm
|Ami|

p. Here,

p > 1 and Ami denotes the i-th slice of Am in the channel

dimension.

The differences between these mapping functions are de-

picted in Fig. 2. Compared with Gsum(Am), Gp
sum(Am)

puts more weights to areas with higher activations. The

larger the p is, the more focus is placed on these highly acti-

vated areas. Compared with Gp
max(Am), Gp

sum(Am) is less

biased since it calculates weights across multiple neurons

instead of selecting the maximum value of these neuron ac-

tivations as the weight. In the experiment, we empirically

find that using G2
sum(.) as the mapping function yields the

most performance gains.

𝒢𝑠𝑢𝑚(𝐴𝑚) 𝒢𝑠𝑢𝑚2 (𝐴𝑚) 𝒢𝑚𝑎𝑥2 (𝐴𝑚)input

Figure 2. Attention maps of the block 4 of the ENet model using

different mapping functions.
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Figure 3. An instantiation of using SAD. E1 ∼E4 comprise the encoder of ENet [17], D1 and D2 comprise the decoder of ENet. Following

[16], we add a small network to predict the existence of lanes, denoted as P1. AT-GEN is the attention generator.

Adding SAD to training. The intuition behind SAD is that

the attention maps of previous layers can distil useful con-

textual information from those of successive layers. Follow-

ing [24], we also perform spatial softmax operation Φ(.)
on G2

sum(Am). Bilinear upsampling B(.) is added before

the softmax operation if the size of original attention maps

is different from that of targets. However, different from

Sergey et al. [24] who perform attention distillation within

two networks, the proposed self attention distillation is per-

formed within the network itself.

Adding SAD to an existing network is straight-forward.

It is possible to introduce SAD at different timepoint of the

training, which could affect the convergence time. We will

show an evaluation in the experiment section. Here we as-

sume an ENet half-trained to 40K episodes. As shown in

Fig. 3, we add an attention generator, abbreviated as AT-

GEN, after each E2, E3, and E4 encoder block of ENet.

Formally, AT-GEN is represented by a function Ψ(.) =
Φ(B(G2

sum(.))). A successive layer-wise distillation loss is

formulated as follows:

Ldistill(Am, Am+1) =

M−1∑

m=1

Ld(Ψ(Am),Ψ(Am+1)), (1)

where Ld is typically defined as a L2 loss and Ψ(Am+1)
is the target of the distillation loss. In the example shown

in Fig. 3, we have the number of layers M = 4. Note

that we do not assign different weights to different SAD

paths, although this is possible. We found that this uniform

scheme works well in our experiments.

The total loss is comprised of four terms:

L =Lseg(s, ŝ) + αLIoU(s, ŝ)
︸ ︷︷ ︸

segmentation loss

+ βLexist(b, b̂)
︸ ︷︷ ︸

existence loss

+ γLdistill(Am, Am+1)
︸ ︷︷ ︸

distillation loss

.
(2)

Here, the first two terms are segmentation losses that com-

prise of the standard cross entropy loss Lseg and the IoU

loss LIoU. The IoU loss aims at increasing the intersection-

over-union between the predicted lane pixels and ground-

truth lane pixels. It is formulated as LIoU = 1 −
Np

Np+Ng−No
, where Np is the number of predicted lane pix-

els, Ng is the number of ground-truth lane pixels and No is

the number of lane pixels in the overlapped areas between

predicted lane areas and ground-truth lane areas. Lexist is

the binary cross entropy loss. ŝ is the segmentation map

produced by the network and b̂ is the prediction of the ex-

istence of lanes. The parameters α, β, and γ balance the

influence of segmentation losses, existence loss, and distil-

lation loss on the final task.

It is noteworthy that the SAD paths can be generalized

to dense connections beyond the example shown here. For

instance, we can add block 1
mimic
−−−→ block 3, block 1

mimic
−−−→

block 4, and block 2
mimic
−−−→ block 4 in addition to the current

paths. In general, the number of possible SAD paths for a

network with a depth of M layers is
M(M−1)

2 . We will

evaluate this possibility in our experiments.

Visualization of attention maps with and without SAD.

We investigate the influence of SAD by studying the at-

tention maps of different blocks in ENet with and with-

out SAD. More results will be reported in Section 4. Both

networks with and without SAD are trained up to 60K

episodes. We visualize the attention maps of four exist-

ing blocks in ENet. As can be observed in Fig. 4, after

adding SAD, the attention maps of ENet become more con-

centrated on task-relevant objects, e.g., lanes, vehicles and

road curbs. This would in turn improve the lane detection

accuracy, as we will show in the experiments.

3.2. Lane Prediction

The output of the model is not post-processed for TuSim-

ple and BDD100K except CULane. For CULane, in the

inference stage, we feed the image into the ENet model.

Then the multi-channel probability maps and the lane ex-

istence vector are obtained. Following [16], the final out-

put is obtained as follows: First, we use a 9 × 9 kernel to

smooth the probability maps. Then, for each lane whose
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Figure 4. Attention maps of ENet with and without self attention distillation. Both networks with and without SAD are trained up to 60K

episodes. SAD is applied to ENet at 40K training episodes.

existence probability is larger than 0.5, we search the cor-

responding probability map every 20 rows for the position

with the highest probability value. In the end, we use cubic

splines to connect these positions to get the final output.

3.3. Architecture Design

The original ENet model is an encoder-decoder structure

comprised of E1 ∼ E4, D1 and D2. Following [16], we

add a small network P1 to predict the existence of lanes.

The encoder module is shared to save memory space. Apart

from this modification, we also observed some useful tech-

niques to modify ENet for achieving better performance in

the lane detection task. Dilated convolution [22] is added to

replace the original convolution layers in the lane existence

prediction branch to increase the receptive field of the net-

work without increasing the number of parameters. In the

original design, the resolution of feature maps of E4 is only

36 × 100 for CULane. This leads to severe loss of informa-

tion. Hence, we use feature concatenation to fuse the output

of E4 with that of E3 so that the output of the encoder can

benefit from information encoded in previous layers.

4. Experiments

Datasets. Figure 5 shows several video frames of three

datasets that we use in our experiments. They are TuSim-

ple [18], CULane [16] and BDD100K [23]. TuSimple

and CULane are widely used in the literature. Many al-

gorithms [16, 15, 8] have been tested in TuSimple since

it was the largest lane detection dataset before 2018. As

to CULane, it contains many challenging driving scenar-

ios like crowded road conditions or roads under poor light-

ing (see Fig. 5). BDD100K is originally designed for lane

TuSimple CULane BDD100K

Figure 5. Typical video frames of TuSimple, CULane and

BDD100K datasets. Ground-truth lanes are marked in green color.

instance classification. However, since there are typically

multiple lanes in an image and these lanes are usually very

close to each other, using instance segmentation algorithms

will yield inferior performance. Therefore, we choose to

only detect lanes without differentiating lane instances for

BDD100K. We discuss the details of transforming the orig-

inal ground truths for our task in the following section on

implementation details. Table 1 summarizes their details.

Note that the last column of Table 1 shows that TuSimple

and CULane have no more than 5 lanes in a video frame

while BDD100K typically contains more than 8 lanes in

a video frame. Besides, TuSimple is relatively easy while

CULane and BDD100K are more challenging considering

the total number of video frames and road types. Note that

the original BDD100K dataset provides 100K video frames,

in which 70K are used for training, 10K for validation and

20K for testing. However, since the ground-truth labels of

the testing partition are not publicly available, we keep the

training set unchanged but use the original validation set for

testing. A new validation set is allocated separately from

the training set, as shown in Table 1.
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Table 1. Basic information of three lane detection datasets.

Name # Frame Train Validation Test Resolution Road Type # Lane > 5 ?

TuSimple [18] 6, 408 3, 268 358 2, 782 1280 × 720 highway ×
CULane [16] 133, 235 88, 880 9, 675 34, 680 1640 × 590 urban, rural and highway ×

BDD100K [23] 80, 000 60, 000 10, 000 10, 000 1280 × 720 urban, rural and highway
√

Evaluation metrics. To facilitate comparisons against pre-

vious studies, we follow the literature and use the corre-

sponding evaluation metrics for each particular dataset.

1) TuSimple. We use the official metric (accuracy) as the

evaluation criterion. Besides, false positive (FP ) and false

negative (FN ) are also reported. Accuracy is computed

as [18]: Accuracy =
Npred

Ngt
, where Npred is the number

of correctly predicted lane points and Ngt is the number of

ground-truth lane points.

2) CULane. Following [16], to judge whether a lane is cor-

rectly detected, we treat each lane as a line with 30 pixel

width and compute the intersection-over-union (IoU) be-

tween labels and predictions. Predictions whose IoUs are

larger than 0.5 are considered as true positives (TP). Then,

we use F1 measure as the evaluation metric, which is de-

fined as: F1 = 2×Precision×Recall
Precision+Recall

, where Precision =
TP

TP+FP
and Recall = TP

TP+FN
.

3) BDD100K. Since there are typically more than 8 lanes in

an image, we decide to use pixel accuracy and IoU of lanes

to evaluate the performance of different models.

Implementation details. Following [16], we resize the im-

ages of TuSimple and CULane to 368×640 and 288×800,

respectively. As to BDD100K, we resize the image to

360×640 to save memory usage. The lanes of BDD100K

are labelled by two lines. Training the networks using the

provided labels is tricky. Therefore, based on these two

lines, we calculate the center lines as new targets. We di-

late ground-truth lanes of the training set of BDD100K as

8 pixels to provide denser targets while keeping these of

testing set unchanged (2 pixels). We use SGD [3] to train

our models and the learning rate is set to 0.01. Batch size

is set as 12 and the total number of training episodes is set

as 1800 for TuSimple and 60K for CULane and BDD100K.

The cross entropy loss of background pixels is multiplied by

0.4. Loss coefficients α, β, and γ are set as 0.1. Since we

select lane pixel accuracy and IoU as the evaluation crite-

rion for BDD100K dataset, we alter the original segmenta-

tion branch to output binary segmentation maps to facilitate

the evaluation on BDD100K. The lane existence prediction

branch is also removed for the BDD100K evaluation.

We empirically found that several practical techniques,

i.e., data augmentation and IoU loss, can considerably en-

hance the performance of CNN-based lane detection mod-

els. As to data augmentation, we use random rotation,

random cropping and horizontal flipping to process the in-

put images. In our experiments, we apply the same seg-

mentation losses and augmentation strategy to our method,

Table 2. Performance of different algorithms on TuSimple testing

set. Here ”R-18-SAD ” denotes ResNet-18 + SAD and we use the

same abbreviation in the following sections.

Algorithm Accuracy FP FN

ResNet-18 [10] 92.69% 0.0948 0.0822

ResNet-34 [10] 92.84% 0.0918 0.0796

ENet [17] 93.02% 0.0886 0.0734

LaneNet [15] 96.38% 0.0780 0.0244

EL-GAN [8] 96.39% 0.0412 0.0336

SCNN [16] 96.53% 0.0617 0.0180

R-18-SAD (ours) 96.02% 0.0786 0.0451

R-34-SAD (ours) 96.24% 0.0712 0.0344

ENet-SAD (ours) 96.64% 0.0602 0.0205

Table 4. Comparative results on BDD100K test set.

Algorithm Accuracy IoU

ResNet-18 [10] 30.66% 11.07

ResNet-34 [10] 30.92% 12.24

ResNet-101 [10] 34.45% 15.02

ENet [17] 34.12% 14.64

SCNN [16] 35.79% 15.84

R-18-SAD (ours) 31.10% 13.29

R-34-SAD (ours) 32.68% 14.56

R-101-SAD (ours) 35.56% 15.96

ENet-SAD (ours) 36.56% 16.02

SCNN, ResNet baselines, and deep supervision methods,

to ensure a fair comparison. Since the source codes of

LaneNet [15] and EL-GAN [8] are not available, we use

their results reported in their papers.

4.1. Results

Tables 2-4 summarize the performance of our meth-

ods, i.e., ResNet-18-SAD, ResNet-34-SAD, and ENet-

SAD against state-of-the-art algorithms on the testing set

of TuSimple, CULane and BDD100K datasets. We also re-

port the runtime and parameter count of different algorithm

in Table 3 so that we can compare the performance with the

complexity of the model taken into account. The runtime

is recorded using a single GPU (GeForce GTX TITAN X)

and the final value of runtime is obtained after averaging the

runtime of 100 samples.

It is observed that ENet-SAD outperforms all baselines

in BDD100K while achieving compelling performance in

TuSimple and CULane. Considering that ENet-SAD has 20

× fewer parameters and runs 10 × faster compared with

SCNN on CULane testing set, the performance strongly

suggests the effectiveness of SAD. It is observed that

ResNet-18-SAD and ResNet-34-SAD achieve slightly in-

ferior performance to ENet-SAD despite their larger model
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Table 3. Performance (F1-measure) of different algorithms on CULane testing set. For crossroad, only FP is shown. The second column

denotes the proportion of each scenario in the testing set.

Category Proportion ENet-SAD R-18-SAD R-34-SAD R-101-SAD ResNet-101 [10] SCNN [16]

Normal 27.7% 90.1 89.8 89.9 90.7 90.2 90.6

Crowded 23.4% 68.8 68.1 68.5 70.0 68.2 69.7

Night 20.3% 66.0 64.2 64.6 66.3 65.9 66.1

No line 11.7% 41.6 42.5 42.2 43.5 41.7 43.4

Shadow 2.7% 65.9 67.5 67.7 67.0 64.6 66.9

Arrow 2.6% 84.0 83.9 83.8 84.4 84.0 84.1

Dazzle light 1.4% 60.2 59.8 59.9 59.9 59.8 58.5

Curve 1.2% 65.7 65.5 66.0 65.7 65.5 64.4

Crossroad 9.0% 1998 1995 1960 2052 2183 1990

Total – 70.8 70.5 70.7 71.8 70.8 71.6

Runtime (ms) – 13.4 25.3 50.5 171.2 171.2 133.5

Parameter (M) – 0.98 12.41 22.72 52.53 52.53 20.72

capacity. The is because ResNet-18 and ResNet-34 only

use spatial upsampling as the decoder while ENet has a

specially designed decoder for the task. It is noteworthy

that SAD also helps given a deeper model. Specifically,

we apply SAD to ResNet-101, and find that it increases the

F1-measure from 70.8 to 71.8 in CULane and the accuracy

increases from 34.45% to 35.56% in BDD100K.

We show some qualitative results of our algorithm and

some baselines in these three benchmarks. As can be seen

in Fig. 6, ENet-SAD can detect lanes more precisely than

ENet [17] in TuSimple and CUlane. As can be seen in Fig.

7, the output probability maps of ENet-SAD are more com-

pact and contain less noise compared with those of vanilla

ENet and SCNN in poor lighting conditions. However,

since many images in BDD100K contain more than 8 lanes

and are collected in challenging scenarios like severe occlu-

sion and poor lighting conditions, the performance of all al-

gorithms is unsatisfactory and needs further improvement.

In general, SAD can improve the visual attention as well

as the detection performance in challenging conditions like

crowded roads and poor light conditions.

We also perform experiments that apply SAD and re-

move the effect of the P1 branch by blocking the gradient

of the P1 branch from the main branch. Results show that

ENet-SAD (without supervision from P1 branch) can still

achieve 96.61% on TuSimple, 70.8 on CULane and 36.54%
on BDD100K, which means the performance gains come

mainly from SAD itself.

4.2. Ablation Study

We investigate the effects of different factors, e.g., the

mimicking path, on the final performance. Besides, we also

perform extensive experiments to investigate the timepoint

to introduce SAD in the training process.

Distillation paths of SAD. We summarize the performance

of performing SAD between different blocks of ENet in Ta-

ble 5. We have a few observations. (1) SAD works well

in the middle and high-level layers. (2) Adding SAD in

SCNNinput

(a)

(b)

ENetENet-SAD

98.4 % 97.8 % 97.4 %

97.2 % 94.8 % 95.2 %

100 % 66.6 % 66.6 %

100 % 33.3 % 66.6 %
Figure 6. Performance of different algorithms on (a) TuSimple and

(b) CULane testing sets. The number below each image denotes

the accuracy. Ground-truth lanes are drawn on the input image.

ENet SCNNENet-SADinput

38.53 % 34.62 % 36.49 %

37.82 % 33.75 % 35.57 %
Figure 7. Performance of different algorithms on BDD100K test-

ing set. We visualize the probability maps to better showcase the

effect of adding self attention distillation. The brightness of the

pixel indicates the probability of this pixel belonging to lanes. The

number below each image denotes the pixel accuracy of lanes.

Ground-truth lanes are drawn on the input image.

low level layers will degrade the performance. The reason

why SAD does not work in low-level layers is that these

layers are originally designated to detect low-level details

of the scene. Making them to mimic the attention maps of

later layers will inevitably harm their ability of detecting

local features since later layers encode more global infor-

mation. Besides, we also find that mimicking the attention
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Table 5. Performance of different variants of ENet-SAD on

TuSimple testing set. Pij denotes that the output of the i-th block

of ENet mimics the output of the j-th block.

Path Accuracy Path Accuracy Path Accuracy

P12 91.22% P23 94.72% P23, P24 95.38%

P13 91.36% P24 94.63% P23, P34 96.64%

P14 91.47% P34 95.29% P24, P34 96.52%

maps of the neighbouring layer successively brings more

performance gains compared with mimicking those of non-

adjacent layers (P23 + P34 outperforms P24 + P34). We

conjecture that attention maps of neighbouring layers are

closer from the semantic perspective compared with those

of non-neighbouring layers (see Fig. 1).

Backward distillation. We also tested another distillation

scheme that makes higher layers to mimic lower layers. It

decreases the performance of ENet from 93.02% to 91.26%

in TuSimple dataset. This is not surprising as low-level at-

tention maps contain more details and are more noisy. Hav-

ing higher-level layers to mimic lower layers will inevitably

interfere the global information captured in higher layers,

hampering the crucial clues for the lane detection task.

SAD v.s. Deep Supervision. We also compare SAD with

deep supervision [20]. Here, deep supervision denotes the

algorithm that uses the labels directly as supervision for

each layer in the network. More specifically, we use 1x1

convolution and bilinear upsampling to obtain the predic-

tion of intermediate layers and use the cross entropy loss to

train the intermediate outputs of the model. We empirically

find that adding deep supervision in blocks 2 to 4 obtains

the most significant performance gains. As can be seen in

Table 6, SAD brings more performance gains than deep su-

pervision in all three benchmarks. We attribute this to the

following reasons. Firstly, compared with labels that are

considered sparse and rigid, SAD provides softer attention

targets that capture more contextual information that indi-

cate the scene structure. Distilling information from atten-

tion maps of later layers helps previous layers to grasp the

contextual signals. Secondly, a SAD path offers a feedback

connection from deeper layers to shallower layers. The con-

nection helps facilitate reciprocal learning between succes-

sive layers through attention distillation.

When to add SAD. Recall that we assume a half-trained

model before we add SAD into the training. Here, we in-

vestigate the different timepoints to add SAD. As can be

seen in Fig. 8, although different timepoints of introducing

SAD achieve almost the same performance in the end, the

time to add SAD has an effect on the convergence speed

of the networks. We attribute the phenomenon to the qual-

ity of the target attention maps produced by later layers. In

earlier training stage, deeper layers have not been trained

well and therefore the distillation targets produced by these

layers are of low quality. Introducing SAD at these earlier

Table 6. Performance of SAD and deep supervision applied to dif-

ferent base models on TuSimple, CULane and BDD100K testing

sets.

Algorithm
TuSimple CULane BDD100K

Accuracy Total Accuracy IoU

ENet 93.02% 68.4 34.12% 14.64

ENet-Deep 94.69% 69.6 35.61% 15.38

ENet-SAD 96.64% 70.8 36.56% 16.02

R-18 92.69% 67.9 30.66% 11.07

R-18-Deep 94.14% 68.8 30.95% 12.23

R-18-SAD 96.02% 70.5 31.10% 13.29

R-34 92.84% 68.6 30.92% 12.24

R-34-Deep 94.52% 69.2 31.72% 13.59

R-34-SAD 96.24% 70.7 32.68% 14.56
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Figure 8. Performance of adding self attention distillation on the

ENet model at different training episodes on the CULane valida-

tion set. The number in the legend denotes the episode when self

attention distillation is added. ”Baseline” denotes the ENet model

without self attention distillation.

stages is not as fruitful. Conversely, adding SAD in later

training stage would benefit the representation learning of

the previous layers.

5. Discussion

We have proposed a simple yet effective attention dis-

tillation approach, i.e., SAD, to improve the representation

learning of CNN-based lane detection models. SAD is vali-

dated in various models (i.e., ENet, ResNet-18, ResNet-34,

and ResNet-101) and achieves consistent performance gains

in three popular benchmarks (i.e., TuSimple, CULane and

BDD100K), demonstrating the effectiveness of SAD. The

results show that SAD can generally improve the visual at-

tention of different layers in various networks. It would be

interesting to extend this idea to other tasks that demands

fine-grained attention to details, such as image saliency de-

tection and image matting.
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