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Abstract

Vehicle 3D extents and trajectories are critical cues for

predicting the future location of vehicles and planning future

agent ego-motion based on those predictions. In this paper,

we propose a novel online framework for 3D vehicle detec-

tion and tracking from monocular videos. The framework

can not only associate detections of vehicles in motion over

time, but also estimate their complete 3D bounding box infor-

mation from a sequence of 2D images captured on a moving

platform. Our method leverages 3D box depth-ordering

matching for robust instance association and utilizes 3D

trajectory prediction for re-identification of occluded vehi-

cles. We also design a motion learning module based on

an LSTM for more accurate long-term motion extrapola-

tion. Our experiments on simulation, KITTI, and Argoverse

datasets show that our 3D tracking pipeline offers robust

data association and tracking. On Argoverse, our image-

based method is significantly better for tracking 3D vehicles

within 30 meters than the LiDAR-centric baseline methods.

1. Introduction

Autonomous driving motivates much of contemporary

visual deep learning research. However, many commercially

successful approaches to autonomous driving control rely on

a wide array of views and sensors, reconstructing 3D point

clouds of the surroundings before inferring object trajectories

in 3D. In contrast, human observers have no difficulty in

perceiving the 3D world in both space and time from simple

sequences of 2D images rather than 3D point clouds, even

though human stereo vision only reaches several meters.

Recent progress in monocular object detection and scene

segmentation offers the promise to make low-cost mobility

widely available. In this paper, we explore architectures and

datasets for developing similar capabilities using deep neural

networks.
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Figure 1: Joint online detection and tracking in 3D. Our

dynamic 3D tracking pipeline predicts 3D bounding box as-

sociation of observed vehicles in image sequences captured

by a monocular camera with an ego-motion sensor.

Monocular 3D detection and tracking are inherently ill-

posed. In the absence of depth measurements or strong

priors, a single view does not provide enough information

to estimate 3D layout of a scene accurately. Without a good

layout estimate, tracking becomes increasingly difficult, es-

pecially in the presence of large ego-motion (e.g., a turning

car). The two problems are inherently intertwined. Robust

tracking helps 3D detection, as information along consec-

utive frames is integrated. Accurate 3D detection helps to

track, as ego-motion can be factored out.

In this paper, we propose an online network architecture

to jointly track and detect vehicles in 3D from a series of

monocular images. Figure 1 provides an overview of our 3D

tracking and detection task. After detecting 2D bounding

boxes of objects, we utilize both world coordinates and re-

projected camera coordinates to associate instances across

frames. Notably, we leverage novel occlusion-aware associ-
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ation and depth-ordering matching algorithms to overcome

the occlusion and reappearance problems in tracking. Fi-

nally, we capture the movement of instances in a world coor-

dinate system and update their 3D poses using LSTM motion

estimation along a trajectory, integrating single-frame obser-

vations associated with the instance over time.

Like any deep network, our model is data hungry. The

more data we feed it, the better it performs. However, ex-

isting datasets are either limited to static scenes [41], lack

the required ground truth trajectories [26], or are too small

to train contemporary deep models [13]. To bridge this gap,

we resort to realistic video games. We use a new pipeline to

collect large-scale 3D trajectories, from a realistic synthetic

driving environment, augmented with dynamic meta-data

associated with each observed scene and object.

To the best of our knowledge, we are the first to tackle the

estimation of complete 3D vehicle bounding box tracking

information from a monocular camera. We jointly track the

vehicles across frames based on deep features and estimate

the full 3D information of the tracks including position, ori-

entation, dimensions, and projected 3D box centers of each

object. The depth ordering of the tracked vehicles constructs

an important perceptual cue to reduce the mismatch rate.

Our occlusion-aware data association provides a strong prior

for occluded objects to alleviate the identity switch problem.

Our experiments show that 3D information improves pre-

dicted association in new frames compared to traditional 2D

tracking, and that estimating 3D positions with a sequence

of frames is more accurate than single-frame estimation.

2. Related Works

Object tracking has been explored extensively in the last

decade [44, 36, 39]. Early methods [4, 12, 21] track objects

based on correlation filters. Recent ConvNet-based methods

typically build on pre-trained object recognition networks.

Some generic object trackers are trained entirely online,

starting from the first frame of a given video [16, 1, 19].

A typical tracker will sample patches near the target ob-

ject which are considered as foreground and some farther

patches as background. These patches are then used to train

a foreground-background classifier. However, these online

training methods cannot fully utilize a large amount of video

data. Held et al. [18] proposed a regression-based method

for offline training of neural networks, tracking novel objects

at test-time at 100 fps. Siamese networks also found in use,

including tracking by object verification [40], tracking by

correlation [3], tracking by detection [11]. Yu et al. [43]

enhance tracking by modeling a track-let into different states

and explicitly learns an Markov Decision Process (MDP) for

state transition. Due to the absence of 3D information, it just

uses 2D location to decide whether a track-let is occluded.

All those methods only take 2D visual features into con-

sideration, where the search space is restricted near the orig-

inal position of the object. This works well for a static

observer, but fails in a dynamic 3D environment. Here, we

further leverage 3D information to narrow down the search

space, and stabilize the trajectory of target objects.

Sharma et al. [38] uses 3D cues for 2D vehicle tracking.

Scheidegger et al. [37] also adds 3D kalman filter on the

3D positions to get more consistent 3D localization results.

Because the goals are for 2D tracking, 3D box dimensions

and orientation are not considered. Osep et al. [28] and

Li et al. [22] studies 3D bounding box tracking with stereo

cameras. Because the 3D depth can be perceived directly,

the task is much easier, but in many cases such as ADAS,

large-baseline stereo vision is not possible.

Object detection reaped many of the benefits from the suc-

cess of convolutional representation. There are two main-

stream deep detection frameworks: 1) two-step detectors: R-

CNN [15], Fast R-CNN [14], and Faster R-CNN [31]. 2) one-

step detectors: YOLO [29], SSD [24], and YOLO9000 [30].

We apply Faster R-CNN, one of the most popular object

detectors, as our object detection input. The above algo-

rithms all rely on scores of labeled images to train on. In 3D

tracking, this is no different. The more training data we have,

the better our 3D tracker performs. Unfortunately, getting a

large amount of 3D tracking supervision is hard.

Driving datasets have attracted a lot of attention in recent

years. KITTI [13], Cityscapes [8], Oxford RobotCar [25],

BDD100K [47], NuScenes [5], and Argoverse [6] provide

well annotated ground truth for visual odometry, stereo re-

construction, optical flow, scene flow, object detection and

tracking. However, their provided 3D annotation is very lim-

ited compared to virtual datasets. Accurate 3D annotations

are challenging to obtain from humans and expensive to mea-

sure with 3D sensors like LiDAR. Therefore these real-world

datasets are typically small in scale or poorly annotated.

To overcome this difficulty, there has been significant

work on virtual driving datasets: virtual KITTI [12], SYN-

THIA [34], GTA5 [33], VIPER [32], CARLA [9], and Free

Supervision from Video Games (FSV) [20]. The closest

dataset to ours is VIPER [32], which provides a suite of

videos and annotations for various computer vision problems

while we focus on object tracking. We extend FSV [20] to

include object tracking in both 2D and 3D, as well as fine-

grained object attributes, control signals from driver actions.

In the next section, we describe how to generate 3D ob-

ject trajectories from 2D dash-cam videos. Considering the

practical requirement of autonomous driving, we primarily

focus on online tracking systems, where only the past and

current frames are accessible to a tracker.

3. Joint 3D Detection and Tracking

Our goal is to track objects and infer their precise 3D lo-

cation, orientation, and dimension from a single monocular

video stream and a GPS sensor. Figure 2 shows an overview
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Figure 2: Overview of our monocular 3D tracking framework. Our online approach processes monocular frames to estimate

and track region of interests (RoIs) in 3D (a). For each ROI, we learn 3D layout (i.e., depth, orientation, dimension, a

projection of 3D center) estimation (b). With 3D layout, our LSTM tracker produces robust linking across frames leveraging

occlusion-aware association and depth-ordering matching (c). With the help of 3D tracking, the model further refines the

ability of 3D estimation by fusing object motion features of the previous frames (d).

of our system. Images are first passed through a detector

network trained to generate object proposals and centers.

These proposals are then fed into a layer-aggregating net-

work which infers 3D information. Using 3D re-projection

to generate similarity metric between all trajectories and

detected proposals, we leverage estimated 3D information of

current trajectories to track them through time. Our method

also solves the occlusion problem in tracking with the help of

occlusion-aware data association and depth-ordering match-

ing. Finally, we re-estimate the 3D location of objects using

the LSTM through the newly matched trajectory.

3.1. Problem Formulation

We phrase the 3D tracking problem as a supervised learn-

ing problem. We aim to find N trajectories {τ1, . . . , τN},

one for each object in a video. Each trajectory τ i links

a sequence of detected object states {s
(i)
a , s

(i)
a+1, . . . , s

(i)
b }

starting at the first visible frame a and ending at the last

visible frame b. The state of an object at frame a is given by

sa = (P,O,D, F,∆P ), where P defines the 3D world lo-

cation (x, y, z) of the object, and ∆P stands for its velocity

(ẋ, ẏ, ż). O,D, F denotes for object orientation θ, dimen-

sion (l, w, h) and appearance feature fapp, respectively. In

addition, we reconstruct a 3D bounding box X for each ob-

ject, with estimated P,O,D and the projection c = (xc, yc)
of 3D box’s center in the image. The bounding boxes enable

the use of our depth-ordering matching and occlusion-aware

association. Each bounding box X also forms a projected

2D box M(X) = {xmin, ymin, xmax, ymax} projected onto a

2D image plane using camera parameters M = K[R|t].

The intrinsic parameter K can be obtained from camera

calibration. The extrinsic parameter [R|t] can be calculated

from the commonly equipped GPS or IMU sensor. The

whole system is powered by a convolutional network pipeline

trained on a considerable amount of ground truth supervision.

Next, we discuss each component in more detail.

3.2. Candidate Box Detection

In the paper, we employ Faster R-CNN [31] trained on our

dataset to provide object proposals in the form of bounding

boxes. Each object proposal (Figure 2(a)) corresponds to a

2D bounding box d = {xmin, ymin, xmax, ymax} as well as an

estimated projection of the 3D box’s center c. The detection

results are used to locate the candidate vehicles and extract

their appearance features. However, the centers of objects’

3D bounding boxes usually do not project directly to the

center of their 2D bounding boxes. As a result, we have

to provide an estimation of the 3D box center for better

accuracy. More details about the estimation of the 3D center

can be found in the supplementary material1.

Projection of 3D box center. To estimate the 3D layout

from single images more accurately, we extend the regres-

sion process to predict a projected 2D point of the 3D bound-

ing box’s center from an ROIpooled feature F using L1 loss.

Estimating a projection of 3D center is crucial since a small

gap in the image coordinate will cause a gigantic shift in

3D. It is worth noting that our pipeline can be used with

any off-the-shelf detector and our 3D box estimation module

is extendable to estimate projected 2D points even if the

detector is replaced. With the extended ROI head, the model

1Supplementary material of Joint Monocular 3D Vehicle Detection and

Tracking can be found at https://eborboihuc.github.io/Mono-3DT/
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regresses both a bounding box d and the projection of 3D

box’s center c from an anchor point. ROIalign [17] is used

instead of ROIpool to get the regional representation given

the detected regions of interest (ROIs). This reduces the

misalignment of two-step quantization.

3.3. 3D Box Estimation

We estimate complete 3D box information (Figure 2(b))

from an ROI in the image via a feature representation of the

pixels in the 2D bounding box. The ROI feature vector F
is extracted from a 34-layer DLA-up [46] using ROIalign.

Each of the 3D information is estimated by passing the

ROI features through a 3-layer 3x3 convolution sub-network,

which extends the stacked Linear layers design of Mousa-

vian et al. [27]. We focus on 3D location estimation con-

sisting of object center, orientation, dimension and depth,

whereas [27] focus on object orientation and dimension from

2D boxes. Besides, our approach integrates with 2D detec-

tion and has the potential to jointly training, while [27] crops

the input image with pre-computed boxes. This network is

trained using ground truth depth, 3D bounding box center

projection, dimension, and orientation values. A convolu-

tional network is used to preserve spatial information. In the

case that the detector is replaced with another architecture,

the center c can be obtained from this sub-network.

3D World Location. Contrasting with previous approaches,

we also infer 3D location P from monocular images. The

network regresses an inverse depth value 1/d, but is trained

to minimize the L1 loss of the depth value d and the projected

3D location P . A projected 3D location P is calculated using

an estimated 2D projection of the 3D object center c as well

as the depth d and camera transformation M .

Vehicle Orientation. Given the coordinate distance x̂ =
xc − w

2 to the horizontal center of an image and the fo-

cal length f , we can restore the global rotation θ in the

camera coordinate from θl with simple geometry, θ =
(θl + arctan x̂

f
) mod 2π. Following [27] for θl estimation,

we first classify the angle into two bins and then regress the

residual relative to the bin center using Smooth L1 loss.

Vehicle Dimension. In driving scenarios, the high variance

of the distribution of the dimensions of different categories

of vehicles (e.g., car, bus) results in difficulty classifying

various vehicles using unimodal object proposals. Therefore,

we regress a dimension D to the ground truth dimension

over the object feature representation using L1 loss.

The estimation of an object’s 3D properties provides us

with an observation for its location P with orientation θ,

dimension D and 2D projection of its 3D center c. For any

new tracklet, the network is trained to predict monocular

object state s of the object by leveraging ROI features. For

any previously tracked object, the following association net-

work is able to learn a mixture of a multi-view monocular

3D estimates by merging the object state from last visible

frames and the current frame. First, we need to generate such

a 3D trajectory for each tracked object in world coordinates.

3.4. Data Association and Tracking

Given a set of tracks {τJ , . . . , τK} at frame a where

1 ≤ J ≤ K ≤ M from M trajectories, our goal is to

associate each track with a candidate detection, spawn new

tracks, or end a track (Figure 2(c)) in an online fashion.

We solve the data association problem by using a

weighted bipartite matching algorithm. Affinities between

tracks and new detections are calculated from two criteria:

overlap between projections of current trajectories forward

in time and bounding boxes candidates; and the similarity of

the deep representation of the appearances of new and exist-

ing object detections. Each trajectory is projected forward

in time using the estimated velocity of an object and camera

ego-motion. Here, we assume that ego-motion is given by a

sensor, like GPS, an accelerometer, gyro and/or IMU.

We define an affinity matrix A(τa, sa) between the infor-

mation of an existing track τa and a new candidate sa as a

joint probability of appearance and location correlation.

Adeep(τa, sa) = exp(−||Fτa , Fsa
||1) (1)

A2D(τa, sa) =
dτa ∩ dsa

dτa ∪ da

(2)

A3D(τa, sa) =
M(Xτa) ∩M(Xsa

)

M(Xτa) ∪M(Xsa
)
, (3)

where Fτa , Fsa
are the concatenation of appearance feature

fapp, dimension D, center c, orientation θ and depth d. Xτa

and Xsa
are the tracked and predicted 3D bounding boxes,

M is the projection matrix casting the bounding box to image

coordinates, A2D and A3D is the Intersection of Union (IoU).

A(τa, sa) = wdeepAapp(τa, sa) + w2DA2D(τa, sa)

+ w3DA3D(τa, sa)
(4)

wdeep, w2D, w3D are the weights of appearance, 2D overlap,

and 3D overlap. We utilize a mixture of those factors as the

affinity across frames, similar to the design of POI [45].

Comparing to 2D tracking, 3D-oriented tracking is more

robust to ego-motion, visual occlusion, overlapping, and

re-appearances. When a target is temporally occluded, the

corresponding 3D motion estimator can roll-out for a period

of time and relocate 2D location at each new point in time

via the camera coordinate transformation.

Depth-Ordering Matching. We introduce instance depth

ordering for assigning a detection to neighbor tracklets,

which models the strong prior of relative depth ordering

found in human perception. For each detection of interest

(DOI), we consider potential associated tracklets in order of

their depths. From the view of each DOI, we obtain the IOU

of two non-occluded overlapping map from both ascending
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Figure 3: Illustration of depth-ordering matching. Given the

tracklets and detections, we sort them into a list by depth

order. For each detection of interest (DOI), we calculate the

IOU between DOI and non-occluded regions of each tracklet.

The depth order naturally provides higher probabilities to

tracklets near the DOI.

and descending ordering. To cancel out the ordering ambi-

guity of a distant tracklet, we filter out those tracklets with a

larger distance to a DOI than a possible matching length. So

Equation 3 becomes

A3D(τa, sa) = 1×
φ(M(Xτa)) ∩M(Xsa

)

φ(M(Xτa)) ∪M(Xsa
)
, (5)

where 1 denotes if the tracklets is kept after depth filtering,

and the overlapping function

φ(·) = argmin
x

{x|ord(x) < ord(x0)∀x0 ∈ M(Xτa))}

captures pixels of non-occluded tracklets region with the

nearest depth order. It naturally provides higher probabilities

of linking neighbor tracklets than those layers away. In

this way, we obtain the data association problem of moving

objects with the help of 3D trajectories in world coordinates.

Figure 3 depicts the pipeline of depth ordering. Finally, we

solve data association using the Kuhn-Munkres algorithm.

Occlusion-aware Data Association. Similar to previous

state-of-the-art methods [42, 43, 35], we model the lifes-

pan of a tracker into four major subspaces in MDP state

space: {birth, tracked, lost, death}. For each new set

of detections, the tracker is updated using pairs with the high-

est affinities score (Equation 4). Each unmatched detection

spawns a new tracklet; however, an unmatched tracklet is

not immediately terminated, as tracklets can naturally dis-

appear in occluded region and reappear later. We continue

to predict the 3D location of unmatched tracklets until they

disappear from our tracking range (e.g. −10m to 100m) or

die out after 20 time-steps. We address the dynamic object

inter-occlusion problem by separating a new state called

“occluded” from a lost state. An object is considered

occluded when covered by another object in the front with

over 70% overlap. An occluded tracklet will not update

its lifespan or its feature representation until it is clear from

Occlusion-aware

Association

T-2

T-1

T

Depth

Order

Tracked

Occluded

Lost

Frame

Visible

Occluded

Truncated

Figure 4: Illustration of Occlusion-aware association. A

tracked tracklet (yellow) is visible all the time, while a track-

let (red) is occluded by another (blue) at frame T−1. During

occlusion, the tracklet does not update state but keep infer-

ence motion until reappearance. For a truncated or disappear

tracklet (blue at frame T ), we left it as lost.

occlusion, but we still predict its 3D location using the esti-

mated motion. Figure 4 illustrates how the occlusion-aware

association works. In the next subsection, we show how to

estimate that distance leveraging the associated tracklet and

bounding box using a deep network.

3.5. Motion Model

Deep Motion Estimation and Update. To exploit the tem-

poral consistency of certain vehicles, we associate the infor-

mation across frames by using two LSTMs. We embed a

3D location P to a 64-dim location feature and use 128-dim

hidden state LSTMs to keep track of a 3D location from the

64-dim output feature.

Prediction LSTM (P-LSTM) models dynamic object lo-

cation in 3D coordinates by predicting object velocity from

previously updated velocities ṖT−n:T−1 and the current pos-

sible location P̃T . We use previous n = 5 frames of vehicle

velocity to model object motion and acceleration from the

trajectory. Given the current expected location of the object

from 3D estimation module, the Updating LSTM (U-LSTM)

considers both current P̂T and previously predicted location

P̃T−1 to update the location and velocity (Figure 2(c)).

Modeling motion in 3D world coordinates naturally can-

cels out adverse effects of ego-motion, allowing our model to

handle missed and occluded objects. The LSTMs continue

to update the object state

s
(i)
a = s

(i)
a−1 + α(s∗a − s

(i)
a−1)

using the observation of matched detection state s
∗

a with

an updating ratio α = 1 − Adeep(τ
i
a, s

∗

a), while assuming

a linear velocity model if there is no matched bounding

box. Therefore, we model 3D motion (Figure 2(d)) in world

coordinates allowing occluded tracklet to move along mo-

tion plausible paths while managing the birth and death of

moving objects.
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Concretely, our pipeline consists of a single-frame monoc-

ular 3D object detection model for object-level pose infer-

ence and recurrent neural networks for inter-frame object

association and matching. We extend the region processing

to include 3D estimation by employing multi-head modules

for each object instance. We introduced occlusion-aware

association to solve inter-object occlusion problem. For

tracklet matching, depth ordering lowers mismatch rate by

filtering out distant candidates from a target. The LSTM

motion estimator updates the velocity and states of each ob-

ject independent of camera movement or interactions with

other objects. The final pipeline produces accurate and dense

object trajectories in 3D world coordinate system.

4. 3D Vehicle Tracking Simulation Dataset

It is laborious and expensive to annotate a large-scale

3D bounding box image dataset even in the presence of Li-

DAR data, although it is much easier to label 2D bounding

boxes on tens of thousands of videos [47]. Therefore, no

such dataset collected from real sensors is available to the

research community. To resolve the data problem, we turn

to driving simulation to obtain accurate 3D bounding box

annotations at no cost of human efforts. Our data collec-

tion and annotation pipeline extend the previous works like

VIPER [32] and FSV [20], especially in terms of linking

identities across frames. Details on the thorough comparison

to prior data collection efforts, and dataset statistics can be

found in the supplementary material.

Our simulation is based on Grand Theft Auto V, a modern

game that simulates a functioning city and its surroundings

in a photo-realistic three-dimensional world. To associate

object instances across frames, we utilize in-game API to

capture global instance id and corresponding 3D annotations

directly. In contrast, VIPER leverages a weighted matching

algorithm based on a heuristic distance function, which can

lead to inconsistencies. It should be noted that our pipeline

is real-time, providing the potential of large-scale data col-

lection, while VIPER requires expensive off-line processing.

5. Experiments

We evaluate our 3D detection and tracking pipeline on

Argoverse Tracking benchmark [6], KITTI MOT bench-

mark [13] and our large-scale dataset, featuring real-world

driving scenes and a wide variety of road conditions in a

diverse virtual environment, respectively.

5.1. Training and Evaluation

Dataset. Our GTA raw data is recorded at 12 FPS, which

is helpful for temporal aggregation. With the goal of au-

tonomous driving in mind, we focus on vehicles closer than

150m, and also filtered out the bounding boxes whose areas

are smaller than 256 pixels. The dataset is then split into

train, validation and test set with ratio 10 : 1 : 4. The KITTI

Tracking benchmark provides real-world driving scenario.

Our 3D tracking pipeline train on the whole training set and

evaluate the performance on the public testing benchmark.

The Argoverse Tracking benchmark offers novel 360 degree

driving dataset. We train on the training set and evaluate the

performance on the validation benchmark since the evalua-

tion server is not available upon the time of submission.

Training Procedure. We train our 3D estimation network

(Section 3.3) on each training set, separately. 3D estimation

network produces feature maps as the input of ROIalign [17].

The LSTM motion module (Section 3.5) is trained on the

same set with a sequence of 10 images per batch. For GTA,

all the parameters are searched using validation set with

detection bounding boxes from Faster R-CNN. The training

is conducted for 100 epochs using Adam optimizer with an

initial learning rate 10−3, momentum 0.9, and weight decay

10−4. Each GPU has 5 images and each image with no

more than 300 candidate objects before NMS. More training

details can be found in supplementary material.

3D Estimation. We adapt depth evaluation metrics [10]

from image-level to object-level, leveraging both error and

accuracy metrics. Error metrics include absolute relative

difference (Abs Rel), squared relative difference (Sq Rel),

root mean square error (RMSE) and RMSE log. Accuracy

metrics are percents of yi that max( yi

y∗

i

,
y∗

i

yi

) < δ where δ =

1.25, 1.252, 1.253. Following the setting of KITTI [13], we

use orientation score (OS) for orientation evaluation.

We propose two metrics for evaluating estimated object

dimension and 3D projected center position. A Dimension

Score (DS) measures how close an object volume estimation

to a ground truth. DS is defined as DS = min(
Vpred

Vgt
,

Vgt

Vpred
)

with an upper bound 1, where V is the volume of a 3D box

by multiplying its dimension l ∗w ∗ h. A Center Score (CS)

measures distance of a projected 3D center and a ground

truth. CS is calculated by CS = (1 + cos(agt − apd))/2,
with a upper bound 1, where a depicts an angular distance

((xgt−xpd)/wpd, (ygt−ypd)/hpd), weighted by correspond-

ing box width and height in the image coordinates.

Object Tracking. We follow the metrics of CLEAR [2], in-

cluding multiple object tracking accuracy (MOTA), multiple

object tracking precision (MOTP), miss-match (MM), false

positive (FP), and false negative (FN), etc.

Overall Evaluation. We evaluated the 3D IoU mAP of 3D

layout estimation with refined depth estimation of different

tracking methods. The metric reflects the conjunction of all

3D components, dimension, rotation, and depth.

5.2. Results

3D for tracking. The ablation study of tracking perfor-

mance could be found in Table 1. Adding deep feature dis-

tinguishes two near-overlapping objects, our false negative

(FN) rate drops with an observable margin. With depth-order
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Figure 5: Qualitative results of 3D Estimation on KITTI testing set. We show predicted 3D layout colored with tracking IDs.

Motion Deep Order MOTA↑ FN↓ MM↓ Ratio (%)↑

KF3D - - 69.616 21.298 17480 0

KF3D - X 70.061 21.319 16042 8.222

KF3D X - 69.843 18.547 27639 0

KF3D X X 70.126 18.177 25860 6.434

LSTM X X 70.439 18.094 23863 13.662

Table 1: Ablation study of tracking performance with differ-

ent methods in GTA dataset. Motion column shows which

motion model being used. KF stands for Kalman Filter. Ra-

tio is the relative improvement in reducing the number of

mismatch pairs. Using deep feature in correlation can reduce

the false negative (FN) rate. Using depth-order matching

and occlusion-aware association filter out relatively 6− 8%

(
(17480−16042)

16042 × 100%) mismatching trajectories. LSTM

modeling dynamic motion benefits 3D IoU AP in Table 2.

matching and occlusion-aware association, our model filters

out 6 − 8% possible mismatching trajectories. For a full

ablation study, please refer to the supplementary material.

Motion Modeling. We propose to use LSTM to model the

vehicle motion. To analyze its effectiveness, we compare

our LSTM model with traditional 3D Kalman filter (KF3D)

and single frame 3D estimation using 3D IoU mAP. Table 2

shows that KF3D provides a small improvement via trajec-

tory smoothing within prediction and observation. On the

other hand, our LSTM module gives a learned estimation

based on past n velocity predictions and current frame ob-

servation, which may compensate for the observation error.

Our LSTM module achieves the highest accuracy among the

Method
Easy Medium Hard

AP
70

3d AP
50

3d AP
25

3d AP
70

3d AP
50

3d AP
25

3d AP
70

3d AP
50

3d AP
25

3d

None 6.13 35.12 69.52 4.93 24.25 53.26 4.05 17.26 41.33

KF3D 6.14 35.15 69.56 4.94 24.27 53.29 4.06 17.27 41.42

LSTM 7.89 36.37 73.39 5.25 26.18 53.61 4.46 17.62 41.96

Table 2: Comparison of tracking performance on 3D IoU

AP 25, 50, 70 in GTA dataset. Noted that KF3D slightly

improves the AP performance compare to single-frame es-

timation (None), while LSTM grants a clear margin. The

difference comes from how we model object motion in the

3D coordinate. Instead of using Kalman filter smoothing be-

tween prediction and observation, we directly model vehicle

movement using LSTMs.

IDS ↓ FRAG ↓ FP ↓ FN ↓ MOTA ↑ MOTP ↑

2D Center 315 497 401 1435 91.06 90.36

3D Center 190 374 401 1435 91.58 90.36

Table 3: Importance of using projection of 3D bounding

box center estimation on KITTI training set. We evaluate

our proposed model using different center inputs c to reveal

the importance of estimating projection of a 3D center. The

reduction of ID Switch (IDS), track fragmentation (FRAG),

and the increase of MOTA suggest that the projection of a

3D center benefits our tracking pipeline over the 2D center.

other methods with all the IoU thresholds.

3D Center Projection Estimation. We estimate the 3D

location of a bounding box through predicting the projection

of its center and depth, while Mousavian et al. [27] uses

the center of detected 2D boxes directly. Table 3 shows the
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Dataset Amount
Depth Error Metric Depth Accuracy Metric Orientation Dimension Center

Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ OS ↑ DS ↑ CS ↑

GTA

1% 0.258 4.861 10.168 0.232 0.735 0.893 0.934 0.811 0.807 0.982

10% 0.153 3.404 6.283 0.142 0.880 0.941 0.955 0.907 0.869 0.982

30% 0.134 3.783 5.165 0.117 0.908 0.948 0.957 0.932 0.891 0.982

100% 0.112 3.361 4.484 0.102 0.923 0.953 0.960 0.953 0.905 0.982

KITTI 100% 0.074 0.449 2.847 0.126 0.954 0.980 0.987 0.962 0.918 0.974

Table 4: Performance of 3D box estimation. The evaluation demonstrates the effectiveness of our model from each separate

metrics. The models are trained and tested on the same type of dataset, either GTA or KITTI. With different amounts of

training data in our GTA dataset, the results suggest that large data capacity benefits the performance of a data-hungry network.

Range Method MOTA ↑ MM ↓ #FP ↓ #FN ↓

30m
LiDAR [6] 73.02 19.75 92.80 350.50

Ours 77.93 5.29 104.29 395.33

50m
LiDAR [6] 52.74 31.60 99.70 1308.25

Ours 53.48 12.25 194.67 857.08

100m
LiDAR [6] 37.98 32.55 105.40 2455.30

Ours 15.59 19.83 338.54 1572.33

Table 5: Tracking performance on the validation set of Argo-

verse tracking benchmark [6]. Note that the LiDAR-centric

baseline[6] uses LiDAR sweeps, HD maps for evaluation.

Methods MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓

Ours 84.52 85.64 73.38 2.77 705 4242

BeyondPixels† [38] 84.24 85.73 73.23 2.77 705 4247

PMBM† [37] 80.39 81.26 62.77 6.15 1007 5616

MDP [43] 76.59 82.10 52.15 13.38 606 7315

Table 6: Tracking performance on the testing set of KITTI

tracking benchmark. Only published methods are reported.

† sign means 3D information is used.

comparison of these two methods on KITTI dataset. The

result indicates the correct 3D projections provides higher

tracking capacity for motion module to associate candidates

and reduces the ID switch (IDS) significantly.

Amount of Data Matters. We train the depth estimation

module with 1%, 10%, 30% and 100% training data. The

results show how we can benefit from more data in Table 4,

where there is a consistent trend of performance improve-

ment as the amount of data increases. The trend of our

results with a different amount of training data indicates that

large-scale 3D annotation is helpful, especially with accurate

ground truth of far and small objects.

Real-world Evaluation. Besides evaluating on synthetic

data, we resort to Argoverse [6] and KITTI [13] tracking

benchmarks to compare our model abilities. For Argoverse,

we use Faster RCNN detection results of mmdetection [7]

implementation pre-trained on COCO [23] dataset. Major

results are listed in Table 5 and Table 6. For a full evalua-

tion explanation, please refer to the supplementary material.

Our monocular 3D tracking method outperforms all the pub-

lished methods on KITTI and beats LiDAR-centric baseline

methods on 50m and 30m ranges of the Argoverse tracking

validation set upon the time of submission.

It is worth noting that the baseline methods on Argoverse

tracking benchmark leveraging HD maps, locations, and Li-

DAR points for 3D detection, in addition to images. Our

monocular 3D tracking approach can reach competitive re-

sults with image stream only. It is interesting to see that the

3D tracking accuracy based on images drops much faster

with increasing range threshold than LiDAR-based method.

This is probably due to different error characteristics of the

two measurement types. The farther objects occupy smaller

number of pixels, leading to bigger measurement variance

on the images. However, the distance measurement errors of

LiDAR hardly change for faraway objects. At the same time,

the image-based method can estimate the 3D positions and

associations of nearby vehicles accurately. The comparison

reveals the potential research directions to combine imaging

and LiDAR signals.

6. Conclusion

In this paper, we learn 3D vehicle dynamics from monoc-

ular videos. We propose a novel framework, combining

spatial visual feature learning and global 3D state estimation,

to track moving vehicles in a 3D world. Our pipeline con-

sists of a single-frame monocular 3D object inference model

and motion LSTM for inter-frame object association and up-

dating. In data association, we introduced occlusion-aware

association to solve inter-object occlusion problem. In track-

let matching, depth ordering filters out distant candidates

from a target. The LSTM motion estimator updates the ve-

locity of each object independent of camera movement. Both

qualitative and quantitative results indicate that our model

takes advantage of 3D estimation leveraging our collection

of dynamic 3D trajectories.
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