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Abstract

Image and sentence matching has drawn much attention

recently, but due to the lack of sufficient pairwise data for

training, most previous methods still cannot well associate

those challenging pairs of images and sentences containing

rarely appeared regions and words, i.e., few-shot content.

In this work, we study this challenging scenario as few-shot

image and sentence matching, and accordingly propose an

Aligned Cross-Modal Memory (ACMM) model to memorize

the rarely appeared content. Given a pair of image and sen-

tence, the model first includes an aligned memory controller

network to produce two sets of semantically-comparable in-

terface vectors through cross-modal alignment. Then the

interface vectors are used by modality-specific read and up-

date operations to alternatively interact with shared mem-

ory items. The memory items persistently memorize cross-

modal shared semantic representations, which can be ad-

dressed out to better enhance the representation of few-shot

content. We apply the proposed model to both convention-

al and few-shot image and sentence matching tasks, and

demonstrate its effectiveness by achieving the state-of-the-

art performance on two benchmark datasets.

1. Introduction

With the rapid growth of multimodal data, image and

sentence matching has drawn much attention recently. This

technique has been widely applied to the task of cross-

modal retrieval, i.e., given an image query to retrieve certain

sentences with similar content, and vice-versa given a sen-

tence query. The challenge of image and sentence matching

lies in how to accurately measure the cross-modal similarity

between images and sentences. As shown in Figure 1, the
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Figure 1. Averaged recall rate vs. minimum appearing frequency

(best viewed in colors).

global similarity of a given pair of image and sentence usu-

ally depends on multiple local similarities between regions

(marked by rectangle) and words (marked by bold). Most

existing models [13, 21, 25, 5] measure these local similar-

ities by training on limited pairs of image and sentence, so

they statistically tend to better associate partial regions and

words with higher appearing frequencies (marked by blue)

during training. While for the rarely appeared region and

word (marked by red), i.e., few-shot content, these models

cannot well recognize or associate them.

In Figure 1, we also illustrate the performance of cross-

modal retrieval by three state-of-the-art models: VSE++

[5], SCO [13] and SCAN [21] on selected test sets contain-

ing k-shot content. For each test set, we select ceratin pairs

of image and sentence that have at least one word1 whose

appearing frequency is less than k. We can observe that all

the models can achieve well performance when there is no

few-shot (k≥100) content. But when k ≤ 10, their perfor-

1Only considering nouns, verbs and adjectives.
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mance all drops heavily by a large gap of 6%∼7%. It indi-

cates that these methods cannot be well generalized to deal

with few-shot content. Additionally, such a few-shot issue

could be a bottleneck for further performance improvemen-

t, especially in practical applications where the data content

could be much more imbalanced.

To alleviate this problem, in this paper, we focus on

the challenging scenario as few-shot image and sentence

matching. Different from conventional image and sentence

matching, we especially study how to better match those

pairwise images and sentences having rarely appeared re-

gions and words. To the best of our knowledge, this scenari-

o has been seldom identified or investigated. Although the

problem of few-shot matching for image and word [6, 26]

has been previously studied, directly adapting them to our

task is infeasible. Rather than multiple separated few-shot

objects and nouns, image and sentence matching usually

have much more complex few-shot content, i.e., objects,

actions and properties in images, and nouns, verbs and ad-

jectives in sentences. In addition, we deal with sentences

rather than words which simultaneously include both few-

shot words and common ones. So how to suitably model

their relation and exploit it to better understand few-shot

content is an another issue.

To deal with these problems, we propose an Aligned

Cross-Modal Memory (ACMM) model which can repre-

sent, align and memorize few-shot content in a successive-

ly manner. To well describe those rarely appeared regions

and words, the model first resorts to pretrained models on

external resources to obtain generic representations. Then

to reduce their cross-modal heterogeneity and predict two

sets of semantically-comparable interface vectors, ACM-

M includes a cross-modal graph convolutional network as

its memory controller, which aligns region representation-

s to word ones. Based on the interface vectors, modality-

specific read and update operations are designed to alterna-

tively interact with cross-modal shared memory items. The

memory items are persistently updated across minibatches

during the whole training, whose stored cross-modal shared

semantic representations can be used for enhancing the rep-

resentation of few-shot content. We apply the proposed

model to both conventional and few-shot image and sen-

tence matching tasks on two publicly available datasets, and

demonstrate its effectiveness by achieving the state-of-the-

art performance.

2. Related Work

2.1. Image and Sentence Matching

Frome et al. [6] propose the visual-semantic embedding

framework to associate pairs of images and words. Based

on this framework, Kiros et al. [17] later extend it for image

and sentence matching. Faghri et al. [5] penalize the mod-

el based on the hardest negative examples in the objective

function and achieve better results. In addition to the global

similarity measurement, Karpathy et al. [15] make the at-

tempt to learn local similarities from fragments of images

and sentences. Lee et al. [21] use the stacked cross-modal

attention to softly align regions and words. Huang et al.

[13] first extract semantic concepts and then organize them

in a semantic order which can greatly improve the perfor-

mance. Different from them, we focus on the rarely studied

image and sentence matching with few-shot content.

2.2. Neural Memory Modeling

Graves et al. [8] propose neural Turing machines and

later extend it to a differentiable neural computer [9], in

which neural networks can interact with external memory.

Sukhbaatar et al. [38] develop memory networks which can

reason with a long-term memory module via read and write.

Based on the similar framework, Weston et al. [47] design

end-to-end memory networks which require less supervi-

sion during training. Xiong et al. [49] improve the memory

as dynamic memory networks. Different from these uni-

modal memory models, we propose a cross-modal shared

memory which can alternatively interact with multiple data

modalities. Although other work [41, 27, 37] also extend

memory networks to multimodal settings, most of them are

episodic memory networks that are wiped during each mini-

batch. While our model persistently memorizes semantic

representations during the whole training procedure, to bet-

ter deal with the few-shot content.

2.3. FewShot Learning

Conventional few-shot learning [34, 48, 45] usually

focuses on single-label classification. Other researchers

[20, 7] further study the problem in the context of multi-

label classification. Hendricks et al. [2, 40] propose the

task of few-shot image captioning, which can be regard-

ed as sentence classification. In addition to the few-shot

classification, there are also many work focusing on few-

shot matching. Socher et al. [36] and Frome et al. [6]

use visual-semantic matching frameworks to recognize un-

seen objects in images. Long et al. [26] study the few-shot

problem in the image-attributes matching task. Rather than

single or multiple words, here we aim to deal with the few-

shot matching for sentences, which include not only mul-

tiple few-shot words but also other common ones, as well

their relation. The most related work is [11], which initially

studies this few-shot matching problem by adaptively fus-

ing of multiple models.

3. Aligned Cross-Modal Memory

We illustrate our proposed Aligned Cross-Modal Mem-

ory (ACMM) for image and sentence matching in Figure 2.
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Figure 2. The proposed Aligned Cross-Modal Memory (ACMM) for few-shot image and sentence matching.

To associate a given pair of image and sentence with few-

shot content, the proposed ACMM includes three key steps:

1) generic representation extraction for regions and word-

s based on large-scale external resources, 2) cross-modal

graph convolutional network as aligned memory controller

network to generate semantically-comparable interface vec-

tors, and 3) modality-specific read and update operations for

persistent memory items to memorize cross-modal shared

semantic representations. We will present the correspond-

ing details in the following.

3.1. Generic Representation Extraction

As shown in Figure 2 (a), for a pair of image and sen-

tence, how to accurately detect and represent their regions

and words, especially those few-shot ones (marked by red),

is the foundation for cross-modal association. But because

the number of pairwise data is quite limited, we cannot di-

rectly learn the desired representations from scratch.

So we attempt to leverage large-scale external resources,

and regard already pretrained models on them as gener-

ic representation extractors for all the regions and words.

In particular, we choose images from the Visual Genome

dataset [19] and texts from wikipedia.org as our mul-

timodal external resources. Both of them have been widely

demonstrated to be useful in various tasks [6, 1, 40]. Al-

though some few-shot content in regions might be not in-

cluded in the Visual Genome dataset, the dataset is diverse

enough and its pre-defined attributes [1] can comprehen-

sively describe them.

Then, we use the faster-RCNN [35, 1] and Skip-Gram

[30, 6] pretrained on these external resources to extract

generic representations for regions and words, respective-

ly. Given an image, the faster-RCNN detects I regions with

high probabilities of containing objects, actions or prop-

erties, and outputs I corresponding F -dimensional repre-

sentation vectors from the last fully-connected layer, i.e.,
{

gi|gi ∈ R
F
}

i=1,··· ,I
. While given a sentence, the Skip-

Gram encodes all the included words into E-dimensional

representation vectors, i.e.,
{

wj |wj ∈ R
E
}

j=1,··· ,J
, where

J is the length of the sentence. Note that the use of faster-

RCNN and Skip-Gram for generic representation extraction

might be not optimal, but we empirically find they can al-

ready achieve satisfactory performance.

3.2. Aligned Memory Controller Network

After obtaining the generic representations of regions

and words, we need a memory controller network to gen-

erate modality-specific interface vectors to connect with

shared memory items. But the generic representation-

s are intrinsically cross-modal heterogeneous, so their di-

rectly generated interface vectors tend to be semantically-

incomparable. Thus it is very difficult for the memory to

recognize and store the desired shared semantic informa-

tion from them. To handle this issue, we propose an aligned

memory controller network based on a cross-modal Graph

Convolutional Network (cm-GCN), which explicitly per-

forms cross-modal alignment between the representations

of regions and words.

Semantic Relation Modeling. We first model the se-

mantic relation among regions and words, respectively,

which aims to exploit the potential clues between few-shot

content and common one. In particular for words, consider-

ing that they are naturally organized in the sequential order

in the sentence, we use a bidirectional Gated Recurrent U-

nit (GRU) network [3] to model their sequential dependen-

cy relation, as shown in Figure 2 (b). We sequentially feed

the representations of all the words into the bidirectional

GRU and regard the corresponding hidden states as their

new representations, i.e.,
{

sj |sj ∈ R
H
}

j=1,··· ,J
, abbreviat-

ed as S ∈ R
J×H . While for regions, we model their re-

lation based on their appearance similarity using a conven-

tional Graph Convolution Network (GCN) [44]. In particu-

lar, we first measure the appearance similarity between each

pairwise regions to build a similarity graph, in which pairs

of appearance-similar regions will have edges with high s-

cores. Based on the graph, we can perform graph convolu-
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tion on region representations to obtain new representations,

i.e.,
{

ai|ai ∈ R
F
}

i=1,··· ,I
, abbreviated as A ∈ R

I×F . Con-

sidering that both GRU and GCN are widely used models,

here we omit their detailed formulations for simplicity.

Cross-modal Alignment. The unimodal graph convo-

lution above can be viewed as performing a transformation

from the original region space to another one. During this

procedure, the number of regions remains unchanged, and

each region is aligned to itself by considering the contri-

butions from others. Inspired by this, the desired cross-

modal alignment can also be formulated as graph convo-

lution but in a cross-modal setting, which performs a cross-

modal transformation from region to word spaces. The ma-

jor difference is that the number of regions does not equal

to the number of words.

To implement this, we first construct a cross-modal sim-

ilarity graph by measuring the cross-modal similarity be-

tween each pairwise region and word with two modality-

specific mappings. The size of obtained similarity matrix is

not squared so that the number of aligned regions will be

equivalent to the number of words. The detailed formula-

tions are:

g(sj , ai) = α(sj)
Tϕ(ai), Gji =

eg(sj ,ai)

∑

i e
g(sj ,ai)

, V = GAW

where α(sj) = Psj ,P ∈ R
H×H , and ϕ(ai) = Qai,Q ∈

R
H×F denote two modality-specific mappings for cross-

modal similarity measurement, G ∈ R
J×I is the normal-

ized cross-modal similarity matrix, W ∈ R
F×H is the

weight matrix, and V ∈ R
J×H is the aligned region rep-

resentations.

Interface Vectors. Note that V and the word represen-

tations S not only have the same size, but also are semanti-

cally aligned. For the j-th row in V, denoted as vj , it is an

aggregated representation weighted by cross-modal similar-

ities between the j-th word and all the regions. Therefore,

vj can be viewed as a visual representation of the j-th word,

sharing the same semantic meaning with the word represen-

tation sj . Based on the aligned representations, we can ob-

tain two sets of semantically-comparable interface vectors:

{

kV r, βV r, kV w, βV w, eV , uV
}

= tV (vj),
{

kSr, βSr, kSw, βSw, eS , uS
}

= tS(sj)

where tV (·) and tS(·) are two linear mappings for re-

gion and word, respectively. For the region, kV r ∈ R
W ,

βV r = oneplus(βV r) ∈ [1,∞), kV w ∈ R
W , βV w =

oneplus(βV w) ∈ [1,∞), eV = sigmoid(eV ) ∈ [0, 1]W ,

and uV ∈ R
W are its memory read key, read strength, write

key, write strength, erase vector, and write vector, respec-

tively. They are all used to interact with memory items, and

the corresponding details will be explained in the following.

3.3. Memory Read and Update

Based on the two sets of interface vectors, we design

shared memory items represented as a matrix M ∈ R
N×W

to store cross-modal shared semantic representations. As

shown in Figure 2 (c), each memory item Mi ∈ R
W could

be alternatively updated by modality-specific interface vec-

tors with similar semantic meanings, as well as read out to

enhance previously obtained generic representations.

Memory Read. We use a content-based addressing

mechanism to determine to read which memory items:

θ(k,Mi, β) =
es(k,Mi)·β

∑

i e
s(k,Mi)·β

, s(k,Mi) =
k · Mi

|k| |Mi|

where k is read key, β is read strength, and s(·, ·) measures

the cosine similarity. The read weight θ(k,Mi, β) ∈ [0, 1]
defines a normalized weight over the i-th memory item.

Then we can read memory by alternatively regarding the

obtained read keys of region and word as queries:

rV =
∑

i
wV r

i Mi, w
V r
i = θ(kV r,Mi, β

V r)

rS =
∑

i
wSr

i Mi, w
Sr
i = θ(kSr,Mi, β

Sr)

where wV r
i and wSr

i are two read weights for region and

word, respectively. rV ∈ R
W and rS ∈ R

W are two read

vectors which can be regarded as memory-enhanced repre-

sentations of region and word, respectively.

Memory Update. Memory update includes how we

write and delete the desired shared semantic representation-

s. To determine to write which memory items, we first com-

pute the cross-modal write weights by comparing write keys

with memory items through content-based addressing:

wV w
i = θ(kV w,Mi, β

V w), wSw
i = θ(kSw,Mi, β

Sw)

Note that without the cross-modal pre-alignment, the two

write keys are likely to be semantic-incomparable. So we

cannot guarantee they can write into similar memory items

at nearby locations. Thus the shared semantic representa-

tions cannot be uncovered or stored here. After obtaining

the write weights, we can selectively update memory items

by: 1) adding write vectors uV and uS , i.e., new semantic

representations, and 2) deleting old memory gated by erase

vectors eV and eS , i.e., how much memory to be deleted:

Mi = Mi ◦ (1 − wV w
i eV ) + wV w

i uV ,

Mi = Mi ◦ (1 − wSw
i eS) + wSw

i uS

where ◦ is element-wise multiplication. The memory first

updates its memory items with the extracted information

from the region and then from the word. In fact, the up-

date order can be alternative and does not show a significant

impact on the final performance.
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Discussion. Our cross-modal memory is initially in-

spired by [9], but different from them, ours is implemented

in a cross-modal way. It focuses on alternative interaction

between shared memory items and different data modali-

ties, and especially designs the corresponding aligned con-

troller network. We could alternatively use two sets of

modality-specific memory items to separately process re-

gion and word, respectively. But this strategy cannot well

exploit the homogeneity and complementarity of region

and word, and thus tends to degenerate the performance as

shown in Section 4.3.

In addition, our memory is persistent during the whole

training process, i.e., we do not wipe the learned memo-

ry for each minibatch as other memory models [8, 9, 47,

49, 41], with the goal to memorize rarely appeared content.

We also do not include the mechanism of dynamic memo-

ry allocation, since we experimentally find it will slightly

degenerate the performance. It might because this opera-

tion automatically removes some rarely accessed but useful

memory items associated with few-shot content.

3.4. Model Learning

After obtaining memory enhanced representations

for all regions and words
{

rVj |r
V
j ∈ R

H
}

j=1,··· ,J
and

{

rSj |r
S
j ∈ R

H
}

j=1,··· ,J
. We next perform cross-modal as-

sociation analysis by first defining the global similarity s-

core of image and sentence as a combination of two aver-

aged cosine similarities:

s =
∑

j
s(rVj , rSj )/J + λ

∑

j
s(vj , sj)/J (1)

where λ is a balancing parameter, and the two items mea-

sure two-stage similarities after and before memory, re-

spectively. When λ=0, it means the model has to mem-

orize from semantically-incomparable regions and words.

When λ>0, it indicates that we can pre-align the regions

and words. We experimentally find that setting λ=0.5 can

achieve good performance. Based on the defined similarity

score, we use the ranking loss to encourage the similarity s-

core of matched image and sentence to be larger than those

of mismatched ones:

L = maxk[0,m− sii + sik]+ +maxk[0,m− sii + ski]+

where m is a margin parameter, [·]+=max(·, 0), sii is the

score of the matched i-th image and i-th sentence, sik is the

score of the mismatched i-th image and k-th sentence, and

vice-versa with ski.

4. Experimental Results

To demonstrate the effectiveness of the proposed mod-

el, we perform experiments in terms of conventional and

few-shot image and sentence matching tasks on two pub-

licly available datasets.

4.1. Datasets and Protocols

The details of two experimental datasets and their corre-

sponding protocols are as follows. 1) Flickr30k [51] con-

sists of 31783 images collected from the Flickr website.

Each image has 5 human annotated sentences. We use the

public validation and test splits, which contain 1000 and

1000 images, respectively. 2) MSCOCO [23] consists of

82783 training and 40504 validation images, each of which

is associated with 5 sentences. We use the public valida-

tion and test splits, with 4000 and 1000 (or 5000) images,

respectively. When using 1000 images for test, we perform

the validation on 5-fold and report the averaged results.

4.2. Implementation Details

The commonly used evaluation criterions for image and

sentence matching are “R@1”, “R@5” and “R@10”, i.e.,

recall rates at the top 1, 5 and 10 results. Following [13],

we also use the additional criterion of “mR” by averaging

all the recall rates to evaluate the overall performance.

During the generic representation extraction, the number

of detected regions in each image is I=36, the dimension

of region representation vectors is F=2048, the number of

words J equals to the length of each sentence, and the di-

mension of word representation vectors is E=300. We set

the max length for all the sentences as 50, and pad shorter

sentences with zero values. The dimension of hidden states

in the bidirectional GRU is H=1024. The margin parame-

ter is empirically set as m=0.2. The number and dimension

of memory items are N=128 and W=256, respectively. We

empirically find that further increasing the memory number

results in a convergence of the performance.

During model learning, we use stochastic gradient de-

scent for parameter optimization, with a learning rate of

0.0005 and gradient clipping at 2. The model is iterative-

ly trained for 30 epochs to guarantee its convergence. In

each epoch, the model is learnt in a minibatch manner, with

a batch size of B=128. During each minibatch, our mem-

ory totally needs B×J×2 times update. To accelerate the

computational speed, use the NVIDIA DGX-1 AI Super-

computer.

4.3. Ablation Study

To comprehensively verify the effectiveness of the pro-

posed model, we compare its various ablation models as fol-

lows. 1) “align” only performs the cross-modal alignment

but does not use its following memory items, and “align

(w/o relation)” further removes the modeling of relation

with the visual GCN and bidirectional GRU. 2) “mem (w/o

shared)” and “mem” alternatively uses two and one sets of

modality-specific memory items to process unaligned re-

gion and word representations, respectively. 3) “align +

mem” is our full model that first aligns region representa-

tions to word ones, and then enhances both of them with the
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Table 1. Conventional image and sentence matching by ablation models on the Flickr30k and MSCOCO (5000 test) datasets.

Method

Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval
mR

Image Annotation Image Retrieval
mR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

align (w/o relation) 53.2 80.8 90.3 40.6 69.1 78.3 68.7 32.0 61.1 73.6 22.5 48.6 61.8 49.9

align 65.3 90.6 94.7 47.7 76.7 84.1 76.5 43.3 75.0 85.7 32.4 61.4 73.9 62.0

mem (w/o shared) 0.1 0.5 1.0 0.2 0.7 1.2 0.6 0.0 0.1 0.2 0.0 0.1 0.2 0.1

mem 1.3 6.5 12.6 1.0 4.7 8.3 5.7 0.2 1.2 2.4 0.3 1.3 2.6 1.3

align + mem (w/o shared) 64.8 88.5 93.7 42.6 72.3 81.2 73.9 45.1 76.1 86.0 30.0 58.3 71.4 61.2

align + mem 80.0 95.5 98.2 50.2 76.8 84.7 80.9 63.5 88.0 93.6 36.7 65.1 76.7 70.6

Figure 3. Histograms of cosine similarities between cross-modal

write weight vectors in unaligned memory and aligned memory,

respectively (best viewed in colors).

stored semantic representations in the memory. Due to the

space limitation, we put the analysis of other ablation mod-

els related to dynamical memory allocation and Skip-Gram

initialization in supplementary material. We use the men-

tioned ablation models to perform the experiment of image

and sentence matching, and compare their performance on

the Flickr30k and MSCOCO datasets (5000 test) in Table 1.

From this table, we can obtain the following conclusions.

Cross-modal Alignment. Only performing the cross-

modal alignment with relation modeling (as “align”) can

already achieve good performance. When using the cross-

modal alignment in the aligned controller network, aligned

memory (as “align + mem”) can further improve the per-

formance of unaligned memory (as “mem”). To better il-

lustrate this, we compute cosine similarities between pairs

of cross-modal write weight vectors (wV w and wSw), and

then draw similarity histograms by both unaligned memo-

ry and aligned memory in Figure 3. We can see that most

similarities by aligned memory are around 0.8 and much

higher than around 0.15 by unaligned memory. It indicates

the cross-modal alignment is able to write cross-modal in-

formation into similar memory items at nearby locations to

store shared semantic representations.

Shared Memory. Without the cross-modal alignmen-

t, using either modality-specific memory (as “mem (w/o

shared)”) or shared memory (as “mem”) can not achieve

well performance. But when using the cross-modal align-

ment, shared memory (as “align + mem”) performs much

a squatting couple outdoors 

engaged with a kneeling street 

performer or vendor reading 

from a book of manga

a woman in a 

striped shirt climbs 

up a mountain

people standing 

outside of a building

Low HighAppearing frequency

shaft of light in a 

cave shows three 

spelunkers

Figure 4. Two-dimensional visualization of learned memory items.

Few-shot content are marked as red (best viewed in colors).

better than the modality-specific memory (as “align + mem

(w/o shared)”). To illustrate what the shared memory actu-

ally learns, we reduce the dimensionality of memory vectors

with PCA, and show their two-dimensional representations

(nodes) in Figure 4. We can see that all the nodes distribute

in a divergent shape, in which the right nodes are more com-

pact while the left ones are more scattered. To figure out the

semantic meanings of these nodes, we take several repre-

sentative nodes (with arrows) as queries to retrieve pairwise

images and sentences. We find the compact nodes are more

likely to represent commonly appeared content, while the

scattered ones tend to retrieve images and sentences with

few-shot content (marked by red).

4.4. FewShot Image and Sentence Matching

In this section, we aim to especially demonstrate the ef-

fectiveness of our proposed model on handling pairs of im-

ages and sentences containing rarely appeared regions and

words. To achieve this goal, we perform a challenging ex-

periment in terms of few-shot image and sentence match-

ing. In particular, we perform the test in a k-shot matching

(k∈{0, 5, 10}) manner. On each dataset, we only select par-

tial pairs of images and sentences from the standard test set

to constitute a new k-shot test set, in which each sentence

contains at least one word whose appearing frequency in

the training set is less than or equals to k. Note the training

stage of few-shot image and sentence matching is the same

as that in the conventional matching, the only difference is

using different test sets.
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Table 2. Few-shot image and sentence matching on the Flickr30k and MSCOCO (5000 test) datasets.

k N Method

Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval
mR

Image Annotation Image Retrieval
mR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0 204/

516

VSE++ [5] 48.2 79.2 85.7 31.9 60.3 71.1 62.7 39.2 71.8 82.1 22.9 49.0 62.6 54.6

SCO [13] 48.8 77.4 85.7 31.4 58.8 71.6 62.3 40.2 71.6 81.3 24.0 49.8 63.8 55.1

SCAN [21] 54.8 86.3 91.1 35.3 59.8 71.6 66.5 40.6 73.9 85.9 25.6 49.4 60.3 55.9

GVSE [11] 62.5 86.9 92.3 46.1 73.5 82.4 73.9 47.2 76.6 88.4 31.2 61.2 70.5 62.5

ACMM 73.8 94.6 98.2 42.2 68.6 78.4 76.0 62.3 86.3 91.2 27.3 52.3 64.0 63.9

1 321/

754

VSE++ [5] 50.4 78.6 86.9 33.0 59.5 71.7 63.3 40.7 73.1 82.5 24.8 52.1 64.1 56.2

SCO [13] 50.4 78.6 88.1 33.3 59.8 70.4 63.4 41.8 72.8 82.4 24.3 51.5 64.9 56.2

SCAN [21] 56.7 86.1 90.9 37.4 59.2 72.3 67.1 42.5 74.6 86.3 26.4 50.8 61.8 57.1

GVSE [11] 62.3 88.9 92.9 46.4 73.5 83.2 74.5 49.7 77.1 88.4 32.2 63.5 72.4 63.9

ACMM 73.0 91.3 96.4 40.5 66.7 77.6 74.2 62.8 86.2 91.9 28.0 53.7 66.2 64.8

5 678/

973

VSE++ [5] 52.1 80.1 88.0 32.0 60.2 72.3 64.1 41.2 72.7 82.2 23.3 50.6 63.0 55.5

SCO [13] 52.2 80.3 88.6 33.8 60.9 71.5 64.6 40.9 71.8 81.6 25.4 52.8 65.9 56.4

SCAN [21] 62.2 87.8 93.4 37.0 64.2 74.3 69.8 42.5 74.6 86.1 25.9 50.5 62.4 57.0

GVSE [11] 63.8 90.3 94.0 45.4 75.2 85.0 75.6 50.2 78.0 88.1 31.6 63.7 73.4 64.2

ACMM 76.6 93.2 97.6 42.3 68.0 76.8 75.8 62.2 86.8 92.4 28.1 53.7 65.9 64.9

We make comparisons with three recent state-of-the-art

methods in terms of VSE++ [5], SCO [13], SCAN [21], and

GVSE [11]. For each compared method, we use its report-

ed best model, and perform test on the k-shot test sets. The

comparison results are shown in Table 2, in which N de-

notes the number of rarely appeared words in k-shot test

sets on the two datasets. We can see that in the challenging

1-shot matching, our model can greatly outperform all the

compared methods, and achieve much better performance

than the best compared SCAN by 7.1% and 7.7% (in mR)

on the two datasets, respectively. These evidences show that

our model can better recognize and associate those rarely

appeared regions and words even though they are presented

only once during training. Additionally, when N becomes

larger as k increases, our model can consistently achieve

better performance. This proves its good generalization a-

bility under various conditions.

4.5. Conventional Image and Sentence Matching

Although our model is especially motivated to deal with

the few-shot matching problem, it can be naturally applied

to the conventional image and sentence matching. We com-

pare our model with recently published methods on the stan-

dard test sets of Flickr30k and MSCOCO datasets in Tables

3 and 4. We denote “ACMM∗” as an ensemble version of

our proposed model, which averages two predicted similari-

ty matrices by setting λ=0.5 and λ=0.8 for final evaluation.

From the table we can see that our model outperforms

the current state-of-the-art models in all 7 evaluation crite-

rions on both the Flickr30k and MSCOCO datasets. It is

mainly because our memory can store useful cross-modal

shared semantic representations, and thus better associate

those rarely appeared regions and words in the standard

test sets. Note that our model shows much larger improve-

ments on the Flickr30k dataset than the MSCOCO dataset.

It mainly results from that the fewer training data of Flick-

Table 4. Conventional image and sentence matching on the M-

SCOCO (5000 test) dataset. ∗ indicates ensemble methods.

Method
Image Annotation Image Retrieval

mR
R@1 R@5 R@10 R@1 R@5 R@10

DVSA [16] 11.8 32.5 45.4 8.9 24.9 36.3 26.6

FV∗ [18] 17.3 39.0 50.2 10.8 28.3 40.1 31.0

VQA [24] 23.5 50.7 63.6 16.7 40.5 53.8 41.5

OEM [39] 23.3 50.5 65.0 18.0 43.6 57.6 43.0

CSE [50] 27.9 57.1 70.4 22.2 50.2 64.4 48.7

DPCNN [52] 41.2 70.5 81.1 25.3 53.4 66.4 56.3

VSE++ [5] 41.3 69.2 81.2 30.3 59.1 72.4 58.9

LIM∗ [10] 42.0 - 84.7 31.7 - 74.6 -

SCO [13] 42.8 72.3 83.0 33.1 62.9 75.5 61.6

SCO++ [14] 45.7 76.0 86.4 36.8 67.0 78.8 65.1

GVSE∗ [11] 49.9 77.4 87.6 38.4 68.5 79.7 66.9

SCAN∗ [21] 50.4 82.2 90.0 38.6 69.3 80.4 68.5

ACMM 63.5 88.0 93.6 36.7 65.1 76.7 70.6

ACMM∗ 66.9 89.6 94.9 39.5 69.6 81.1 73.6

r30k cannot guarantee the previous models can well recog-

nize regions and words. But our model can better exploit the

auxiliary resources to better describe them. We can see that

our model has much larger performance improvements on

the task of image annotation than image retrieval. It might

be because the image annotation focuses more on how to

learn a suitable semantic space for sentences, and the se-

mantic space is usually more discriminative than the visual

space learned by image retrieval.

4.6. Error Analysis

Although our proposed model can achieve well perfor-

mance in both few-shot and conventional image and sen-

tence matching tasks, it still has limitations on generalizing

to arbitrary complex content. To explore its capability, we

select several representative failure cases by the proposed

model in Figure 5, where the numbers in the top left corner

are returned rankings (the smaller, the better) of sentence-

based image retrieval. We can see that all their rankings
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Table 3. Conventional image and sentence matching on the Flickr30k and MSCOCO (1000 test) datasets. ∗ indicates ensemble methods.

Method

Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval
mR

Image Annotation Image Retrieval
mR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

m-RNN [29] 35.4 63.8 73.7 22.8 50.7 63.1 51.6 41.0 73.0 83.5 29.0 42.2 77.0 57.6

FV∗ [18] 35.0 62.0 73.8 25.0 52.7 66.0 52.4 39.4 67.9 80.9 25.1 59.8 76.6 58.3

DVSA [16] 22.2 48.2 61.4 15.2 37.7 50.5 39.2 38.4 69.9 80.5 27.4 60.2 74.8 58.5

MNLM [17] 23.0 50.7 62.9 16.8 42.0 56.5 42.0 43.4 75.7 85.8 31.0 66.7 79.9 63.8

m-CNN∗ [28] 33.6 64.1 74.9 26.2 56.3 69.6 54.1 42.8 73.1 84.1 32.6 68.6 82.8 64.0

RNN+FV∗ [22] 34.7 62.7 72.6 26.2 55.1 69.2 53.4 40.8 71.9 83.2 29.6 64.8 80.5 61.8

OEM [39] - - - - - - - 46.7 78.6 88.9 37.9 73.7 85.9 68.6

VQA [24] 33.9 62.5 74.5 24.9 52.6 64.8 52.2 50.5 80.1 89.7 37.0 70.9 82.9 68.5

RTP∗ [33] 37.4 63.1 74.3 26.0 56.0 69.3 54.3 - - - - - - -

DSPE [42] 40.3 68.9 79.9 29.7 60.1 72.1 58.5 50.1 79.7 89.2 39.6 75.2 86.9 70.1

sm-LSTM∗ [12] 42.5 71.9 81.5 30.2 60.4 72.3 59.8 53.2 83.1 91.5 40.7 75.8 87.4 72.0

2WayNet [4] 49.8 67.5 - 36.0 55.6 - - 55.8 75.2 - 39.7 63.3 - -

CSE [50] 44.6 74.3 83.8 36.9 69.1 79.6 64.7 56.3 84.4 92.2 45.7 81.2 90.6 75.1

RRF [25] 47.6 77.4 87.1 35.4 68.3 79.9 66.0 56.4 85.3 91.5 43.9 78.1 88.6 73.9

DAN [31] 55.0 81.8 89.0 39.4 69.2 79.1 68.9 - - - - - - -

CHAIN-VSE [46] - - - - - - - 59.4 88.0 94.2 43.5 79.8 90.2 75.9

DPCNN [52] 55.6 81.9 89.5 39.1 69.2 80.9 69.4 65.6 89.8 95.5 47.1 79.9 90.0 78.0

VSE++ [5] 52.9 79.1 87.2 39.6 69.6 79.5 68.0 64.6 89.1 95.7 52.0 83.1 92.0 79.4

LIM∗ [10] - - - - - - - 68.5 - 97.9 56.6 - 94.5 -

SCO [13] 55.5 82.0 89.3 41.1 70.5 80.1 69.7 69.9 92.9 97.5 56.7 87.5 94.8 83.2

SCO++ [14] 58.0 84.5 90.5 43.9 72.9 81.6 71.9 71.3 93.8 98.0 58.2 88.8 95.3 84.2

SCAN∗ [21] 67.4 90.3 95.8 48.6 77.7 85.2 77.5 72.7 94.8 98.4 58.8 88.4 94.8 84.7

GVSE∗ [11] 68.5 90.9 95.5 50.6 79.8 87.6 78.8 72.2 94.1 98.1 60.5 89.4 95.8 85.0

ACMM 80.0 95.5 98.2 50.2 76.8 84.7 80.9 81.9 98.0 99.3 58.2 87.3 93.9 86.4

ACMM∗ 85.2 96.7 98.4 53.8 79.8 86.8 83.5 84.1 97.8 99.4 60.7 88.7 94.9 87.6

the people are quietly

listening while the 

story of the ice cabin

was explained to them

a man wearing 

revolutionary period

clothes is ringing a bell

two women ascend a 

telephone pole with 

special boots and 

straps on their waists

battling between the 

sexes who will win

a woman acts out a 

dramatic scene in public 

behind yellow caution

tape

an oriental traveler 

awaits his turn at the 

currency exchange

fall shoppers and bistro

food lovers caught in 

the ebb and flow of the 

city

319 119 109 84 352528 75

Figure 5. Failure cases of our proposed model. Rarely appeared words are marked as red (best viewed in colors).

are very high, and some of them are even several hundreds.

We find they mostly include very complex visual content,

which are described by at least 3 few-shot words (marked

as red) in sentences. Although our model is able to ex-

tract the generic representation for each few-shot word, but

the co-occurrence of too many few-shot words might easily

confuse our model. A possible solution is to use external

knowledge bases [43, 32] to provide more useful cues to

well capture the intrinsic relation among few-shot words.

5. Conclusions and Future Work

In this work, we have proposed the Aligned Cross-Modal

Memory (ACMM) for the rarely studied scenario namely

few-shot image and sentence. The main contributions of

this work are: 1) cross-modal aligning regions to words with

a cross-modal graph convolutional network, and 2) mem-

orizing cross-modal shared semantic representations with

persistent memory items. We have comprehensively inves-

tigated the influence of different modules on the final perfor-

mance, and verified the effectiveness of our proposed model

by achieving significant performance improvements.

In the future, we will extensively study how the hyper-

parameters in the proposed model affect the final perfor-

mance, instead of simply using the default ones now.
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