
Bridging the Gap Between Detection and Tracking: A Unified Approach

Lianghua Huang1,2 Xin Zhao1,2∗ Kaiqi Huang1,2,3

1CRISE, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

3CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China

huanglianghua2017@ia.ac.cn, {xzhao, kqhuang}@nlpr.ia.ac.cn

Abstract

Object detection models have been a source of inspi-

ration for many tracking-by-detection algorithms over the

past decade. Recent deep trackers borrow designs or

modules from the latest object detection methods, such as

bounding box regression, RPN and ROI pooling, and can

deliver impressive performance. In this paper, instead of

redesigning a new tracking-by-detection algorithm, we aim

to explore a general framework for building trackers di-

rectly upon almost any advanced object detector. To achieve

this, three key gaps must be bridged: (1) Object detectors

are class-specific, while trackers are class-agnostic. (2)

Object detectors do not differentiate intra-class instances,

while this is a critical capability of a tracker. (3) Tempo-

ral cues are important for stable long-term tracking while

they are not considered in still-image detectors. To address

the above issues, we first present a simple target-guidance

module for guiding the detector to locate target-relevant ob-

jects. Then a meta-learner is adopted for the detector to fast

learn and adapt a target-distractor classifier online. We

further introduce an anchored updating strategy to allevi-

ate the problem of overfitting. The framework is instanti-

ated on SSD [40] and FasterRCNN [15], the typical one-

and two-stage detectors, respectively. Experiments on OTB,

UAV123 and NfS have verified our framework and show that

our trackers can benefit from deeper backbone networks, as

opposed to many recent trackers.

1. Introduction

Visual object tracking refers to the task of sequentially

locating a specified moving object in a video, given only

its initial state. It is currently an active research area of

computer vision and significant progresses have been made

in recent years [57, 31, 30, 12]. However, the task is still

challenging due to several factors such as object interac-

∗Corresponding author

tions, cluttered background, occlusions and target deforma-

tion [43, 24].

Accurate localization of specified objects in complex

scenes, as well as distinguishing different objects are cru-

cial for tracking, which, at the same time, are extensively

studied in the area of object detection [15, 37, 39]. In

effect, object detection algorithms have been the inspi-

ration of many popular trackers. For example, the cor-

relation filters are previously applied in object detection

(e.g., UMACE [41] and ASEF [6]) and later improved and

adapted for tracking [5, 22, 23, 9, 8]. Similar examples in-

clude the bounding box regression [13, 49] used in MD-

Net [45, 26] and GOTURN [21], structured output SVM [4]

applied in Struck [17], region proposal networks [15] used

in SiamRPN [34, 59, 32] and the precise ROI pooling [25]

used in the ATOM tracker [7], to name a few. Detection

modules may either improve the trackers in terms of higher

localization precision [13, 25] and/or better discriminability

against occlusions and background clutters [4, 6, 15].

The goal of this work is not to redesign a new detection-

based tracker. Instead, we would like to explore a sim-

ple and universal framework for building trackers upon ad-

vanced deep detectors. Our motivations for such frame-

work are three fold: 1) Detection algorithms are specialized

in precisely locating and differentiating objects in complex

scenes, which may lead to more accuracy and robust track-

ers. 2) Reusing detection models reduces duplicated works

in tracking, thus we can focus more on tracking-specific is-

sues, such as target domain adaptation and temporal depen-

dencies. 3) Such framework potentially enables multi-task

models, i.e. joint detection and tracking of visual objects,

which is close to the industry’s needs. However, developing

such a framework is not straightforward and several issues

must be addressed. First, object detection only works on

specific classes while a tracker is supposed to track arbi-

trary moving objects [30, 24]. Second, a detector cannot

differentiate intra-class instances, which is, however, a cru-

cial ability of a robust tracker. Finally, temporal cues in

videos are important for stable tracking while they are not

3999

Class

Box

Traditional Object Detection

Guided Object Detection

Exemplar image

Query image

Box mask

Exemplar Features

Query Features Modulated Features

(a) (b)

Element-wise production

Depth-wise concatenation

Figure 1: (a) The overall architecture of our tracking-by-detection framework. The architecture consists of two branches,

one for generating target features as guidance while the other is an ordinary object detector. The two branches are bridged

through a Target-Guidance Module (TGM). The blue dotted line represents traditional object detection process, while the

red arrow denotes the procedure of the proposed guided object detection. (b) The outline of TGM. The input to the module

is the exemplar and search image features and it output a modulated feature map with target information incorporated. The

follow-up detection process remains intact. Note the detection model in (a) can be replaced by almost any modern object

detectors.

considered in object detection approaches.

To address the above issues, in this work, we consider

tracking as a joint task of one-shot object detection and few-

shot instance classification. The former is a class-level sub-

task that finds all target-like candidates, while the latter is

an instance-level subtask that tells apart the target from dis-

tractors. We propose a target-guidance module for one-shot

object detection, which is built upon a base detector that

consists of a backbone network and several top layers (i.e.,

detection heads and optional proposal and ROI pooling lay-

ers). The module encodes the target and search region fea-

tures as well as their interactions in the backbone network

as a guide to focus the base detector on a small set of target-

like objects.

In the second subtask, an instance classifier will be

learned to differentiate target from detected distractors.

However, direct training of the classifier on such a small

sample set will lead to significant overfitting. In this

paper, we introduce the Model-Agnostic Meta-Learning

(MAML) [14, 1] algorithm for solving the problem of few-

shot learning. MAML learns sensitive initial parameters

that can quickly adapt to new tasks with only a few samples

and in a few training iterations. In brief, it learns to finetune.

We found the detector’s classification head to be a good ini-

tialization for the instance classifier, thus we simply replace

the head by a meta layer with identical structure, and learns

to quickly finetune it on different targets from large training

data. Note in this manner, it only takes one pass of guided-

detection to filter out both inter- and intra-class distractors.

The overall framework is outlined in Figure 1, where the

base detector can be replaced by almost any modern ob-

ject detection algorithm. In this paper, we instantiate the

framework based on SSD [40] and FasterRCNN [15], the

typical one- and two-stage detectors, respectively. The cor-

responding tracking models are shown in Figure 3 and Fig-

ure 4. For SSD, since the detection is performed on multiple

layers with different resolutions, we also insert the target-

guidance modules several times with different target reso-

lutions. Main contributions of this paper are summarized as

follows.

• To the best of our knowledge, we propose the first uni-

versal framework for building generic object trackers

upon deep learning based object detectors.

• We propose to consider tracking as a joint task of one-

shot object detection and few-shot instance classifica-

tion, and we present an efficient target-guidance mod-

ule and a meta-learner to handle respective subtasks.

• We develop a novel anchored updating strategy to

avoid model drifts during online learning.

• We test our models on OTB [57], UAV123 [42] and

NfS [28] benchmarks and report state-of-the-art track-

ing performance. Our ablation studies also show that

our approach can benefit from deeper backbone net-

works, as opposed to many recent deep trackers [3, 34].

2. Related Works

Object Detection. Object detection is the task of locat-

ing and classifying objects in an image to a set of prede-

fined classes [11, 13, 40, 15, 39]. State-of-the-art methods

are based on deep neural networks, where usually a convo-

lutional neural network (CNN) pretrained on ImageNet [10]

is employed as the backbone architecture. For one-stage de-

tectors [47, 40, 37], additional convolutional layers are ap-

pended to the backbone that perform dense prediction of ob-

ject classes and locations. For two-stage detectors [15, 19],

4000

Support image

Exemplar image

Query image

Inner Optimization Loop

Outer Optimization Loop

Back propagation

Figure 2: Overview of our training procedure. In the training stage, we sample triplets of exemplar, support and query images

from video frames. Each triplet is chronologically sampled from a same video. We take the exemplar image as the guidance

and perform detection on the support and query images. The losses calculated on the support image are used to finetune

the meta-layers (i.e., the detector’s heads) of our model, and we expect the updated model to generalize and perform well

on the query image, which is realized by backpropagating all parameters of our model based on the losses on query image.

The red arrows represent the backpropagation path during optimization. The inner optimization loop only updates head layer

parameters, while the outer optimization loop updates all parameters in the architecture.

a region proposal network (RPN) is first applied to gener-

ate class-agnostic object candidates, then each candidate

is independently cropped from feature maps and fed into

head layers to estimate its class and location. Since shal-

low and deep CNN layers bear complementary representa-

tion, i.e. location-aware and semantic features, respectively,

they are usually jointly used for detection in recent ap-

proaches [40, 37, 36]. Object detection models are trained

on large image datasets, and once trained the models can

only perform detection on specific classes. Our method, on

the other hand, generalizes the detection algorithms to any

new objects with a single-shot of annotated sample.

Tracing-by-Detection. Due to the high correlation

between the two tasks, many tracking approaches have

been motivated by object detection models over the past

few decades. They include Tracking-Learning-Detection

(TLD) [27], correlation filters based trackers [5, 22, 23,

9, 8], structured output tracking [17], siamese regression

network [21], siamese region proposal networks [34, 32]

and tracking by overlap minimization [7], to name a few.

Modules and designs in object detection algorithms are

adopted to either improve accuracy (e.g., bounding box

regression used in [21, 45, 34]) and/or enhance stability

(e.g., re-detection mechanism used in [27]) of tracking.

In this work, rather than redesigning a new tracking-by-

detection algorithm, we aim to explore the possibility of

a general framework for building trackers upon deep de-

tectors, thereby promoting module reusability and focusing

research on tracking-specific issues.

Few-shot Learning. Few-shot learning aims to learn

generic representation that can be transferred to novel tasks

with only a handful of samples. There are several paradigms

on few-shot learning, including metric learning [29, 51, 52],

network parameter prediction [55, 2], recurrent neural work

that learns gradient updates [44, 48] and learning to fine-

tune [14, 35, 1, 46]. Our work is most related to learning

to finetune based methods, i.e. the Model-Agnostic Meta

Learning (MAML) [14, 1] algorithm. MAML learns sensi-

tive initial network parameters that can be quickly finetuned

on new tasks with a few samples and in a few iterations. We

choose MAML for its simplicity, and that it can work on

different models without changing their architectures.

4001

3. Proposed Method

3.1. Overview

In this work, we propose a universal framework for

building trackers on detectors consisting of two compo-

nents: 1) A target-guidance module that leads the base de-

tector to find target-relevant objects; and 2) A few-shot in-

stance classifier that distinguishes target from surrounding

distractors. Specifically, the proposed target-guidance mod-

ule encodes target and search region features as well as their

interactions in the backbone, while keeping the remaining

detection process intact. On the other hand, the few-shot

classifier is developed based on the Model-Agnostic Meta

Learning (MAML) algorithm [14, 1]. MAML learns sensi-

tive initial parameters for fast finetuning from only a few

samples. In our case, we use the detector’s classification

head as the initial instance classifier, and learns to finetune

it on specific targets from large training data. In this man-

ner, the few-shot learning module adds no new parameters

to the detector, and during test, one pass of guided-detection

is necessary to filter out both inter-class and intra-class dis-

tractors. The overall architecture of our framework is shown

in Figure 1, while its training procedure is outlined in Fig-

ure 2.

In the training phase, we sample triplets from video

frames for model optimization. Each triplet consists of three

cropped images sampled chronologically from a video,

namely the exemplar, support and query images. The ex-

emplar image represents the target guidance, telling the de-

tector ”where to look”. The support image is used to fine-

tune the detector’s classification head, as mentioned in the

above paragraph, and we expect the updated model to per-

form well on the query image. Finetuning on the support

image is called inner optimization loop, while optimizing

on the query image is termed outer optimization loop. Since

the inner and outer optimizations are conducted on different

frames, the generalization capability is thereby enhanced

during the offline training procedure. The training process

of our model is shown in Figure 2, where the complete

framework can be trained from end to end.

The rest of this section is organized as follows. Sec-

tion 3.2 and Section 3.3 describe our target-guidance mod-

ule and few-shot learner, respectively. Section 3.4 details

the online tracking procedure, and we introduce two instan-

tiation examples of our framework based on SSD [40] and

FasterRCNN [15] in Section 3.5.

3.2. TargetGuided Object Detection

We introduce a target-guidance module for one-shot ob-

ject detection that is pluggable, in the sense that it does

not alter the overall architecture of its base detector. The

module takes as input the target and search region features,

and outputs a feature map of the same size as the detector’s

backbone. The follow-up detection procedure remains un-

changed. Specifically, the module first performs ROI pool-

ing on target features, followed by a convolutional layer to

convert the output to a modulator of size C × 1× 1, where

C is the number of feature channels; then the modulator is

used to re-weight the feature channels of the search image.

Afterwards, the original and modulated search region fea-

tures, as well as the upsampled target global representation,

are concatenated and then fed into a 1 × 1 convolutional

layer to merge the features. In this manner, the backbone

network encodes both the target and search region features

as well as their interactions, providing sufficient informa-

tion for subsequent detection. The structure of the module

is shown in Figure 1 (b).

We adopt the same loss functions as the base detector,

i.e., cross entropy loss for classification and smooth l1 loss

for bounding box regression [40, 15]. The losses are com-

puted on the outputs of the RPN (for one- and two- stage

detectors) and optional ROI layers (for two-stage detectors).

We use Online Hard Negatives Mining (OHNM) [40, 15] to

accelerate training and improve performance. Note for two-

stage detectors, since we emphasize more on recall in RPN

stage and delay the discrimination to ROI layers, we use

3 : 1 as the positive-negative weights when calculating the

classification loss of RPN.

3.3. FewShot Learning for Domain Adaptation

While the target-guidance module proposed in Sec-

tion 3.2 can focus the detector on target-relevant objects, we

found in our early experiments that it remains difficult for

the module to distinguish between these detected objects.

We hypothesis the main reason to be that the surrounding

negatives are not considered in the guidance, thus weaken-

ing the discriminability of the detector. To compensate for

this, we propose to explicitly learn a classifier on the small

set of samples. However, directly training on such small

data from scratch is time-consuming and can lead to se-

vere overfitting. Instead, in this work, we solve the problem

using few-shot learning [14, 35, 29], which aims to learn

transferrable knowledge from large training data that can be

generalized to new tasks with only a handful of samples.

Specifically, we adopt the Model-Agnostic Meta Learn-

ing (MAML) algorithm [14] to train the target-distractor

classifier. MAML learns network initialization that can be

quickly finetuned on new, unseen tasks with a few train-

ing samples and in a few iterations. In brief, it learns to

finetune. Specific to our model, we found the detector’s

classification head to be a good initialization for the target-

distractor classifier, thus we replace the head layer with an

identical meta layer, and learns to finetune it on specific

targets from large training data. Formally, in the training

stage, we sample triplets {zb, sb, qb}
B
b=1 from video frames,

where B is the batch size, zb, sb, qb represent three cropped

4002

L1 L2 L3

D
e

te
ct

io
n

 R
e

su
lt

s

38

38

512

19

19

1024

19

19

1024

10

10

512

VGG-16

300

300

60

60

120

120

222

222

Extra feature layer

Query image

Exemplar images

Figure 3: Instantiation of our framework on SSD [40]. We employ SSD with VGG-16 [50] as the backbone. The original

SSD performs object detection on 6 different convolutional layers with increased receptive fields, with each being responsible

for specific sized objects. In our work, we only use its first 3 backbone layers, denoting as L1, L2 and L3 in the figure. The

target-guidance modules are appended to each layer, with increased guidance image resolutions that are consistent with the

receptive fields. Operators ϕ1, ϕ2 and ϕ3 represent extracting features at L1, L2 and L3 layers.

images sampled chronologically from a video, namely the

exemplar, support and query images. For the guided detec-

tor hθ with meta-parameter θ, we expect to learn an initial

θ = θ0 such that, after N steps of gradient update on sup-

port set (zb, sb) to obtain θN , the detector performs well on

query set (zb, qb). The ith gradient update step on (zb, sb)
can be expressed as:

θbi = θbi−1 − α∇θL(zb,sb)(hθb

i−1
), (1)

where α denotes the learning rate and L(zb,sb)(hθb

i−1
) is the

loss computed on support set (zb, sb) after (i − 1) steps of

gradient update. In our case, L(zb,sb) is the classification

loss. We can then define the meta-loss as:

Lmeta(θ0) =

B∑

i=1

L(zb,qb)(hθb

N
(θ0)), (2)

where we have explicitly denoted the dependence of θbN on

θ0. Lmeta(θ0) measures the quality of θ0 in terms of the

total loss of using the initialization across all triplets in the

batch. The resulting update for the meta-parameter θ0 can

be expressed as:

θ0 = θ0 − β∇θ

B∑

b=1

L(zb,qb)(hθb

N
(θ0)), (3)

where β denotes the learning rate for θ0 and L(zb,qb) is the

loss on query set (zb, qb). We refer to Eq. (1) as the inner

optimization loop while Eq. (3) as the outer optimization

loop. Since finetuning and loss evaluation are conducted on

different samples (support and query sets, respectively), the

generalization ability of the finetuning is thereby ensured.

An overview of the training procedure is shown in Fig-

ure 2. We found in our experiments that, finetuning both

classification and regression heads during tracking leads to

better performance than adjusting the classification head

along, while only slighly increasing the computational

costs. Section 4.2 offers detailed quantitative analysis. In

this case, the θ0 in the above formulation represents the pa-

rameters of the detector’s head layers. We directly employ

the detector’s loss for optimizing θ0. Since these settings

are directly compatible with most base detectors, the com-

plete framework can be trained from end to end, where only

θ0 is updated during both inner and outer optimization loops

while other parameters of the detector are only updated dur-

ing outer optimization loop.

3.4. Online Tracking Approach

Online Learning. During tracking, we adopt the few-shot

learning algorithm described in Section 3.3 to adapt the

guided detection model online. Specifically, the head pa-

rameters of the detector is updated using Eq. (1) at the first

frame as well as for every T frames with online collected

samples. Since the few-shot learner has learned fast conver-

gence from a little data, the finetuning is efficient. At the

first frame, we use random horizontal flipping and random

cropping to generate 16 training samples, and finetune the

detector’s heads with N1 = 5 training iterations. For other

frames, the training samples are collected one per frame,

and during updating, we use Nr = 1 training iterations to

adjust the model.

4003

RoIAlign
class

box

Exemplar image

Query image

Figure 4: Instantiation of our framework on FasterRCNN [15]. The exemplar and query images are fed into the backbone

and bridged using the target-guidance module, while the subsequent region proposal and RoI classification and regression

procedure is kept unchanged. We evaluate the model with either VGG [50] or ResNet [20] as the backbone.

Anchored Updating. Although a smaller Nr is set for on-

line updating, there is still a risk of overfitting since the gen-

eralization capability of continuous learning is never en-

sured during the offline training stage of the meta-learner.

We thereby introduce an anchored updating strategy to al-

leviate the overfitting, motivated by the anchor loss [33].

Specifically, the parameters learned at the first frame, i.e.,

θ1 = f(θ0; z1, s1) where f(θ; z, s) = θ − α∇θL(z,s)(hθ),
are stored throughout the tracking procedure. When fine-

tuning at step t, the updated parameters θt is defined as a

composition of updates from the last checkponit θt−1 as

well as from the initial parameters θ0:

θt = λf(θ0; zt, st) + (1− λ)f(θt−1; zt, st). (4)

We call θ0 the anchor parameters. Through Eq. 4, the an-

chor parameters have fixed weight during online optimiza-

tion, thus the overfitting problem can be alleviated.

Target Localization. We search the target location using

the detection outputs. Specifically, with the detection re-

sults before non-maximum suppression (NMS), we cast pe-

nalization on position changes with a cosine window, and on

scale and aspect ratio changes with a unnormalized Laplace

function [34]:

psr = e−
|dr+ds−1|

σ , (5)

where dr and ds represent aspect ratio and scale changes,

while σ is a scaling factor setting to 0.55 in our experi-

ments. We rank the detections based on their re-weighted

scores, and find the best detection result B∗. The target

center is updated as the center of B∗, while the target size

is smoothly updated to B∗ with a learning rate of 0.275.

3.5. Instatiation on SSD and FasterRCNN

While our modules are universal and applicable to dif-

ferent object detectors, in this paper, we instantiate our

framework on typical object detection models: SSD [40]

and FasterRCNN [15]. SSD is a one-stage object detector

that utilizes a single fully convolutional network to predict

objects’ classes and bounding boxes at dense spatial loca-

tions. By contrast, FasterRCNN is a two-stage object detec-

tor. It first generates class-agnostic object proposals using

a region proposal network (RPN), then these proposals are

accurately cropped from feature maps and fed to another

network to predict their classes and refined locations.

Our tracker based on SSD is outlined in Figure 3. We use

VGG-16 [50] as the backbone. The original SSD detects ob-

jects at 6 different backbone layers with increased receptive

fields, with each being responsible for detecting objects of a

specific range of sizes. In this work, we only use the first 3

backbone layers, with the base object sizes ranging from 30,

60 to 111 pixels. We crop the exemplar image as a square

with twice size of the target, in order to introduce context

information. Then we rescale it to three different resolu-

tions, i.e., 60 × 60, 120 × 120 and 222 × 222 according

to the base sizes of SSD. The resized exemplar images are

served as the detector’s guidance at different backbone lay-

ers. The search region is set to 5 times the target size and is

resized to 300×300. We use three target-guidance modules

to bridge the exemplars and the detector at multiple layers.

During the inner optimization loop (See Section 3.3), only

the detector’s head layer parameters are updated.

The FasterRCNN based tracker is shown in Figure 4.

Unless specified in the ablation study, we use ResNet-

50 [20] as its backbone. The search region is 5 times the

target size and is rescaled to 480 × 480. The exemplar im-

age is of twice the target size, and is rescaled to 192× 192.

The target-guidance module takes the exemplar and search

region features as input and output a feature map with the

same size as FasterRCNN’s backbone network. The rest

detection procedure remains unchanged. During inner op-

timization loop, only the parameters of RoI head layers are

4004

Table 1: Impact of each component in our method on

the tracking performance on OTB-2013 dataset. We

compare few-shot learning with brute-force gradient de-

scent, and assess the effectiveness of the anchored updat-

ing scheme, finetuning bounding box regression head and

multi-resolution guidance images.

Baseline

(SSD)
GD

No Anch.

Updating

No Reg.

Finetuning

No Multi-

Res.

AUC 0.637 0.551 0.612 0.609 0.629

OP 0.813 0.698 0.780 0.773 0.807

Table 2: Impact of backbone networks on tracking perfor-

mance, evaluated on OTB-2013. The results show that our

tracking performance improves as the network gets deeper

from VGG-16 to ResNet-50, while further increasing net-

work depth by using ResNet-101 does not bring improve-

ments.

VGG-16 ResNet-34 ResNet-50 ResNet-101

AUC 0.639 0.647 0.656 0.642

OP 0.793 0.810 0.829 0.825

finetuned.

4. Experiments

We conduct a comprehensive evaluation of the pro-

posed tracking framework on four challenging datasets: Ob-

ject Tracking Benchmark (OTB) of version 2013 [56] and

2015 [57], UAV123 [42] and Need for Speed (NfS) [28].

We also carry out experiments to analyze the effectiveness

of our components, as well as the impact of network depth

on tracking performance.

4.1. Implementation Details

Training. The base detection models are initialized with the

weights pretrained on COCO dataset [38]. We then train our

guided models using the GOT-10k [24] dataset, which is a

recently proposed tracking dataset that consists of around

10,000 videos belonging to over 560 object classes.

Optimization. We employ stochastic gradient descent

(SGD) with 32 triplets in a batch to train our models. The

whole architecture is trained from end-to-end for 50,000 it-

erations with learning rate exponentially decayed from 0.01

to 0.0005. The learning rate of the inner optimization loop

in Eq. (1) is fixed to α = 0.05. We use 5× 10−4 for weight

decay and 0.9 for momentum. Our tracker is implemented

in Python, using PyTorch. Our SSD based tracker runs

at over 10 fps on an NVIDIA GTX-1080 GPU, while the

FasterRCNN based tracker with ResNet-50 backbone runs

at 3 fps.

Table 3: State-of-the-art comparison on OTB-2013 and

OTB-2015 datasets in terms of the area-under-the-curve

(AUC) metric.

OTB-2013 OTB-2015

SiamFC [3] 0.607 0.582

CFNet [53] 0.611 0.568

DSiam [16] 0.656 -

RASNet [54] 0.670 0.642

SiamRPN [34] - 0.637

DaSiamRPN [59] - 0.658

SA-Siam [18] 0.677 0.657

ECO [8] 0.709 0.694

MemTrack [58] 0.642 0.626

Ours (SSD) 0.637 0.620

Ours (FRCNN) 0.656 0.647

Table 4: State-of-the-art comparison on UAV123 and NfS

datasets in terms of the area-under-the-curve (AUC) metric.

UAV123 NfS

SiamFC [3] 0.523 -

SiamRPN [34] 0.571 -

DaSiamRPN [59] 0.584 0.395

ECO [8] 0.537 0.470

Ours (SSD) 0.531 0.491

Ours (FRCNN) 0.586 0.515

4.2. Ablation Study

We study the impact of various design choices presented

in Section 3. The analysis is performed on OTB-2013 [56]

dataset, which consists of 51 tracking videos. We evalu-

ate the trackers based on overlap precision (OP) and area-

under-the-curve (AUC) metrics. OPτ is defined as the per-

centage of successfully tracked frames with bounding box

overlap larger than a threshold τ , while AUC is defined as

AUC =
∫ 1

0
OPudu. We use τ = 0.5 for OP in the following

evaluation.

Few-shot Learning. We compare our few-shot learning al-

gorithm, introduced in Section 3.3, with a brute force gra-

dient descent (GD) method for model finetuning. For GD,

we test with different iterations and learning rates on a vali-

dation set of 10 videos sampled from OTB-2015, which are

not overlapped with OTB-2013, and find the best setting

with the highest AUC for evaluation. Table 1 lists the re-

sults. The tracker employing GD decreases the AUC score

by 8.6% compared to our baseline. This demonstrates the

effectiveness of our learned finetuning, which generalizes

better than the brute-force GD. We can also conclude from

Table 1 that updating both classification and bounding box

regression layers lead to better performance, compared to

finetuning the classification head along.

4005

Anchored Updating. We compare the tracker with and

without anchored updating. Table 1 shows that introduc-

ing anchored updating significantly improves the AUC of

our tracker by around 2.5% and OP by 3.3%, which verifies

the effectiveness of our anchored updating mechanism.

Guidance Images. When object detection is performed on

multiple backbone layers with different resolutions, as in

SSD[40], we append our target-guidance module to each of

the layer. We compare the performance of using multiple

sized guidance images, that are consistent with the layers’

receptive fields, with that using same sized guidance image

across all layers. The performance comparison is shown in

Table 1. By comparing the baseline results with No. Multi-

Res., we found that using different exemplar sizes improves

performance in terms of both AUC and OP.

Backbone Network Depth. We test our FasterRCNN

based tracker with different backbone networks that are in-

creasingly deeper. Four backbones are evaluated, including

VGG-16 [50], ResNet-34, ResNet-50 and ResNet-101 [20].

We re-train the trackers with different backbones, and eval-

uate the performance on OTB-2013. Results are listed in Ta-

ble 2. Our tracker equipped with ResNet-50 backbone per-

forms significantly better than the VGG-16 and ResNet-34

counterparts, although going deeper to ResNet-101 does not

bring further improvement. This suggests that our model

can benefit from deeper network, which is opposed to many

recent deep trackers [8, 3, 34] where introducing deeper net-

work leads to similar or even worse performance.

4.3. Stateoftheart Comparison

We summarize the comparison of our trackers, equipped

with SSD and FasterRCNN (denote as FRCNN in Table 3

and Table 4) detectors, with the state-of-the-art approaches

on four challenging tracking datasets.

OTB2013 [56]: The dataset consists of 51 videos and

the performance is evaluated using AUC (introduced in Sec-

tion 4.2). Table 3 shows the results. SiamFC employs a

siamese fully convolutional network to perform dense com-

parison between target and candidates, while SiamRPN ex-

tends it with dense bounding box regression. SA-Siam is

a two branch SiamFC that introduces the semantic feature

branch. DSiam and RASNet extend SiamFC with dynamic

updating scheme and attention modules, while CFNet com-

bines the siamese structure with correlation filters. ECO

is a correlation filters based tracker that utilizes multi-level

features and compact filters, while MemTrack performs on-

line learning based on long-short term memory networks.

Our FasterRCNN based tracker achieves an AUC of 65.6%,

which is on par with RASNet (67%) and DSiam (65.6%),

while outperforms MemTrack and SiamFC.

OTB2015 [57]: OTB2015 is an extension of OTB2013

and it contains 100 tracking videos. The comparison of

state-of-the-art trackers on OTB2015 is listed in Table 3.

Our FasterRCNN based tracker achieves an AUC of 64.7%,

which outperforms SiamRPN by around 1% and MemTrack

by around 2.1%. The SSD based method also achieves

a comparable performance that is close to the MemTrack.

The competitive performance of our trackers on OTB2013

and OTB2015 benchmarks have verified the effectiveness

of our framework.

UAV123 [42]: The dataset consists of 123 aerial videos

captured from the UAV platform. Table 4 shows the re-

sults. The DaSiamRPN tracker achieves a competitive AUC

score of 58.4% that improves SiamRPN by around 1.3%.

Our FasterRCNN based tracker achieves an AUC of 58.6%,

which outperforms DaSiamRPN. Our SSD tracker can also

obtain an AUC score of 53.1% that is close to the perfor-

mance of the more complex ECO tracker.

Need for Speed [28]: The dataset consists of 100 videos

captured with high frame-rate cameras. We evaluate the per-

formance on its 30 FPS version. The results are shown in

Table 4. ECO and DaSiamRPN achieve AUC of 39.5% and

47%, respectively, while our trackers significantly outper-

forms them. Our SSD based tracker obtains an absolution

gain on AUC by 2.1%, while the FasterRCNN based tracker

improves ECO by 4.5%.

5. Conclusion

We propose the first universal framework for construct-

ing generic object trackers upon deep learning based object

detectors. The tracking problem is decomposed into a joint

task of one-shot object detection and few-shot instance clas-

sification. We introduce a light-weighted target-guidance

module for one-shot object detection, which encodes tar-

get features in the detector’s backbone while keeping the

follow-up detection stages intact. For the second subtask,

we employ a meta-learning algorithm to learn fast conver-

gence of the classifier on a little data. The framework aims

to promote module reusability and focusing the research on

tracking-specific issues. Our models instantiated on SSD

and FasterRCNN show the state-of-the-art performance on

four challenging benchmarks. We further show in our ab-

lation study that our FasterRCNN based tracker can benefit

from deeper backbones.

Acknowledgement

This work is supported in part by the National Natural

Science Foundation of China (Grant No. 61602485 and

No. 61673375), the National Key Research and Develop-

ment Program of China (Grant No. 2016YFB1001005),

and the Projects of Chinese Academy of Science (Grant No.

QYZDB-SSW-JSC006).

4006

References

[1] Antreas Antoniou, Harrison Edwards, and Amos Storkey.

How to train your maml. arXiv preprint arXiv:1810.09502,

2018.

[2] Luca Bertinetto, João F Henriques, Jack Valmadre, Philip

Torr, and Andrea Vedaldi. Learning feed-forward one-shot

learners. In Advances in Neural Information Processing Sys-

tems, pages 523–531, 2016.

[3] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In European conference on

computer vision, pages 850–865. Springer, 2016.

[4] Matthew B Blaschko and Christoph H Lampert. Learning to

localize objects with structured output regression. In Euro-

pean conference on computer vision, pages 2–15. Springer,

2008.

[5] David S Bolme, J Ross Beveridge, Bruce A Draper, and

Yui Man Lui. Visual object tracking using adaptive corre-

lation filters. In 2010 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 2544–

2550. IEEE, 2010.

[6] David S Bolme, Bruce A Draper, and J Ross Beveridge. Av-

erage of synthetic exact filters. In 2009 IEEE Conference

on Computer Vision and Pattern Recognition, pages 2105–

2112. IEEE, 2009.

[7] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Atom: Accurate tracking by overlap max-

imization. arXiv preprint arXiv:1811.07628, 2018.

[8] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Eco: Efficient convolution operators for

tracking. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 6638–6646,

2017.

[9] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,

and Michael Felsberg. Beyond correlation filters: Learn-

ing continuous convolution operators for visual tracking. In

European Conference on Computer Vision, pages 472–488.

Springer, 2016.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010.

[12] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

Lasot: A high-quality benchmark for large-scale single ob-

ject tracking. arXiv preprint arXiv:1809.07845, 2018.

[13] Pedro F Felzenszwalb, Ross B Girshick, David McAllester,

and Deva Ramanan. Object detection with discriminatively

trained part-based models. IEEE transactions on pattern

analysis and machine intelligence, 32(9):1627–1645, 2010.

[14] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In Proceedings of the 34th International Conference on Ma-

chine Learning-Volume 70, pages 1126–1135. JMLR. org,

2017.

[15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015.

[16] Qing Guo, Feng Wei, Ce Zhou, Huang Rui, and Wang Song.

Learning dynamic siamese network for visual object track-

ing. In IEEE International Conference on Computer Vision,

2017.

[17] Sam Hare, Stuart Golodetz, Amir Saffari, Vibhav Vineet,

Ming-Ming Cheng, Stephen L Hicks, and Philip HS Torr.

Struck: Structured output tracking with kernels. IEEE

transactions on pattern analysis and machine intelligence,

38(10):2096–2109, 2016.

[18] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A

twofold siamese network for real-time object tracking. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4834–4843, 2018.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[21] David Held, Sebastian Thrun, and Silvio Savarese. Learn-

ing to track at 100 fps with deep regression networks. In

European Conference on Computer Vision, pages 749–765.

Springer, 2016.

[22] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. Exploiting the circulant structure of tracking-by-

detection with kernels. In European conference on computer

vision, pages 702–715. Springer, 2012.

[23] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. High-speed tracking with kernelized correlation fil-

ters. IEEE transactions on pattern analysis and machine in-

telligence, 37(3):583–596, 2015.

[24] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A

large high-diversity benchmark for generic object tracking in

the wild. arXiv preprint arXiv:1810.11981, 2018.

[25] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yun-

ing Jiang. Acquisition of localization confidence for accurate

object detection. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 784–799, 2018.

[26] Ilchae Jung, Jeany Son, Mooyeol Baek, and Bohyung Han.

Real-time mdnet. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 83–98, 2018.

[27] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.

Tracking-learning-detection. IEEE transactions on pattern

analysis and machine intelligence, 34(7):1409–1422, 2012.

[28] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva

Ramanan, and Simon Lucey. Need for speed: A benchmark

for higher frame rate object tracking. In Proceedings of the

IEEE International Conference on Computer Vision, pages

1125–1134, 2017.

4007

[29] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

Siamese neural networks for one-shot image recognition. In

ICML Deep Learning Workshop, volume 2, 2015.

[30] Matej Kristan and et. al. Leonardis, Ales. The sixth visual

object tracking vot2018 challenge results. In European Con-

ference on Computer Vision, pages 3–53. Springer, 2018.

[31] Matej Kristan, Jiri Matas, Ales Leonardis, Michael Fels-

berg, Luka Cehovin, Gustavo Fernandez, Tomas Vojir, Gus-

tav Hager, Georg Nebehay, and Roman Pflugfelder. The vi-

sual object tracking vot2015 challenge results. In Proceed-

ings of the IEEE international conference on computer vision

workshops, pages 1–23, 2015.

[32] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang

Xing, and Junjie Yan. Siamrpn++: Evolution of siamese

visual tracking with very deep networks. arXiv preprint

arXiv:1812.11703, 2018.

[33] Bi Li, Wenxuan Xie, Wenjun Zeng, and Wenyu Liu. Learn-

ing to update for object tracking with recurrent meta-learner.

IEEE Transactions on Image Processing, 2019.

[34] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8971–

8980, 2018.

[35] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-

sgd: Learning to learn quickly for few-shot learning. arXiv

preprint arXiv:1707.09835, 2017.

[36] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2117–2125, 2017.

[37] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2980–2988, 2017.

[38] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.

[39] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie

Chen, Xinwang Liu, and Matti Pietikäinen. Deep learn-

ing for generic object detection: A survey. arXiv preprint

arXiv:1809.02165, 2018.

[40] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016.

[41] Abhijit Mahalanobis, BVK Vijaya Kumar, Sewoong Song,

SRF Sims, and JF Epperson. Unconstrained correlation fil-

ters. Applied Optics, 33(17):3751–3759, 1994.

[42] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

benchmark and simulator for uav tracking. In European con-

ference on computer vision, pages 445–461. Springer, 2016.

[43] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-

subaihi, and Bernard Ghanem. Trackingnet: A large-scale

dataset and benchmark for object tracking in the wild. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 300–317, 2018.

[44] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In

Proceedings of the 34th International Conference on Ma-

chine Learning-Volume 70, pages 2554–2563. JMLR. org,

2017.

[45] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4293–4302, 2016.

[46] Sachin Ravi and Hugo Larochelle. Optimization as a model

for few-shot learning. 2016.

[47] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016.

[48] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan

Wierstra, and Timothy Lillicrap. Meta-learning with

memory-augmented neural networks. In International con-

ference on machine learning, pages 1842–1850, 2016.

[49] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Math-

ieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated

recognition, localization and detection using convolutional

networks. arXiv preprint arXiv:1312.6229, 2013.

[50] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[51] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-

cal networks for few-shot learning. In Advances in Neural

Information Processing Systems, pages 4077–4087, 2017.

[52] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS

Torr, and Timothy M Hospedales. Learning to compare: Re-

lation network for few-shot learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1199–1208, 2018.

[53] Jack Valmadre, Luca Bertinetto, João Henriques, Andrea

Vedaldi, and Philip HS Torr. End-to-end representation

learning for correlation filter based tracking. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2805–2813, 2017.

[54] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weim-

ing Hu, and Stephen Maybank. Learning attentions: resid-

ual attentional siamese network for high performance on-

line visual tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4854–

4863, 2018.

[55] Yu-Xiong Wang and Martial Hebert. Learning to learn:

Model regression networks for easy small sample learning.

In European Conference on Computer Vision, pages 616–

634. Springer, 2016.

[56] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object

tracking: A benchmark. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2411–2418, 2013.

[57] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(9):1834–1848, 2015.

4008

[58] Tianyu Yang and Antoni B. Chan. Learning dynamic mem-

ory networks for object tracking. 2018.

[59] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and

Weiming Hu. Distractor-aware siamese networks for visual

object tracking. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 101–117, 2018.

4009

