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Abstract

Establishing semantic correspondence is a core problem

in computer vision and remains challenging due to large

intra-class variations and lack of annotated data. In this

paper, we aim to incorporate global semantic context in a

flexible manner to overcome the limitations of prior work

that relies on local semantic representations. To this end,

we first propose a context-aware semantic representation

that incorporates spatial layout for robust matching against

local ambiguities. We then develop a novel dynamic fu-

sion strategy based on attention mechanism to weave the

advantages of both local and context features by integrat-

ing semantic cues from multiple scales. We instantiate our

strategy by designing an end-to-end learnable deep net-

work, named as Dynamic Context Correspondence Network

(DCCNet). To train the network, we adopt a multi-auxiliary

task loss to improve the efficiency of our weakly-supervised

learning procedure. Our approach achieves superior or

competitive performance over previous methods on several

challenging datasets, including PF-Pascal, PF-Willow, and

TSS, demonstrating its effectiveness and generality.

1. Introduction

Estimating dense correspondence across related images

is a fundamental task in computer vision [33, 13, 15]. While

early works have focused on correspondence between im-

ages depicting the same object or scene, semantic alignment

aims to find dense correspondence between different objects

belonging to the same category [25]. Such semantic corre-

spondence has attracted much attention recently [10, 31, 18]

due to its potential use in a broad range of real-world ap-

plications such as image editing [7], co-segmentation [35],

3D reconstruction and scene recognition [1, 27]. However,

this task remains extremely challenging because of large

intra-class variations, viewpoint changes, background clut-

ters and lack of data with dense annotation [30, 31].

There has been tremendous progress in semantic corre-

spondence recently, thanks to learned feature representa-

tions based on convolutional neural networks (CNNs) and

the adoption of weak supervision strategy in network train-

Figure 1. Given a point in the source image (blue dots in column

1), our goal is to match the corresponding point (red squares in col-

umn 2) in the target image. The values of correlation score maps

(column 3) indicate the likelihood of the corresponding point lo-

cating at each location in the target image. Our model (row 2)

predicts correspondence with higher precision than the baseline

model [32] (row 1), demonstrating its robustness despite the repet-

itive patterns (blue dots in column 2).

ing [32, 31, 30, 18, 23, 19]. Most existing approaches

learn a convolutional feature embedding so that similar im-

age patches are mapped close to each other in the feature

space, and use nearest neighbor search or geometric mod-

els for correspondence estimation [30, 31, 18, 23]. In order

to achieve localization precision and robustness against de-

formations, such feature representations typically capture

local image patterns which are insufficient to encode global

semantic cues. Consequently, they are particularly sensitive

to large intra-class variations and the presence of repetitive

patterns. While recent efforts [19, 32] introduce local neigh-

borhood cues to improve the matching quality, their effec-

tiveness is limited by the local operations and short-range

context.

In this work, we aim to address the aforementioned lim-

itations by incorporating global context information and a

fusion mechanism that weaves the advantages of both lo-

cal and spatial features for accurate semantic matching, as

shown in Fig. 1. To this end, we first introduce a context-

aware semantic representation that integrates appearance

features with a self-similarity pattern descriptor, which en-

ables us to capture global semantic context with spatial lay-
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out cues. In addition, we propose a pixel-wise attention

mechanism that dynamically combines correlation maps de-

rived from local features and context-aware semantic fea-

tures. The key idea of our approach is to reduce matching

ambiguities and to improve localization accuracy simulta-

neously by the dynamic blending of information from mul-

tiple spatial scales.

Concretely, we develop a novel Dynamic Context Cor-

respondence Network (DCCNet), which consists of three

main modules: a spatial context network, a correlation net-

work and an attention fusion network. Given an input image

pair, we first compute their convolutional (conv) features us-

ing a backbone CNN (e.g., ResNet [12]). The conv features

are fed into our first module, the spatial context network,

which computes the context-aware semantic features that

are robust against repetitive patterns and ambiguous match-

ing. Our second module, the correlation network, has two

shared branches that generates two correlation score maps

for the context-aware semantic and the original conv fea-

tures respectively. The third module, attention fusion net,

predicts a pixel-wise weight mask to fuse two correlation

score maps for final correspondence prediction. Our net-

work is fully differentiable and is trained with a weakly-

supervised strategy in an end-to-end manner. To improve

the training efficiency, we propose a new hybrid loss with

multiple auxiliary tasks.

We evaluate our method by extensive experiments on

three public benchmarks, including PF-Willow [8], PF-

PASCAL [9] and TSS datasets [35]. The experimental

results demonstrate the strong performance of our model,

which outperforms the prior state-of-the-art approaches in

most cases. We also conduct a detailed ablation study to

illustrate the benefits of our proposed modules.

The main contributions of this work can be summarized

as follows:

• We propose a context-aware semantic representation

to generate robust matching against repetitive patterns

and local ambiguities in the semantic correspondence

problem.

• We develop a novel dynamic fusion strategy based on

an attention mechanism to integrate multiple levels of

feature representation. To the best of our knowledge,

we are the first to adaptively combine context spatial

information with local appearance in the semantic cor-

respondence task.

• We design a multi-auxiliary task loss to regularize the

training process for weakly-supervised semantic cor-

respondence task and achieve superior or competitive

performance on public benchmarks.

2. Related Work

Semantic Correspondence Traditional methods of se-

mantic matching mostly utilize hand-crafted features to find

similar image patches with additional spatial smoothness

constraints in their alignment models [25, 36, 35]. SIFT

Flow [25] extends classical optical flow to establish corre-

spondences across similar scenes using dense SIFT descrip-

tors. Taniai et al. [35] adopt HOG descriptors to jointly per-

form co-segmentation and dense alignment. Due to lack of

semantics in feature representations, those approaches often

suffer from inaccurate matching when facing large appear-

ance changes from intra-class variations.

Recently, CNNs have been successfully applied to se-

mantic matching thanks to their learned feature representa-

tions, which are more robust to appearance or shape varia-

tions. Early attempts [28, 19] employ learnable feature de-

scriptors with hand-drafted alignment models, while other

approaches [10, 19] requires external modules to gener-

ate object proposals for feature extraction, all of which are

hence not end-to-end trainable. More recent work tends to

use fully trainable network to learn the feature and align-

ment jointly. Rocco et al. [30] proposes a network architec-

ture for geometric matching using a self-supervised strat-

egy from synthetic images, and further improves it with

weakly-supervised learning in [31]. The follow-up work

extends this strategy in several directions by improving

the global transformation model [14], developing cycle-

consistency loss [5], estimating locally-varying geometric

fields [18, 16], or exploiting neighborhood consensus to

produce consistent flow [32]. However, most CNN-based

approaches rely on dense matching of conv features, which

are incapable of encoding global context [26, 3].

Spatial Context in Correspondence Spatial context has

been explored for semantic matching in the literature be-

fore deep learning era. Particularly, Irani et al. propose

the Local Self Similarity (LSS) descriptor [34] to capture

self-similarity structure, which has been extended to deep

learning based correspondence estimation [21, 22]. More

recent work, FCSS [19] and its extension [23], reformulate

LSS as a CNN module, computing local self-similarity with

learned sparse sampling pattern in object proposals. In con-

trast, our method exploits a larger spatial context and com-

putes a dense self-similarity descriptor, which is more ro-

bust against repetitive patterns and encodes richer context.

We also combine this descriptor with local conv features,

further improving the discriminative capability of our fea-

ture and stabilizing training.

Dynamic Fusion Attention mechanism has been widely

used in computer vision tasks to focus on relevant infor-

mation. For instance, attention-based dynamic fusion is

adopted for confidence measure in stereo matching [17]. In

semantic segmentation, Chen et al. [4] propose an attention

mechanism that learns to fuse multi-scale features at each

pixel location. In semantic correspondence, recent meth-

ods design attention modules for suppressing background
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Figure 2. Overview of DCCNet. Our proposed DCCNet consists of three main modules: a spatial context encoder, a correlaton network

and a dynamic fusion network, which are used to produce a fused correlation map.

regions in images [5, 14]. By contrast, our work addresses

the challenge of integrating local and context cues in se-

mantic matching, for which, to the best of our knowledge,

dynamic fusion has not been explored before.

3. Method

We now describe our method for estimating a robust

and accurate semantic correspondence between two images.

Our goal is to seek a flexible feature representation that en-

ables us to capture global semantic contexts as well as infor-

mative local features. To this end, we introduce a learnable

context-aware semantic representation that augments each

local convolutional feature with a global context descriptor.

Such a context-aware feature is integrated into the correla-

tion computation by a dynamic fusion mechanism, which

combines correlation scores from the context-aware feature

and the local conv feature in a selective manner to generate

high-quality matching predictions.

Below we start a brief introduction to the semantic cor-

respondence task and an overview of our framework in

Sec. 3.1. We then present our proposed context-aware se-

mantic feature and its encoder network in Sec. 3.2, followed

by a dynamic fusion module in Sec. 3.4. Finally, we de-

scribe our multi-auxiliary task loss in Sec. 3.5.

3.1. Problem Setting and Overview

Given an input image pair (Ia, Ib), the goal of seman-

tic alignment is to estimate a dense correspondence be-

tween pixels in two images. A common strategy is to infer

the correspondence from a correlation map CI , which de-

scribes the matching similarities between any two locations

from different images. Formally, let Ia ∈ R
3×ha×wa

, Ib ∈

R
3×hb×wb

, where ha, hb and wa, wb are the height and

width of those two images, respectively. The correlation

map is denoted as CI ∈ R
ha×wa×hb×wb

and CI
(i,j,m,n) =

f(Ia(i,j), I
b
(m,n)) where f is a similarity function. To achieve

point-to-point spatial correspondence between two images,

we can perform a hard assignment in either of two possible

directions, from Ia to Ib, or vice versa (cf. [32]). Specifi-

cally, we have the following mapping from a to b:

Ia(i,j) correspond to a given Ib(m,n)

⇔ (i, j) = argmax
1≤i′≤ha,1≤j′≤wa

CI
(i′,j′,m,n) (1)

By doing so, we convert the semantic correspondence prob-

lem to a correlation map prediction task, in which our goal

is to find a functional mapping from the image pair to an op-

timal correlation map that generates the accurate pixel-wise

correspondences.

A typical deep learning based approach aims to build a

high-quality correlation map based on learned feature rep-

resentation. Formally, we first compute the conv features of

the images Ia, Ib by an embedding network, which is pre-

trained on a large dataset (e.g., ImageNet). Denoting the

embedding network as F , we generate the image feature

maps as follows,

Za = F(Ia), Zb = F(Ib), (2)

where Za ∈ R
d×ha

f×wa
f and Zb ∈ R

d×hb
f×wb

f are the nor-

malized conv feature representations of the input image pair

(Ia, Ib), d is the number of feature channel.

Given the conv features, we then build a correlation net-

work that learns a mapping from the feature pair to their

correlation map C ∈ R
ha
f×wa

f×hb
f×wb

f . Formally,

C = G(Za,Zb; Θab) (3)

where G is the mapping function implemented by the deep

network and Θab is its parameters. Given a feature-wise

correspondence, we can derive the pixel-wise correspon-

dences in Eq. (1) by interpolation on the image plane.

While such deep correspondence networks (e.g. [32])

provide a powerful framework to learn a flexible represen-

tation for matching, in practice they are sensitive to large

intra-class variations and repetitive patterns in images due

to lack of global context. In this work, we propose a novel

correspondence network to tackle those challenges in se-

mantic correspondence. Our network is capable of captur-

ing global context of each feature location and dynamically
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integrating context-aware semantic cues with local semantic

information to reduce the matching ambiguities. Hence we

refer to our network as Dynamic Context Correspondence

Network (DCCNet). Our DCCNet network is composed of

three main modules: 1) a spatial context encoder, 2) a corre-

lation network and 3) a dynamic fusion network. Below we

will introduce the details of each module and an overview

of our network is illustrated in Fig. 2.

3.2. Spatial Context Encoder

Taking as input the conv features of the image pairs, the

first component of DCCNet is a spatial context encoder that

incorporates global semantic context into the conv feature.

To achieve this, we propose a self-similarity based operator

to describe the spatial context, as shown in Fig. 3. Specif-

ically, the spatial context encoder consists of two modules:

a) spatial context generation, b) context-aware semantic

feature generation, which will be detailed below.

Spatial Context Generation Inspired by LSS [34], we

design a novel self-similarity based descriptor on top of

deep conv features to encode spatial context at each loca-

tion in an image. Concretely, given the conv feature map

Z = {z(i,j)} ∈ R
d×hf×wf of an image I (omit super-

script here for clarity), we first apply a zero padding of

size (k − 1)/2 (k is odd) on the feature map Z to get the

padded feature map Z̃ ∈ R
d×(hf+k−1)×(wf+k−1). For lo-

cation (i, j) in Z, its spatial context descriptor is defined

as a self-similarity vector computed between its own local

feature zi and the features in its neighboring region of size

k × k centered at (i, j). Specifically, we compute the self-

similarity features as follows:

s(i,j) = [z⊺i,j z̃(i,j), · · · , z
⊺

i,j z̃(i+k−1,j+k−1)], (4)

S = {s(1,1), · · · , s(hf ,wf )}, (5)

s(i,j) ∈ R
k2×1, S ∈ R

k2×hf×wf , (6)

where s(i,j) is the spatial context descriptor of location (i, j)
and S denotes spatial context of the image I . We refer the

neighborhood size k as the kernel size of the context de-

scriptor. With varying kernel sizes, the descriptor is able to

encode the spatial context at different scales.

It is worth noting that our spatial context descriptor dif-

fers from non-local graph networks [37] in encoding con-

text information, as our descriptor maintains spatial struc-

ture, which is important for matching, while graph propa-

gation typically uses aggregation operators to integrate out

spatial cues. Our representation also differs from FCSS [19]

in several aspects. First, we use a large context to compute

self-similarity instead of a local window in order to achieve

robustness toward repetitive patterns. Second, FCSS [19]

relies on object proposals to remove background while we

learn to select informative semantic cues. Moreover, we

empirically find that the spatial context descriptor alone is

insufficient for high-quality matching, and therefore com-

bine it with local conv features, which will be described

below.

Context-aware Semantic Feature The second module of

our spatial context encoder computes a context-aware se-

mantic feature for each location on the conv feature map.

While the spatial context descriptor encodes second-order

statistics in a neighborhood of feature location, it lacks lo-

cal semantic cues represented by the original conv feature.

In order to capture different aspects of semantic objects, we

employ a simple fusion step to generate a context-aware

semantic representation which provides us better matching

quality. Concretely, we apply a non-linear transformation

over the concatenation of Z and S as below:

G(i,j) = σ(W⊺[s⊺(i,j), z
⊺

(i,j)]
⊺) (7)

G = {g(1,1), · · · ,g(hf ,wf )} (8)

g(i,j) ∈ R
l, G ∈ R

l×hf×wf (9)

where σ is a nonlinear function (ReLU) and the weight ma-

trix W ∈ R
(d+k2)×l transforms the features into l dimen-

sional space. We use G to denote the context-aware se-

mantic features of image I, and add superscript to represent

context-aware semantic feature Ga and Gb from the image

Ia and Ib, respectively.

3.3. Correlation Network

The second module of DCCNet is a correlation network

that takes in feature representations of an image pair and

produces a correlation map. While any correlation compu-

tation module can be used here, we adopt the neighborhood

consensus module [32] in this work for its superior perfor-

mance. Specifically, for each type of feature representations
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Figure 4. Overview of Dynamic Fusion Network. The network

employs correlation map embedding and attention-based fusion to

combine context and local semantic cues.

of an image pair, say the context-aware semantic feature

(Ga,Gb) or the local semantic feature (Za,Zb), we feed

them into the correlation network to generate their corre-

sponding correlation map:

Cl = H(Za ©∗ Zb), Cs = H(Ga ©∗ Gb) (10)

Cl,Cs ∈ R
ha
f×wa

f×hb
f×wb

f (11)

where H is the neighborhood consensus operator, ©∗ is the

correlation operation. We use H to refine the correlation

maps based on local neighborhood information. In addi-

tion, mutual nearest neighbor consistency constraint [32] is

applied before and after H, which is merged into H for sim-

plicity as it does not contain learnable parameters. We refer

the reader to [32] for more details. We now have two cor-

relation maps, Cs and Cl, that describes the pixelwise cor-

respondence using context-aware semantic cues and local

semantic features, respectively.

3.4. Dynamic Fusion Network

While the context-aware semantic feature allows us to

encode more global visual patterns, the spatial context en-

coder in Sec. 3.2 adopts a spatial-invariant fusion mecha-

nism (i.e., a global embedding) to combine local cues and

spatial context, which turns out to be sub-optimal for feature

locations with distracting neighboring region. An effective

solution is to introduce a spatially varying fusion mecha-

nism to balance the context and local conv features specifi-

cally for each location. To that end, we propose a dynamic

fusion strategy to achieve adaptive fusion for different lo-

cations in each image pair. Our fusion utilizes scores from

two correlation maps computed in Sec. 3.3 for each loca-

tion and determines which one is more trustworthy using a

location-specific weight.

Specifically, given two correlation maps, Cs and Cl,

we introduce the third module of DCCNet, a dynamic fu-

sion network, to integrate two correlation scores. Moti-

vated by [4], we exploit an attention mechanism to gener-

ate a location-aware weight mask for correlation map fu-

sion. The attention-based dynamic fusion consists of the

following two modules: 1) correlation map embedding, 2)

attention-based fusion, which will be described below.

Our dynamic fusion strategy is associated with the

matching direction. Here we describe the dynamic fusion

in the direction from image Ia to image Ib for clarity, as the

other direction is similar, as shown in Fig. 4.

Correlation Map Embedding In order to predict the at-

tention mask, we first compute a feature representation from

the correlation maps. Concretely, we apply an embedding

function E to produce a correlation map embedding:

C̃s = σ(E(Cs; θE)), C̃l = σ(E(Cl; θE)) (12)

where E is implemented by 4D convolutional neural net-

work, and θE is the learnable parameter of E . C̃s, C̃l are

at the same dimension with Cs,Cl, in R
ha
f×wa

f×hb
f×wb

f . By

this module, we extract those 4D correlation features C̃l,

C̃s, before reshaping them in the next attention module that

produces the weight mask and fusion result.

Attention-based Fusion To compute the attention weight

mask, we first reshape C̃s, C̃l into a tensor form Dl ∈
R

Nb×ha
f×wa

f and Ds ∈ R
Nb×ha

f×wa
f , where Nb = hb

f ×wb
f .

We then compute a fusion weight map for each image pair,

which indicates whether the local conv feature is more in-

formative than the context-aware semantic feature for each

location. For the direction of image Ia to Ib, we stack the re-

shaped correlation maps Dl and Ds along the first axis fol-

lowed by an attention network to predict the fusion weights:

Da→b = Dl ⊕Ds, D ∈ R
(2Nb)×ha

f×wa
f (13)

Ma→b = M(Da→b), Ma→b ∈ R
1×ha

f×wa
f (14)

where ⊕ is concatenation operator along the first dimen-

sion, and Ma→b is the attention weight mask for C̃l. The

attention network M(·) is implemented by a fully convolu-

tion layer followed by a softmax operator to normalize the

attention weights. Given the attention mask, we fuse the

correlation maps in an adaptive way as follows,

D̃a→b = Dl ◦M
a→b +Ds ◦ (1−Ma→b) (15)

D̃a→b ∈ R
Nb×ha

f×wa
f (16)

where ◦ is the element-wise multiplication with broadcast-

ing for producing the weighted correlation maps. The out-

put correlation C̃a→b is generated by reshaping D̃a→b into

the 4D form R
ha
f×wa

f×hb
f×wb

f . Similarly, the adaptively

fused correlation C̃b→a ∈ R
ha
f×wa

f×hb
f×wb

f from the other

direction can also be computed by this module. Finally,

those two refined correlation map C̃a→b and C̃b→a are used

to find semantic correspondence (cf. [32]).
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Methods aero bike bird boat bottle bus car cat chair cow d.table dog horse moto person plant sheep sofa train tv all

HOG+PF-LOM[8] 73.3 74.4 54.4 50.9 49.6 73.8 72.9 63.6 46.1 79.8 42.5 48.0 68.3 66.3 42.1 62.1 65.2 57.1 64.4 58.0 62.5

UCN[6] 64.8 58.7 42.8 59.6 47.0 42.2 61.0 45.6 49.9 52.0 48.5 49.5 53.2 72.7 53.0 41.4 83.3 49.0 73.0 66.0 55.6

VGG-16+SCNet-A[11] 67.6 72.9 69.3 59.7 74.5 72.7 73.2 59.5 51.4 78.2 39.4 50.1 67.0 62.1 69.3 68.5 78.2 63.3 57.7 59.8 66.3

VGG-16+SCNet-AG[11] 83.9 81.4 70.6 62.5 60.6 81.3 81.2 59.5 53.1 81.2 62.0 58.7 65.5 73.3 51.2 58.3 60.0 69.3 61.5 80.0 69.7

VGG-16+SCNet-AG+[11] 85.5 84.4 66.3 70.8 57.4 82.7 82.3 71.6 54.3 95.8 55.2 59.5 68.6 75.0 56.3 60.4 60.0 73.7 66.5 76.7 72.2

VGG-16+CNNGeo[30] 79.5 80.9 69.9 61.1 57.8 77.1 84.4 55.5 48.1 83.3 37.0 54.1 58.2 70.7 51.4 41.4 60.0 44.3 55.3 30.0 62.6

ResNet-101+CNNGeo(S)[30] 82.4 80.9 85.9 47.2 57.8 83.1 92.8 86.9 43.8 91.7 28.1 76.4 70.2 76.6 68.9 65.7 80.0 50.1 46.3 60.6 71.9

ResNet-101+CNNGeo(W)[31] 83.7 88.0 83.4 58.3 68.8 90.3 92.3 83.7 47.4 91.7 28.1 76.3 77.0 76.0 71.4 76.2 80.0 59.5 62.3 63.9 75.8

RTN [18] - - - - - - - - - - - - - - - - - - - - 75.9

NC-Net[32] 86.8 86.7 86.7 55.6 82.8 88.6 93.8 87.1 54.3 87.5 43.2 82.0 64.1 79.2 71.1 71.0 60.0 54.2 75.0 82.8 78.9

Our Method 87.3 88.6 82.0 66.7 84.4 89.6 94.0 90.5 64.4 91.7 51.6 84.2 74.3 83.5 72.5 72.9 60.0 68.3 81.8 81.1 82.3

Table 1. Performance on the PF-Pascal dataset [9]. Per-class and overall PCK are shown in the table and the best results are in bold.

3.5. Learning with Multiauxiliary Task Loss

We learn the model parameters of our DDCNet in a

weakly-supervised manner from a set of matched images.

Given two images Ia and Ib, the outputs of our model are

C̃a→b and C̃b→a. We first adopt the weakly-supervised

training loss proposed in NC-Net [32], which has a func-

tional form :

L(C̃b→a, C̃a→b, y) = −y
(
sa + sb

)
(17)

where y denotes the groundtruth label of the image pair(
Ia, Ib

)
with y = +1 for positive matching, and y = −1

for negative. sa and sb are the mean matching scores over

all hard assigned matches of a given image pair
(
Ia, Ib

)
in

both matching directions. To minimize this loss, the model

should maximizes the scores of positive and minimizes the

scores of negative matching pairs, respectively. We denote

this loss term as Lfuse(I
a, Ib).

To learn an effective dynamic fusion strategy, we further

introduce additional supervision from two auxiliary tasks.

Specifically, we also use the correlation map Cl of local se-

mantic feature and the correlation map Cs of context-aware

semantic feature to generate the matching results, and de-

note their correspondence losses as Llocal and Lcontext, re-

spectively. Here we compute the auxiliary task losses Llocal

and Lcontext following the same procedure as in Lfuse. The

overall training loss is then defined as,

L(Ia, Ib) = Lfuse + λLlocal + γLcontext (18)

where λ and γ are the hyper-parameter to balance the main

and auxiliary task losses.

4. Experiments

We evaluate our DCCNet on the weakly-supervised se-

mantic correspondence task by conducting a series of ex-

periments on three public datasets, including PF-PASCAL

[9], PF-WILLOW [8] and TSS [35]. In this section, we

introduce our experiment settings and report evaluation re-

sults in detail. We first describe the implementation details

in Sec.4.1, followed by the quantitative results of the three

datasets in Sec.4.2, Sec.4.3 and Sec.4.4, respectively. Fi-

nally, ablation study and comprehensive analysis are pro-

vided in Sec.4.5.

Figure 5. Qualitative comparisons on the PF-PASCAL bench-

mark [9]. The leftmost column shows source images. The second

and third columns show predictions from Nc-Net [32] and our pro-

posed DCCNet respectively. We show the ground truth keypoints

in squares and the predicted keypoints in dots, with their distance

in target images depicting the matching error. It is clear that our

model is robust to repetitive patterns.

4.1. Implementation details

We implement our DCCNet with the PyTorch frame-

work [29]. For the feature extractor, we use the ResNet-

101 [12] pre-trained on ImageNet with the parameters fixed

and truncated at the conv4 23 layer. The spatial context

encoder adopts a kernel size k = 25 and the output dimen-

sion l of the context-aware semantic features is set to 1024,

which are determined by validation. For the correlation net-

work, we follow [32] and stack three 4D convolutional lay-

ers with the kernel size at 5×5×5×5 and set the channel

number of the intermediate layer to be 16. For the dynamic

fusion net, we choose the same 4D conv layers as in the

correlation network for the correlation embedding module,

and the attention mask prediction layer is implemented with

a 1× 1 conv layer.

To train the model, we set λ and γ in the multi-auxiliary

task loss to 1 by validation. The model parameters are ran-

domly initialized except for feature extractor. The model is

trained for 5 epochs on 4 GPUs with early stopping to avoid

overfitting. We use Adam optimizer [24] with a learning

rate of 5×10−4.

Images of all three datasets are first resized into the size

of 400×400. Our model is trained on the PF-PASCAL

benchmark [9]. To further validate generalization capac-
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Figure 6. Semantic alignment examples on PF-WILLOW. Our

model can produce reasonable matching results despite large back-

ground clutters and viewpoint changes.

ity of our model, we test the trained model with the PF-

WILLOW dataset [8] and the TSS dataset [8] without any

further finetuning. Finally, we conduct the ablation study

on the PF-PASCAL dataset [9].

4.2. PFPascal Benchmark

Dataset and Evaluation Metric The PF-PASCAL [9]

benchmark is built from the PASCAL 2011 keypoint anno-

tation dataset [2], which consists of 20 object categories.

Following the dataset split in [11], we partition the total

1351 image pairs into a training set of 735 pairs, validation

set of 308 pairs and test set of 308 pairs, respectively. The

model learning is performed in a weakly-supervised man-

ner where keypoint annotations are not used for training but

for evaluation only. We report the percentage of the correct

keypoints (PCK) metric [39] which measures the percent-

age of keypoints whose transfer errors below a given thresh-

old. In line with previous work, we report PCK (α = 0.1)

w.r.t. image size.

Experimental Results As shown in Table 1, we com-

pare our proposed method with previous methods including

NC-Net [32], WeakAlign [31], RTN [18], CNNGeo [30],

Proposal Flow [9], UCN [6] and different versions of SC-

Net [11]. Our approach achieves an overall PCK of 82.3%
, outperforming the prior state of the art [32] by 3.4%.

Visualization Results Fig. 5 shows qualitative compar-

isons with Nc-Net [32]. We can see that our model is robust

against repetitive patterns thanks to our proposed context-

aware semantic representation and dynamic fusion. More

qualitative results can be found in the suppl. material.

4.3. PFWILLOW Benchmark

Dataset and evaluation metric The PF-WILLOW data-

set consists of 900 image pairs selected from a total of 100

images [8]. We report the PCK scores with multiple thresh-

olds (α = 0.05, 0.10, 0.15) w.r.t. bounding box size in or-

der to compare with prior methods.

Methods α = 0.05 α = 0.10 α = 0.15

HOG+PF-LOM [9] 28.4 56.8 68.2

DCTM [23] 38.1 61.0 72.1

UCN-ST [6] 24.1 54.0 66.5

CAT-FCSS [20] 36.2 54.6 69.2

SCNet [11] 38.6 70.4 85.3

ResNet-101+CNNGeo [30] 36.9 69.2 77.8

ResNet-101+CNNGeo(W) [31] 38.2 71.2 85.8

RTN [18] 41.3 71.9 86.2

NC-Net [32] 44.0 72.7 85.4

Our Method 43.6 73.8 86.5

Table 2. Evaluation results on PF-WILLOW [8]. We report the

PCK scores with three thresholds and the best results are in bold.

Figure 7. Qualitative results on the TSS benchmark [35].

The first column depicts source image and target image respec-

tively. From the second column to the last column is results from

WeakAlign [31], NC-Net [32] and our model respectively.

Experimental Results Table 2 compares the PCK accu-

racies of our DCCNet to those of the state-of-the-art se-

mantic correspondence techniques. Our proposed method

improves the PCK accuracies over the previously published

best performance by 1.1% when α = 0.10 and α = 0.15.

Our model also achieves a competitive PCK (α = 0.05) of

43.6% which is merely 0.4% lower than the state-of-the-

art result, partially due to the large scale variation in this

dataset unseen in the training. Fig. 6 shows qualitative re-

sults on the PF-WILLOW dataset, which further demon-

strate the strength of our method.

4.4. TSS Benchmark

Dataset and evaluation metric The TSS dataset contains

400 image pairs in total, divided into three groups, includ-

ing FG3DCAR, JODS, and PASCAL. Ground truth flows

and foreground masks for image pair are provided, where

we only use it for evaluation in the weak supervision set-

ting. Following Taniai et al. [35], we report the PCK over

foreground object by setting α to 0.05 w.r.t. image size.

Experimental Results Table 3 presents quantitative re-

sults on the TSS benchmark. We observe that our method

outperforms previous methods on one of the three groups

of the TSS dataset and our average performance over three

groups on the TSS dataset achieves new state of the art. This

shows our method can generalize to novel datasets despite

the moderate change of data distribution. Qualitative results

are presented in Fig. 7.
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Methods FG3D. JODS PASC. avg.

HOG+PF-LOM [9] 78.6 65.3 53.1 65.7

HOG+TSS [35] 83.0 59.5 48.3 63.6

FCSS+SIFT Flow [19] 83.0 65.6 49.4 66.0

FCSS+PF-LOM [19] 83.9 63.5 58.2 68.5

HOG+OADSC [38] 87.5 70.8 72.9 77.1

FCSS+DCTM [23] 89.1 72.1 61.0 74.0

VGG-16+CNNGeo [30] 83.9 65.8 52.8 67.5

ResNet-101+CNNGeo(S) [30] 83.9 76.4 56.3 74.3

ResNet-101+CNNGeo(W) [31] 90.3 76.4 56.5 74.4

RTN [18] 90.1 78.2 63.3 77.2

NC-Net [32] 94.5 81.4 57.1 77.7

Our Method 93.5 82.6 57.6 77.9

Table 3. Evaluation results on the TSS dataset [35]. We report

the PCK scores with α = 0.05 and the best results are in bold.

4.5. Ablation Study

To understand the effectiveness of our model compo-

nents, we conduct a series of ablation studies focusing on:

1) effects of individual modules, 2) kernel sizes in spatial

context, 3) different fusion methods and 4) multi-auxiliary

task losses. We select NC-Net [32] as our baseline and re-

port PCK (α = 0.1) on the PF-PASCAL [9] test split.

Effects of Individual Modules We consider five differ-

ent ablation settings and the overall results are shown in

Table 4. First, we note that applying our proposed spatial

context encoder (Baseline+S) generates large performance

improvement (2.0%) over NC-Net [32]. Second, adding dy-

namic fusion with auxiliary loss (Baseline+SDA) provides

a further boost of 1.4%. Below we introduce detailed anal-

ysis for each module via the other three ablation settings.

Spatial Context Encoder Table 5 shows the effects of in-

corporating context with different kernel sizes. For using

our spatial context encoder alone (Baseline+S), the perfor-

mance increases first and then drops with increasing kernel

sizes, which is due to degradation of context-aware features

as more background clutters are included. Our dynamic fu-

sion and auxiliary loss (Baseline+SDA) can effectively al-

leviate the degradation problem.

Fusion method We study the effects of our dynamic fu-

sion by simple average fusion of two correlation maps, re-

ferring to the resulting model as Baseline+SAA. From Ta-

ble 4 we can see that our dynamic fusion model (Base-

line+SDA) yields significant better results (82.3%) than av-

erage fusion (80.2%), showing the necessity of our atten-

tion module. Moreover, Baseline+SAA underperforms the

model setting with context-aware semantic feature alone

(Baseline+S) due to its global averaging. In contrast, the

pixel-wise weight mask from attention net enables each lo-

cation to adaptively merge different scales of semantic cues.

We also evaluate the model setting without correlation map

embedding during dynamic fusion (Baseline+SCA), which

generates worse results, indicating the efficacy of 4D corre-

lation map features in the dynamic fusion network.

Models SCE Fusion Auxiliary Loss PCK

NC-Net [32] - - - 78.9

Baseline+S ✓ - - 80.9

Baseline+SCA ✓ Dynamic w/o Corr Embedding ✓ 79.9

Baseline+SAA ✓ Average w/ Corr Embedding ✓ 80.2

Baseline+SD ✓ Dynamic w/ Corr Embedding ✗ 81.0

Baseline+SDA ✓ Dynamic w/ Corr Embedding ✓ 82.3

Table 4. Analysis of individual modules of DCCNet on the PF-

PASCAL [9] dataset. NC-Net [32] is used as our baseline. Our

ablation includes whether using spatial context encoder, fusion

method adopted, and whether using multi-auxiliary task loss.

Models Kernel size PCK

NC-Net [32] - 78.9

Baseline+S 11 78.9

Baseline+S 25 80.9

Baseline+S 31 77.1

Baseline+SDA 25 82.3

Baseline+SDA 31 80.7

Table 5. Effect of kernel sizes in our spatial context on the PF-

PASCAL [9] dataset. NC-Net [32] is used as our baseline.

Multi-auxiliary task loss To validate the effect of our

proposed auxiliary task loss, we train a model without two

additional loss terms, which is referred to as Baseline+SD.

Table 4 shows that our model with auxiliary loss terms

(Baseline+SDA) attains 1.3% higher PCK scores than the

Baseline+SD model, reaching the state-of-the-art result of

82.3%. This improvement indicates the effectiveness of our

multi-auxiliary task loss in regularizing the training process

for weakly-supervised semantic correspondence task. With

the multi-auxiliary task loss, our local feature and context-

aware semantic feature branches have stronger supervision

signals, which in turn benefits the fusion branch and pro-

duces better overall matching results.

5. Conclusion

In this work, we have proposed an effective deep corre-

spondence network, DCCNet, for the semantic alignment

problem. Compared to the prior work, our approach has

several innovations in semantic matching. First, we develop

a learnable context-aware semantic representation that is ro-

bust against repetitive patterns and local ambiguities. In ad-

dition, we design a novel dynamic fusion module to adap-

tively combine semantic cues from multiple spatial scales.

Finally, we adopt a multi-auxiliary task loss to better reg-

ularize the learning of our dynamic fusion strategy. We

demonstrate the efficacy of our approach by extensive ex-

perimental evaluations on the PF-PASCAL, PF-WILLOW

and TSS datasets. The results evidently show that our DCC-

Net achieves the superior or comparable performances over

the prior state-of-the-art approaches on all three datasets.
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