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Abstract

In this work, we introduce the novel problem of iden-

tifying dense canonical 3D coordinate frames from a sin-

gle RGB image. We observe that each pixel in an image

is the projection of a small surface region in the underly-

ing 3D geometry, where a canonical frame can be identified

as represented by three orthogonal axes, one along its nor-

mal direction and two in its tangent plane. We propose an

algorithm to predict these axes from RGB data. Our first in-

sight is that canonical frames computed automatically with

recently introduced direction field synthesis methods can

provide training data for the task. Our second insight is

that networks designed for surface normal prediction pro-

vide better results when trained jointly to predict canonical

frames, and even better when trained to also predict 2D pro-

jections of canonical frames. We conjecture this is because

projections of canonical tangent directions often align with

local gradients in images, and because those directions are

tightly linked to 3D canonical frames through projective ge-

ometry and orthogonality constraints. In our experiments,

we find that our method predicts 3D canonical frames that

can be used in applications ranging from surface normal

estimation, feature matching, and augmented reality.

1. Introduction

In recent years, learning to predict 3D properties from a

single RGB image has made great progress. For example,

monocular depth estimation [34, 25, 47, 44, 12] and surface

normal prediction [10, 45, 3, 28] have improved dramati-

cally. There are many applications for these tasks in scene

understanding and robot interaction.

The main challenge in this domain is choosing an appro-

priate representation of 3D geometry to predict. Zhang et

al. [52] predict dense surface normals and then use geomet-

ric constraints to solve for depth with a global optimiza-

tion. GeoNet [28] predicts both surface normals and depth

and then passes them to a refinement network for further

optimization. These methods are clever in their use of geo-

metric constraints to regularize dense predictions. However,
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Figure 1. We propose the novel task of predicting dense 3D canon-

ical frames from a single RGB image. We compute the frames

from reconstructed meshes using QuadriFlow and render them to

images to supervise the task. We train a network that predicts all

directions of the frames jointly. We find that predicted tangents

provides better surface normals, and are useful for applications

like feature matching and augmented reality.

they infer only 2 of the 3 degrees of freedom in a 3D coor-

dinate frame – the rotation in the tangent plane around the

surface normal is left unknown. As such, they are missing

3D information critical to many applications. For example,

they cannot assist an AR system in placing a picture frame

on a wall or a laptop on a table because they don’t know the

full 3D coordinate frame (including tangent directions) of

the wall or table surfaces.

In this work, we propose a novel image-to-3D task:

dense 3D canonical frames estimation from a single image

(figure 1). This task requires predicting a full 3D coordi-

nate frame defined by the surface normal and two princi-

pal tangent directions of the surface observed at every pixel

in a RGB image. We investigate this task for three rea-

sons. First, we expect that predicting principal tangent di-

rections is easier than predicting normals because they are

often aligned with observable patterns in surface textures

(e.g., wood grains, fabric weaves, tile seams, etc.) and sur-

face boundaries, which are directly observable in images

(figure 2). Second, we expect that joint surface normal and

tangent prediction is more robust than normal prediction
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Figure 2. We visualize the directions by picking random seed

points and tracing along projected directions in the image. (a) and

(b) show the Manhattan and projected principal directions in the

same scene, respectively. (c) shows that projected principal direc-

tions usually follow the texture directions or object boundaries.

alone due to the regularization provided by orthogonality

constraints. Third, we expect that predicting a full canon-

ical 3D coordinate frame at every pixel is useful for many

applications, such as augmented reality.

We have implemented an algorithm for this task in a

supervised setting. To acquire “ground truth” canonical

frames, we leverage data from RGB-D scanning datasets,

like ScanNet [9], which provide large sets of images posed

within reconstructed 3D meshes. We compute canonical

frames on the meshes and render them to the RGB images to

produce training data. There are multiple choices for how to

define the frames. A simple approach would be to use Man-

hattan frames; however they reflect only the global scene

orientation (figure 2(a)). Instead, we compute locally con-

sistent 4-RoSy canonical frames that follow principal cur-

vatures using the Quadriflow algorithm [21] (figure 2(b)).

We find that the surface tangent directions computed this

way are consistent with image features and can be learned

by a network from 2D data.

The canonical frames are fundamental 3D properties of a

scene, as they imply the canonical transformation that maps

the 3D surface to the image plane. They provide not only

the surface normal, but also canonical tangent directions

and their projections onto the image plane. We show that

predicting all these directions jointly can improve surface

normal estimation, local patch description using SIFT fea-

tures [26], and allow the insertion of novel objects with cor-

rect orientation in augmented reality applications.

Overall, the core contributions of the paper are:

• Identifying an important new 3D vision problem: local

canonical frame estimation from RGB images.

• Using projected tangent principal directions to im-

prove canonical frames estimation, outperforming ex-

isting works on surface normal estimation.

• Exploiting tangent projected principal directions to

compute perspective invariant feature descriptors.

• Inserting new elements in the scene in a manner aware

of perspective distortions, for augmented reality.

2. Related Work

3D from Single Image. Estimating 2.5D geometry prop-

erties from a single image has become popular in recent

years. Traditional methods aim at understanding low-level

image information and geometry constraints. For example,

Torralba et al. [41] exploits the scene structure to estimate

the absolute depth values. Saxena et al. [33] uses hand-

crafted features to predict the depth based on Markov ran-

dom fields. Hoiem et al. [18] recovers scene layout guided

by the vanishing points and lines. Shi et al. [35] estimates

the defocus blur and uses it to assist depth estimation.

With the availability of large-scale dataset and the suc-

cess of deep learning, many methods have been proposed

for depth or/and surface normal estimation. For depth esti-

mation, Eigen et al. [11] uses CNN to predict indoor depth

maps on the NYUv2 dataset. With the powerful backbone

network architecture like VGG [37] or ResNet [16], depth

estimation can be further improved [13, 46]. DORN [12]

proposes a novel ordinary loss and achieves the state-of-the-

art in KITTI [14]. For surface normal estimation, Wang et

al. [45] incorporate vanishing point and layout information

in the network architecture. Eigen and Fergus [10] trained a

coarse-to-fine CNN to refine the details of the normals. The

skip-connected architecture [3] is proposed to fuse hidden

layers for surface normal estimation.

Since surface normal and depth are related to each other,

another set of methods aimed at jointly predicting both to

improve the performance. Wang et al. [43] exploits the

consistency between normal and depth in planar regions.

GeoNet [28] proposes a refinement network to enhance the

depth and normal estimation from each other. Zhang et

al. [52] predict the normal and solve a global optimization

problem to complete the depth. We take a further step by

jointly estimating all axes of a 3D canonical frame at each

pixel, which helps both regularize the prediction through

constraints and is useful in applications (see Sec. 5).

Local Canonical Frames Computing local canonical

frames on surfaces is a fundamental step for many prob-

lems. 3DLite [19] builds canonical frames in fitted 3D

planes for color optimizations. GCNN [27] defines lo-

cal frames with spherical coordinates and applies discrete

patch operators on tangent planes. ACNN [6] introduces

the anisotropic heat kernels derived from principal curva-

tures so that it can apply convolutions in canonical frames

defined by principal axes. Such canonical frame is also used

in Xu et al. [48] for nonrigid segmentation, by Tatarchenko

et al. [39, 20] for semantic segmentation of the 3D scenes.

We aim at recognizing such frames from 2D images, and

compute them from 3D surfaces to supervise the learning.

TextureNet [20] highlights the challenges of comput-

ing robust local canonical frames at planar surface regions,

where the principal curvatures are undetermined or highly

influenced by noise or uneven sampling. Therefore, it pro-

poses to compute a 4-RoSy orientation field to represent

the principal directions. The 4-RoSy orientation field is

an important concept in the geometry processing commu-
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Figure 3. (a) computes the direction field from estimated principal

curvatures. Noise exists in both the geometry and the projections

in images, as shown in (c). (b) computes the 4-RoSy field using

QuadriFlow [21] and produces robust tangent principal directions,

as shown in (d) as the projection in the image plane.

nity [30, 23]. The target directions are aligned with the

principal curvatures [8, 7], but regularized by additional en-

ergy to vary smoothly. This can be achieved by optimizing a

nonlinear energy by periodic functions [17, 29] or a mixed-

integer representation [30, 5]. In our work, we use Quadri-

Flow [21] to optimize the 4-RoSy field so that it aligns with

the principal curvatures at the curved surface and ensures

smoothness in flat regions (where principal directions are

ill-defined), as well as robustness to noise.

3. Approach

In this section, we develop our approach for learning lo-

cal canonical frames from RGB images. First, we discuss

the ground truth labeling of canonical frames from 2D im-

ages in section 3.1. Then, we discuss the concept of pro-

jected tangent principal directions in section 3.2. Finally in

section 3.3, we propose several energy terms that encour-

age the neural network to predict consistent local canoni-

cal frames assisted by the projected tangent principal direc-

tions. Since we focus on the behavior of the local canoni-

cal frames rather than the neural network architecture, we

can adopt any neural network that predicts per-pixel fea-

tures (see experiments in Sec. 4 and 5).

3.1. Local Canonical Frames Generation

To label the canonical frames, we need a dataset with 3D

meshes aligned with RGB images to compute frames from

geometry and render them to images as ground truth. We

choose ScanNet [9] for our experiments.

We compute canonical frames as surface normals and

tangent principal directions with the scene geometry. It

is straightforward to compute surface normals, but tangent

principal directions at flat regions are hard to compute es-

RGB X Y Normal Projection
Figure 4. Local Canonical Frames Dataset. For each RGB frame,

we render the corresponding tangent principal directions (X and

Y) for each pixel. The surface normal can be computed as the

cross product of the principal directions.

pecially in the presence of noise. As visualized in fig-

ure 3(a,c), the tangent principal directions can be pretty

noisy. To solve this problem, we adopt the 4-RoSy field

using QuadriFlow [21] as proposed by TextureNet [20], as

shown in figure 3(b,d): This field generates consistent direc-

tions which vary smoothly at flatter regions and are aligned

with the principal curvatures at curved surfaces. The cross-

field is 4-RoSy since there are four valid choices for the tan-

gent principal directions at each vertex. Considering this,

we pick any pair of orthogonal tangent vectors in the cross

field to represent the principal directions, but we also view

the other three alternatives as valid ground truth.

We store the computed local canonical frames on top of

mesh vertices and render them to images after transforming

them to the camera space. For each triangle to be rendered,

we enumerate the 90�N(N 2 Z) degree rotations to the

tangent principal directions of the last two vertices, so as to

align them with the first vertex before the standard rasteri-

zation stage. This is to deal with the 4-way rotational am-

biguities in the cross field. For each RGB image, we render

and save the tangent principal directions as two images, as

shown in figure 4 as X and Y. The ground truth normal can

be directly computed as the cross product of them.

3.2. Projected Principal Directions

Since we aim to predict 3D principal tangent directions

from their appearances into RGB images, we first derive the

projective geometry that relates them.

For a pixel p = (px, py) in the canonical camera coordi-

nate system, its 3D position of the pixel can be represented

as P = (pxd, pyd, d) where d is the depth value. Suppose

the pixel has two tangent principal directions i and j, and

we want to analyze their projections. For i = (ix, iy, iz),
we can project a line segment l(P, δ, i) that connects end-

points P and P+ δ · i into the image as lp(P, δ, i), which is

the offset from p to the projection of P+ δi:

lp(P, δ, i) =
P + δi

(P + δi)z
�p = (ix�pxiz, iy�pyiz)

δ

d+ δiz
.

(1)
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Figure 5. To estimate the local canonical frames, we feed the RGB image and the canonical pixel coordinate map to the network. The

output is a 13-dimensional vector for each pixel including two projected tangent principal directions, two 3D tangent principal directions,

and one normal vector. We propose a new loss that utilizes the projected directions to improve the estimation of the canonical frames.

We find several ways to translate the projected line seg-

ment as a property of the pixel, as shown in equation 2,3,4.

The most straightforward idea is to define the property as

the projection of the unit 3D line segment from the pixel

through the principal directions, represented as

l1p(P, i) := lp(P, 1, i). (2)

This simple definition, however, requires a complex math-

ematical form including the depth value as a hidden infor-

mation. Thus it could be hard to learn. Another property is

the normalized projected principal direction, or

lup (P, i) :=
lp(P, δ, i)

||lp(P, δ, i)||2
=

(ix � pxiz, iy � pyiz)

||(ix � pxiz, iy � pyiz)||2
.

(3)

This representation removes the influence of depth as the

challenging hidden property. Since the projection usually

aligns with the image gradients, it can be as easy as the

task of predicting the normalized gradient for the neural

network. However, though this is an easy task, the unit pro-

jected direction cannot determine the original 3D direction.

As shown in figure 6(a), a 2D direction in an image is corre-

sponding to a plane in the 3D world, in which any 3D direc-

tion could be a valid solution. Fortunately, we can simplify

the definition as

l⇤p(P, i) := (ix � pxiz, iy � pyiz). (4)

This excludes the influence of the depth and gives enough

supervision to the directions in 3D space. Mathematically,

given the prediction of l⇤p(P, i) = (lix, l
i

y), we can compute

direction i = (ix, iy, iz) by solving the system 5:
8

>

<

>

:

ix � pxiz = lix

iy � pyiz = liy

i2x + i2y + i2z = 1 .

(5)

3.3. Joint Estimation

We could train a network to estimate the projected prin-

cipal directions ip = l⇤p(P, i) and jp = l⇤p(P, j), and directly

!
Projection

Image Plane

Camera
3D Plane

3D Directions

Figure 6. Each projected direction in the image plane (shown in

red) corresponds to a 3D plane Ω in the scene. Any 3D direction

inside the plane is a valid candidate for this direction.

infer i and j according to equation 5 for canonical frames

estimation. However, we find that this approach does not

lead to a robust canonical frames. Therefore, we propose

to jointly estimate the canonical frames as well as the pro-

jected tangent principal directions, and enforce their orthog-

onality and projection consistency with additional soft en-

ergy constraints. We expect that the extra constraints will

provide a regularization that can help the network learn.

Our proposed solution is illustrated in figure 5. The neu-

ral network can be viewed as a black box function that pre-

dicts per-pixel features for the RGB image. Since the pro-

jected tangent principal directions relate to the pixel coor-

dinate in the canonical camera, we feed the canonical pixel

coordinate together with its RGB values into the network

as the input. The network outputs a 13-dimensional vector

includes two tangent principal directions i and j, their 2D

projections ip and jp, and the surface normal n.

We propose a set of energies so that projected tangent

principal directions can assist the local principal axes esti-

mation. The loss energy E is a linear combination of five

energy terms as shown in equation 6,

E = λLEL + λPEP + λNEN + λCEC + λOEO

EL = min
0k4

||[ip, jp]�Rk([i
gt
p , jgtp ])||2

2

EP = min
0k4

||[i, j]�Rk([i
gt, jgt])||2

2

EN = ||N �Ngt||2
2

EC = ||l⇤p(i)� ip||
2

2
+ ||l⇤p(j)� jp||

2

2

EO = ||N � i⇥ j||2
2
,

(6)
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where R1([a,b]) = [�b,a] and Rk = R1 �Rk�1(k > 1).

Specifically, EL measures the distance between the pre-

dicted tangent principal directions and the ground truth in

the 2D projected space. Rk represents the 90�k degree ro-

tation around the normal axis. EL removes the rotational

ambiguity by enumerating the possible 90�k rotations and

measure the minimum L2 loss among them. Similarly, EP

measures the minimum L2 loss of tangent principal direc-

tions in the 3D space, and EN measures the L2 loss of the

surface normal estimation. In order to connect the tangent

principal directions to their projections, we design EC to

measure the consistency between the projected predicted di-

rections (l⇤p(i),l
⇤
p(j)) and the predicted one (ip,jp) by the net-

work. Finally, we also hope the influence can be propagated

to the surface normal, so we add an orthogonality constraint

EO to enforce that the surface normal is orthogonal to the

tangent principal directions.

Since all the distances are roughly on the same scale,

we set λL = λP = λN = 1 to balance the penalty for

errors for different vectors. To enforce the system to predict

orthogonal canonical frames with consistent 2D projection,

we set λC = λO = 5 in our experiments to provide slightly

stronger constraints between network predictions.

4. Evaluation

In this section, we describe a series of experiments to

evaluate our method for local canonical frames estima-

tion and do ablation studies using the ScanNet dataset [9].

Unless otherwise specified, we used the DORN architec-

ture [12] as the backbone for the architecture in fig. 5, and

we used equation 4 for the projected tangent principal di-

rections, since they gave the best results (see below). The

main conclusion of these tests is that jointly predicting the

projected tangent directions and enforcing the consistency

loss are major contributors to the success of local principal

axes and surface normal estimation.

How well can canonical frames be estimated from RGB?

Our first experiment simply investigates how well our algo-

rithm can predict the canonical frames. Since this is a new

task, there is no suitable comparison to prior work. How-

ever, we can still gain insight into the problem by compar-

ing errors in predicted normals, principal tangent principal

directions, and projected tangent principal directions. The

results in table 1 show that prediction of projected tangent

principal directions have least error, surface normals have

most error, and tangent principal directions are in the mid-

dle. This suggests that predicting tangent directions is less

error prone than normals, which should be expected since

they largely align with textures and gradients in the input

image (figure 7).

3D Frame mean median rmse 11.25� 22.5� 30�

Normal 15.28 8.14 23.36 60.6 78.6 84.7

Principal 12.26 7.88 16.85 63.7 84.3 90.8

Projection 7.55 4.46 11.36 79.8 93.0 96.3

Table 1. Testing mean average error of local principal axes estima-

tion on ScanNet [9]. We evaluate surface normals, tangent princi-

pal directions their projections predicted by our network.

R
G
B

G
T

P
r
e
d

Figure 7. Visualization of the projected principal directions. Our

estimation is similar to the ground truth at curved surfaces or tex-

ture smooth regions. The predicted directions align with textures

and gradients in the input image.

Method UNet SkipNet GeoNet DORN

Normal 21.08 20.84 20.37 16.42

Normal-YZ 17.49 17.17 16.71 12.51

Normal-XZ 18.05 17.16 17.68 13.00

Normal-XY 29.05 29.71 29.08 22.57

Principal 17.55 15.78 15.41 12.53

Principal-YZ 21.15 21.96 20.61 16.19

Principal-XZ 22.67 21.87 21.57 16.65

Principal-XY 11.47 9.96 9.53 7.55

Table 2. Mean angle errors of normals and tangent principal direc-

tions and their projections to three orthogonal planes on ScanNet.

Which frame directions are easiest to predict? To fur-

ther investigate the relative challenge of predicting different

components of the local canonical frames, we perform ex-

periments in which we separately train normals and tangent

principal directions in 3D space with L2 losses and evalu-

ate them with mean angle errors of their projections to three

planes in camera space, as illustrated in figure 8. The pre-

diction errors and their projected components, listed in ta-

ble 2, suggest that the errors of the tangent principal direc-

tions are less than those of normals, and the projected errors

on the image plane are smaller than those on the other two

planes for tangent principal directions. This again suggests

that the network can predict tangent principal directions bet-

ter than surface normals, especially for the components pro-

jected into the image plane. Interestingly, the projected er-

rors for the normal in the image plane is the largest, which

might be because the network learns tangent principal di-

rections in the latent space and propagates the errors from

XZ and YZ planes to the image plane by the cross product.

How does each loss contributes to the estimation? We

next study how our proposed consistency losses influence
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Figure 8. By projecting the directions into XY, YZ, XZ planes in

the camera space, we can measure the projected angle error.

Method UNet SkipNet GeoNet DORN

EN 21.08 20.36 19.77 16.42

EN ,EP 21.04 20.45 19.64 16.29

EN ,EP ,EL 20.62 19.47 19.26 15.45

EN ,EP ,EL,EO 20.58 19.43 19.18 15.41

EN ,EP ,EL,EC 19.79 19.44 19.02 15.31

All Losses 19.68 19.39 18.96 15.28

Table 3. We test mean average angle errors for surface normal pre-

dictions with different combination of loss terms on ScanNet. EL

and EC has major contributions to the improvement, suggesting

the importance of the projected principal directions.

the learning process. In table 3, we present the testing

mean average angle for surface normals w/o. certain parts

of losses during training on ScanNet. We note that by di-

rectly predicting all EN and EP together, there is already an

improvement. The reason could be that the correlation be-

tween predicted principal directions and the 3D frames are

automatically learned from the data distribution. However,

the improvement is minor without predicting the projected

principal directions with EL. With orthogonal or consis-

tency constraints, the performance can be further improved

and achieve maximum with both.

Does the method generalize to different networks? To

study the generality of our approach, we tested it with

different network architectures. Table 3 shows that our

joint losses improve performance for all the tested net-

works including UNet[31], SkipNet[3], GeoNet[28] and

DORN[12].

Which definition of projected directions is best? In

equation 2 3 4, we propose three choices for projected tan-

gent principal directions. We use UNet [31] to separately

train and test them on ScanNet [9] as shown in table 4. The

mean angle error for equation 2 is the highest as a complex

function related to the depth. The error for equation 4 is

only slightly higher than that in equation 3, but equation 4

can explicitly guide the 3D directions with the consistency

loss EC . Therefore, we select equation 4 together with the

canonical frames for joint estimation.

ScanNet mean median rmse 11.25� 22.5� 30�

l1p(P, i) 11.13 7.63 15.00 65.1 86.2 92.5

lup (P, i) 7.35 4.38 10.94 81.2 93.6 96.7

l⇤p(P, i) 7.56 4.46 11.36 79.8 93.0 96.3

Table 4. Testing mean average error of different choices for pro-

jected tangent principal directions on ScanNet dataset.

ScanNet mean median rmse 11.25� 22.5� 30�

UNet 21.08 14.21 28.55 40.8 66.9 76.3

UNet-Ours 19.68 12.43 27.58 46.1 70.6 78.8

SkipNet 20.36 13.74 28.63 45.4 68.2 77.4

SkipNet-Ours 19.39 10.85 27.52 53.2 72.7 79.3

GeoNet 19.77 11.34 28.51 49.7 70.4 77.7

GeoNet-Ours 18.96 9.84 27.29 54.6 73.5 80.1

DORN 16.42 8.64 24.94 58.7 76.7 82.9

DORN-Ours 15.28 8.14 23.36 60.6 78.6 84.7

Table 5. Evaluation on Surface Normal Predictions. We train

and test our algorithm with different network architectures on the

ScanNet [9] dataset. Assisted by our joint loss, the performances

of all networks are improved.

5. Applications

In this section, we investigate whether the estimation of

local canonical frames is useful for applications. We first

study surface normal estimation, a direct application of our

method. In addition, we study how 3D canonical frames

can be utilized for perspective invariant feature descriptors

and augmented reality.

5.1. Surface Normal Estimation

Test on ScanNet We first compare the performance of our

surface normal estimation with state-of-the-art methods on

ScanNet [9]. We use our approach to train four networks

and evaluate them according to ground truth provided by

RGBD. Table 8 shows the results for all networks including

UNet [31], SkipNet [3], GeoNet [28] and DORN [12]. With

the assistance of the projected tangent principal directions,

the normal prediction is better for all architectures.

Figure 13 visualizes the normals predicted using DORN

with and without our method. With our approach, the er-

rors are smaller especially at object boundaries, possibly

because of the additional supervision given by the projected

tangent principal directions.

Test on NYUv2 We test different versions of our network

on NYUv2 [11] as a standard evaluation dataset. Since

NYUv2 does not provide reconstructed 3D meshes, we can-

not get ground truth 3D frames. Therefore, we train the net-

work on ScanNet datasets and directly test on NYUv2, as

shown in Table 9. Note that GeoNet-origin [28] is specifi-

cally trained and tested on NYUv2 and is the current state-

of-the-art method on normal estimation for that dataset.

Other rows are networks trained with and without our joint
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Figure 9. Visual comparison of the results. With our joint loss, the

predicted surface normals produce less errors and more details.

NYUv2 mean median rmse 11.25� 22.5� 30�

GeoNet-origin 19.0 11.8 26.9 48.4 71.5 79.5

ScanNet mean median rmse 11.25� 22.5� 30�

UNet 23.46 17.58 29.90 29.9 60.9 72.7

UNet-Ours 22.09 15.45 29.26 36.9 64.5 74.9

SkipNet 22.27 14.25 30.60 42.0 64.8 73.5

SkipNet-Ours 20.68 13.42 28.33 46.3 67.4 76.0

GeoNet 22.02 14.55 29.79 40.7 64.9 73.9

GeoNet-Ours 20.22 13.23 28.19 47.9 68.0 76.4

DORN 19.12 11.60 27.06 49.0 70.6 78.5

DORN-Ours 18.63 11.16 26.61 50.2 71.6 79.5

Table 6. Normal prediction on NYUv2 [11]. GeoNet-origin

trained and tested on NYUv2 [28]. DORN-Ours trained on Scan-

Net performs best among all.

losses on ScanNet and tested on NYUv2.

Although GeoNet performs worse than GeoNet-origin

by training only on ScanNet without fine-tuning, we still

achieve better performance with the DORN [12] architec-

ture and our loss (DORN-Ours). Moreover, all networks

show better performance with our loss, implying a robust

advantage of our joint estimation.

5.2. Keypoint Matching

Predicting local transformations is important for key-

point feature matching [26, 4, 40, 15, 51, 36, 49]. For exam-

ple, SIFT [26] estimates scale and camera-plane rotations to

provide invariance to those transformations. Since our net-

work estimates a full local 3D canonical frames, we can

additionally estimate a projective warp. Specifically, pre-

dicting the pairs of projected tangent principal directions

(in equation 4) for pixel p as ip and jp the local patch P is

warped to P
⇤ as shown in equation 7:

P
⇤(x) = P([ip, jp]x) . (7)

To investigate this feature, we performed a simple ex-

periment with SIFT [26]. We augmented the standard SIFT

descriptor computation to account for perspective warps im-

plied by our predicted canonical frames. Specifically, we

Image Space Canonical Tangent Space

Local Affine

Transform

Local Affine

Transform

Easier to

Match

Hard to

Match

Figure 10. By warping the local patch from the image to the canon-

ical tangent plane of the surface, feature descriptors are invariant

to the camera perspectives. Keypoint matching could be improved.
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Figure 11. Visualize the matching between SIFT with and without

our warping. With our warping, SIFT finds more correct matches.

SURF [4] ORB [32] Daisy [40] BRISK [24]

.224 .127 .262 .193

VGG [22] MatchNet [15] DeepDesc [36] PN-Net [2]

.271 .198 .257 .267

SIFT [26] ASIFT [50] LIFT [49] SIFT+Ours

.272 .265 .317 .335
Table 7. Matching score of descriptors on the DTU dataset.

detect keypoints using SIFT [26], and extract the SIFT de-

scriptors on the warped patch using our estimated local pro-

jected tangent principal directions.

To evaluate our modified descriptor, we compare it with

other methods on the DTU dataset [1], where scenes are

captured with different lighting and viewpoints. We vi-

sualize the correct matching produced by SIFT with and

without our local image warping in figure 11. As a re-

sult, the local image warping reduces the perspective dis-

tortions and produce more correct matches. We also test

the matching score as “the ratio of ground truth correspon-

dences that can be recovered by the whole pipeline over the

number of features proposed by the pipeline in the shared

viewpoint region” [49]. As shown in table 7, SIFT [26]

outperforms most methods. Since our method additionally

reduces the perspective effects using the projected tangent
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principal directions, we can further improve the SIFT per-

formance. Note that ASIFT [50] also shares the limitation

of SIFT [26] to different viewpoints, and extracts keypoints

from the image with various affine transforms. Therefore,

they usually provide many more correct matching but also

more outliers. That is why the matching score produced

by ASIFT [50] is slightly lower than SIFT [26]. However,

it sometimes shows better robustness assisted by geometric

filters in certain applications.

5.3. Augmented Reality

A particularly compelling application of predicting 3D

surface frames is augmented reality – i.e., it enables adding

new elements to a scene with appropriate 3D orientations.

Decal Attachment As a simple example, we investigate

warping virtual decals added to RGB images based on the

estimated 3D frame (first two rows of figure 12). In our

experiment, we ask the user to select one pixel in an RGB

image to indicate the center point for the decal on a sur-

face. If we assume the surface is planar, we can compute

the homography transformation required to align the decal

with the scene geometry. Suppose the selected pixel is p

with two estimated principal directions i and j and depth d.

Then, the center of the pattern (xc, yc) is located at K�1p·d
where K is the camera intrinsics. We additionally suppose

that the target distance of neighboring pixels of the pattern

attached to the scene is δ · d. Then, for pixel (x, y) in the

pattern, the homogeneous coordinate in the scene is

P(x, y) = K ·(K�1p·d+i·(x�xc)δd+j·(y�yc)δd) . (8)

Therefore, the homography transform can be inferred as

H = K[δi, δj,K�1p� δ(xci+ ycj)] . (9)

Here, δ represents the relative scale of the pattern to the

depth of the pixel, which can be controlled by the user. Be-

yond this point, our local frame even enables deformable

pattern attachment on curved surfaces. Similarly, the ho-

mogeneous coordinate of any pixel xt can be computed as

P(xt) = p+ δK ·

Z

xt

xc

[i(P(x)), j(P(x))]dx . (10)

We use the simple explicit Euler method to evolve P(x),
where the path of the integration starts from the center, and

follows the order guided by the breadth first search, where

the expansion is from one pixel to those among its four

neighbors which are not yet visited. Several examples of

deformable attachment is shown in figure 12. The user can

control δ to specify the size of the attached patterns.

Object Placement We can also use the local 3D frame de-

fined by predicted principal axes to render 3D objects into
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R
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u
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Figure 12. Adding new elements in the scene. We use red arrows

to represent rigid attachment, green to represent deformable at-

tachment, and blue to represent object placement.

RGB images, as shown in the last two rows of figure 12.

For this application, predicting the full 3D orientation of

the scene geometry is critical, so that objects can be planes

not only in accordance with the surface normal, but also in

the appropriate rotation around the normal (e.g., so that the

front is facing the right way). For example, the stuffed ani-

mals in the bottom left of figure 12 would appear unnatural

if they were facing the wall. This could also eases mixed

reality data augmentation for vision tasks, where existing

methods require the depth image for plane detection [42].

6. Conclusion

We have proposed the novel problem of densely estimat-

ing local 3D canonical frames from a single RGB image.

We formulated the problem as a joint estimation of sur-

face normals, canonical tangent directions, and projected

tangent directions. We find that this approach leads to su-

perior performance as compared to previous work on nor-

mal estimation and other tasks, including local projectively-

invariant feature extraction and AR novel object insertion in

images. Further study is warranted to investigate what other

geometric properties can be predicted from RGB using sim-

ilar methods and how they can be exploited in application

settings.
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