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Abstract

Vision-and-Language Navigation (VLN) tasks such as

Room-to-Room (R2R) require machine agents to interpret

natural language instructions and learn to act in visually

realistic environments to achieve navigation goals. The over-

all task requires competence in several perception prob-

lems: successful agents combine spatio-temporal, vision

and language understanding to produce appropriate action

sequences. Our approach adapts pre-trained vision and lan-

guage representations to relevant in-domain tasks making

them more effective for VLN. Specifically, the representations

are adapted to solve both a cross-modal sequence alignment

and sequence coherence task. In the sequence alignment task,

the model determines whether an instruction corresponds to

a sequence of visual frames. In the sequence coherence task,

the model determines whether the perceptual sequences are

predictive sequentially in the instruction-conditioned latent

space. By transferring the domain-adapted representations,

we improve competitive agents in R2R as measured by the

success rate weighted by path length (SPL) metric.

1. Introduction

Vision-and-Language Navigation (VLN) requires com-

putational agents to represent and integrate both modalities

and take appropriate actions based on their content, their

alignment and the agent’s position in the environment. VLN

datasets have graduated from simple virtual environments

[26] to photo-realistic environments, both indoors [2] and

outdoors [10, 7, 19]. To succeed, VLN agents must internal-

ize the (possibly noisy) natural language instruction, plan ac-

tion sequences, and move in environments that dynamically

change what is presented in their visual fields. These chal-

lenging settings bring simulation-based VLN work closer to

real-world, language-based interaction with robots [28].

Along with these challenges come opportunities: for ex-
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Figure 1: To overcome the scarcity of high-quality human-

annotated data, we propose auxiliary tasks, CMA and NVS,

that can be created by simple and effective negative mining.

The representations learned by a model trained on both the

tasks simultaneously, with a combined loss αLalignment+(1−
α)Lcoherence, are transferred over to agents learning the VLN

navigation task. The RCM agent [39] so trained outperforms

the existing published state-of-the-art agents.

ample, pre-trained linguistic and visual representations can

be injected into agents before training them on example

instructions-path pairs. Work on the Room-to-Room (R2R)

dataset [2] typically uses GloVe word embeddings [30] and

features from deep image networks like ResNet [17] trained

on ImageNet [31]. Associations between the input modali-

ties are based on co-attention, with text and visual represen-

tations conditioned on each other. Since a trajectory spans

multiple time steps, the visual context is often modeled using

recurrent techniques like LSTMs [20] that combine features

from the current visual field with historical visual signals

and agent actions. The fusion of both modalities constitutes

the agent’s belief state. The agent relies on this belief state to

decide which action to take, often relying on reinforcement

learning techniques like policy gradient [41].

Unfortunately, due to domain shift, the pre-trained models

are poor matches for R2R’s instructions and visual observa-
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tions. Furthermore, human-annotated data is expensive to

collect and there are relatively few instruction-path pairs (e.g.

R2R has just 7,189 paths with instructions). This greatly

reduces the expected benefit of fine-tuning [16, 45] on the

navigation task itself. Our contribution is to define auxiliary,

discriminative learning tasks that exploit the environment

before agent training. Our high-quality augmentation strat-

egy adapts the out-of-domain pre-trained representations and

allows the agent to focus on learning how to act rather than

struggling to bridge representations while learning how to

act. It furthermore allows us to rank and better exploit the

outputs of generative strategies used previously [14].

We present three main contributions. First, we define two

in-domain auxiliary tasks: Cross-Modal Alignment (CMA),

which involves assessing the fit between a given instruction-

path pair, and Next Visual Scene (NVS), which involves

predicting latent representations of future visual inputs in the

path. Neither task requires additional human annotated data

as they are both trained with cheap negative mining tech-

niques following Huang et al. [22]. Secondly, we propose

methods to train models on the two tasks: alignment-based

similarity scores for CMA and contrastive predictive cod-

ing [36] for NVS. A model trained on CMA and NVS is

not only able to learn cross-modal alignments, but is also

able to correctly differentiate between high-quality and low-

quality instruction-path pairs in the augmented data intro-

duced by Fried et al. [14]. Finally, we show that repre-

sentations learned by this model can be transferred to two

competitive navigation agents, Speaker-Follower [14] and

Reinforced Cross-Modal [39], to outperform their previously

established results. We also found that our domain-adapted

agent outperforms the known state-of-the-art agent at the

time by 5% absolute measure in SPL.

2. Related Work

Vision-and-Language Grounding There is much prior

work in the intersection of computer vision and natural lan-

guage processing [42, 23, 27, 21]. A highly related class

of tasks centers around generating captions for images and

videos [12, 13, 37, 38, 44]. In Visual Question Answering

[3, 43] and Visual Dialog [9], models generate single-turn

and multi-turn responses by co-grounding vision and lan-

guage. In contrast to these tasks, VLN agents are embodied

in the environment and must combine language, scene, and

spatio-temporal understanding.

Embodied Agent Navigation Navigation in realistic 3D

environments has also received increased interest recently

[35, 18, 29, 46]. Advances in vision-and-language naviga-

tion have accelerated with the introduction of the Room-

to-Room (R2R) dataset and associated attention-based

sequence-to-sequence baseline [2]. Fried et al. [14] used

generative approaches to augment the instruction-path pairs

and proposed a modified beam search for VLN. Wang et al.

[39] introduced innovations around multi-reward RL with

imitation learning and co-grounding in the visual and text

modality. While the two approaches reused pre-trained vi-

sion and language modules directly in the navigation agent,

our contribution shows that these pre-trained components

can be further enhanced by adapting them to related auxiliary

tasks before employing them in a VLN agent.

3. The Room-to-Room Dataset

The Room-to-Room (R2R) dataset [2] is based on 90

houses from the Matterport3D environments [6] each de-

fined by an undirected graph. The nodes are locations where

egocentric photo-realistic panoramic images are captured

and the edges define the connections between locations. The

dataset consists of language instructions paired with refer-

ence paths, where each path is a sequence of graph nodes.

Each path is associated with 3 natural language instructions

collected using Amazon Mechanical Turk with an average

token length of 29 from a dictionary of 3.1k unique words.

Paths collected are longer than 5m and contain 4 to 6 edges.

The dataset is split into a training set, two validation sets and

a test set. One validation set includes new instructions on

environments overlapping with the training set (Validation

Seen), and the other is entirely disjoint from the training set

(Validation Unseen). Evaluation on the validation unseen set

and the test set assess the agent’s full generalization ability.

Metrics for assessing agents performance include:

• Path Length (PL) measures the total length of the pre-

dicted path. (The reference path’s length is optimal.)

• Navigation Error (NE) measures the distance between

the last nodes in the predicted and the reference paths.

• Success Rate (SR) measures how often the last node

in the predicted path is within some threshold distance

dth of the last node in the reference path.

• Success weighted by Path Length (SPL) [1] measures

whether the SR success criteria was met, weighted by

the normalized path length.

SPL is the best metric for ranking agents as it takes into

account the path taken, not just whether goal was reached [1].

This is evident with (invalid) entries on the R2R leaderboard

that use beam search often achieving high SR but low SPL

because they wander all around before stopping.

4. Mining Negative Paths

VLN tasks are composed of instruction-path pairs, where

a path is a sequence of connected locations along with their

corresponding perceptual contexts. The core task is to train

agents to follow the provided instructions. However, aux-

iliary tasks could help adapt out-of-domain language and
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vision representations to be relevant to the navigation do-

main. We follow two principles in designing these auxiliary

tasks: they should not involve any additional human annota-

tions and they should use and update representations needed

for downstream navigation tasks.

The crux of our auxiliary tasks is the observation that the

given human generated instructions are specific to the paths

described. Given the diversity and relative uniqueness of the

properties of different rooms and the trajectories of different

paths, it is highly unlikely that the original instruction will

correspond well to automatically mined negative paths. As

such, given a visual path and a high quality human generated

instruction, it is easy to create various incorrect paths by

random path sampling or random walks from start or end

nodes, to name a few. For a given instruction-path pair, we

sample negatives by keeping the same instruction but altering

the path sequence in one of three ways.

• Path Substitution (PS): randomly pick other paths from

the same environment as negatives.

• Random Walks (RW): sample random paths of the same

length as the original path that either (1) start at the

same location and end sufficiently far from the original

path or (2) end at the same location and start sufficiently

far from the original path. We use a threshold of 5

meters to make sure the path has significant difference.

• Partial Reordering (PR): keep the first and last nodes

in the path fixed and randomly shuffle the rest.

These three strategies create increasingly more challenging

negative examples. PS pairs have only incidental connection

between the text and the perceptual sequence, RW pairs

share one or the other end point, and PR pairs have the same

perceptual elements in a new (and incoherent) order.

5. Representation Learning

Using the mined negative paths, we train models for two

auxiliary tasks that exploit the data in complementary ways.

The first is a two-tower model [15, 33] with a cross-modal

alignment module. This model produces similarity scores

that reflect the semantic similarity between visual and lan-

guage sequences. The second is a model that optimizes

pairwise sequence coherence by predicting latent represen-

tations of future visual scenes, conditioned on the language

sequence and a partial visual sequence. We furthermore train

these models on both tasks with a combined loss. This fine

tunes the representations to domain-specific language and

interior environments relevant to the R2R dataset, and asso-

ciates language to the visual scenes the agent will experience

during the full navigation problem.

5.1. Task 1: Cross­Modal Alignment (CMA)

An agent’s ability to navigate a visual environment using

language instructions is closely associated with its capacity

to align semantically similar concepts across the two modali-

ties. Given an instruction like “Turn right and move forward

around the bed, enter the bathroom and wait there.”, the

agent should match the word bed with a location on the path

that has a bed in the agent’s egocentric view; doing so will

help orient the agent and allow it to better follow further

instructions. To this end, we create a cross-modal alignment

task (denoted as CMA) that involves discriminating positive

instruction-path pairs from negative pairs. The discrimina-

tive model is based on an alignment-based similarity score

that encourages the model to map perceptual and textual

signals in two sequences.

5.2. Task 2: Next Visual Scene (NVS)

Research in sensory and motor processing suggests that

the human brain predicts (anticipates) future states in order

to assist decision making [11, 5]. Similarly, agents can ben-

efit if they learn to predict expected future states given the

current context at a given point in the course of navigation.

While it is challenging to predict high-dimensional future

states, methods like Contrastive Predictive Coding (CPC)

[36] circumvent this by working in lower dimensional latent

spaces. With CPC, we add a probabilistic contrastive loss

to our adaptation model. This induces a latent space that

captures visual information useful for predicting future vi-

sual observations, enabling the visual network to adapt to the

R2R environment. In the NVS task, the model’s current state

is used to predict the latent space representation of future k

steps (in this work, we use k = 1, 2). The negatives from

CMA are used as negatives to compute the InfoNCE [36] loss

during training (see next section for details).

5.3. Model Architecture

For consistency with the navigation agent model (Sec. 6),

we use a two-tower architecture to encode the two sequences,

with one tower encoding the token sequence in the instruc-

tion and the other tower encoding the visual sequence.

Language Encoder. Instructions X = x1, x2, ..., xn are

initialized with pre-trained GloVe word embeddings [30].

These embeddings are fine-tuned to solve the auxiliary tasks

and transferred to the agent to be further fine-tuned to solve

the VLN challenge. We restrict the GloVe vocabulary to

tokens that occur at least five times in the training instruc-

tions. All out-of-vocabulary tokens are mapped to a single

out-of-vocabulary identifier. The token sequence is encoded

using a bi-directional LSTM [32] to create HX following:
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H
X = [hX

1 ;hX
2 ; ...;hX

n ] (1)

h
X
t = σ(

−→
h

X
t ,
←−
h

X
t ) (2)

−→
h

X
t = LSTM(xt,

−→
h

X
t−1) (3)

←−
h

X
t = LSTM(xt,

←−
h

X
t+1) (4)

where the σ function is used to combine the output of for-

ward and backward LSTM layers.

Visual Encoder. As in Fried et al. [14], at each time

step t, the agent perceives a 360-degree panoramic view

at its current location. The view is discretized into k view

angles (k = 36 in our implementation, 3 elevations by 12

headings at 30-degree intervals). The image at view angle

i, heading angle φ and elevation angle θ is represented by a

concatenation of the pre-trained CNN image features with

the 4-dimensional orientation feature [sin φ; cos φ; sin θ; cos

θ] to form vt,i. The visual input sequence V = v1, v2, ..., vm
is encoded using a LSTM to create HV following:

H
V = [hV

1 ;hV
2 ; ...;hV

m] (5)

h
V
t = LSTM(vt, h

V
t−1) (6)

where vt = Attention(hV
t−1, vt,1..k) is the attention-pooled

representation of all view angles using previous agent state

ht−1 as the query.

Training Loss. For CMA, the alignment-based similarity

score is computed as follows:

A = H
X(HV )T (7)

{c}l=X
l=1 = softmax(Al) ·Al

(8)

score = softmin({c}l=X
l=1 ) · {c}l=X

l=1 (9)

where (.)T is matrix transpose transformation, A is the align-

ment matrix whose dimensions are [n,m] and Al is the l-th

row vector in A. Eq. 8 corresponds to taking a softmax along

the columns and summing the columns. This amounts to

column-wise content-based pooling. Then we apply the soft-

min operation along the rows and sum the rows up to obtain

a scalar in Eq. 9. Intuitively, maximizing this score for posi-

tive instruction-path pairs encourages the learning algorithm

to construct the best worst-case sequence alignment between

the two sequences in the latent space. The training objective

for CMA is to minimize the cross entropy loss Lalignment.

The InfoNCE [36] loss for NVS is computed as follows:

Lcoherence = −E
F

[

log
f(vt+k, h

V
t )

∑

vj∈F
f(vj , hV

t )

]

(10)

f(vt+k, h
V
t ) = exp(vt+k

T
Wkh

V
t ) (11)

where vt+k is the latent representation of visual input at

time step t + k, hV
t is the visual-encoder LSTM’s output

at time step t which summarizes all v≤t, Wk are learnable

parameters which are different for different values of k (we

choose k = 1, 2 in our experiments). For a given hV
t , there

is exactly one positive sample in the set F , the negative

samples can be chosen from negative instruction-path pairs

as mined in Sec. 4. The loss in Eq. 10 is the categorical

cross-entropy of classifying the positive sample correctly.

Finally, the model is trained to minimize the combined

loss αLalignment + (1− α)Lcoherence.

6. Navigation Agent

For comparisons with established models, we reimple-

mented the Speaker Follower agent of Fried et al. [14] (de-

noted as SF agent from hereon) and Reinforced Cross-Modal

Matching agent of Wang et al. [39] (denoted as RCM agent

from hereon) for our experiments.

6.1. Navigator

The navigator learns a policy πθ over parameters θ that

map the natural language instruction X and the initial visual

scene v1 to a sequence of actions a1..T . The language and

visual encoder of the navigator are the same as described

in Sec. 5.3. The actions available to the agent at time t

are denoted as ut,1..l, where ut,j is the representation of

the navigable direction j from the current location obtained

similarly to vt,i [14]. The number of available actions, l,

varies per location, since graph node connectivity varies.

As in [39], the model predicts the probability pd of each

navigable direction d using a bilinear dot product:

pd = softmax([hV
t ; ctext

t ; cvisual
t ]Wc(ut,dWu)

T ) (12)

c
text
t = Attention(hV

t , h
X
1..n) (13)

c
visual
t = Attention(ctext

t , vt,1..k) (14)

6.2. Learning

The SF agent is trained using student forcing [14] where

actions are sampled from the model during training, and

supervised using a shortest-path action to reach the goal.

For the RCM agent, learning is performed in two sepa-

rate phases, (1) behavioral cloning [4, 39, 8] and (2) REIN-

FORCE policy gradient updates [41]. The agent’s policy

is initialized using behavior cloning to maximally use the

available expert demonstrations. This phase constrains the

learning algorithm to first model state-action spaces that are

most relevant to the task, effectively warm starting the agent

with a good initial policy. No reward shaping is required
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during this phase as behavior cloning corresponds to solving

the following maximum-likelihood problem:

max
θ

∑

(s,a)∈D

log πθ(a|s) (15)

where D is the demonstration data set.

Once the model is initialized to a reasonable policy with

behavioral cloning, we further update the model via standard

policy gradient updates by sampling action sequences from

the agent’s behavior policy. As in standard policy gradient

updates, the model minimizes the loss function LPG whose

gradient is the negative policy gradient estimator [41]:

LPG = −Êt[log πθ(at|st)Ât] (16)

where the expectation Êt is taken over a finite batch of sam-

ple trajectories generated by the agent’s stochastic policy

πθ. Furthermore, for variance reduction, we scale the gra-

dient using the advantage function Ât = Rt − b̂t where

Rt =
∑∞

i=t γ
i−tri is the observed γ-discounted episodic

return and b̂t is the estimated value of agent’s current state

at time t. Similar to [39], the immediate reward at time step

t in an episode of length T is given by:

r(st, at) =

{

d(st, r|R|)− d(st+1, r|R|) if t < T

✶[d(sT , r|R|) ≤ dth] if t = T
(17)

where d(st, r|R|) is the distance between st and target loca-

tion r|R|, ✶[·] is the indicator function, dth is the maximum

distance from r|R| that the agent is allowed to terminate for

it to be considered successful.

The models are trained using mini-batch gradient descent.

For RCM agent, our experiments show that interleaving

behavioral cloning and policy gradient training phases im-

proves performance on the validation set. Specifically we

interleaved each policy gradient update batch with K be-

haviour cloning batches, with the value of K decaying ex-

ponentially, such that the training strategy asymptotically

becomes only policy gradient updates.

7. Results

7.1. Experimental Setup

In our experiments, we use a 2-layer bi-directional LSTM

for the instruction encoder where the size of LSTM cells is

256 units in each direction. The inputs to the encoder are

300-dimensional embeddings initialized using GLoVe and

fine-tuned during training. For the visual encoder, we use

a 2-layer LSTM with a cell size of 512 units. The encoder

inputs are image features derived as mentioned in Sec. 5.3.

The cross-modal attention layer size is 128 units. To train

the model on auxiliary tasks, we use Momentum optimizer

PS PR RW AUC

✓ 64.5

✓ 60.5

✓ 63.1

✓ ✓ 72.1

✓ ✓ 66.0

✓ ✓ 70.8

✓ ✓ ✓ 72.0

Table 1: Results on training in different combinations of

datasets and evaluating against validation dataset containing

PR and RW negatives only.

with a learning rate of 10−2 that decays at a rate of 0.8

every 0.5 million steps. The SF navigation agent is trained

using Momentum optimizer while RCM agent is trained

using Adam optimizer with learning rate decaying at a rate

of 0.5 every 0.2 million steps. We use a learning rate of

10−5 during agent training if the agent is warm-started with

pre-trained components of the model trained on auxiliary

tasks, otherwise we use learning rate of 10−4.

7.2. Training on Auxiliary Tasks

Recently, Fried et al. [14] introduced an augmented

dataset (referred to as Fried-Augmented from now on)

that is generated by using a speaker model and they show

that the models trained with both the original data and the

machine-generated augmented data improves agent success

rates. On manual inspection, we found that while many paths

in Fried-Augmented have clear starting or ending de-

scriptions, the middle segments of the instructions are often

noisy and have little connection to the path they are meant

to describe. Here we show that our model trained on CMA

is able to differentiate between high-quality and low-quality

instruction-path pairs in Fried-Augmented.

In line with the original R2R dataset [2], we create three

splits for each of the negative sampling strategies defined in

Section 5 – a training set from paths in R2R train split, a

validation seen set from paths in R2R validation seen and a

validation unseen set from paths in R2R validation unseen

split. The paths in the original R2R dataset are used as

positives and there are 10 negatives for each positive with

4 of those negatives sampled using PS and 3 each using

RW and PR respectively. A model trained on the task CMA

learns to differentiate aligned instruction-path pairs from

the misaligned pairs. We also studied the three negative

sampling strategies summarized in Table 1.

Scoring generated instructions. We use this trained

model to rank all the paths in Fried-Augmented and

train the RCM agent on different portions of the data. Table

2 gives the performance when using the best 1% versus the

worst 1%, and likewise for the best and worst 2%. Using

high-quality examples–as judged by the model–outperforms
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Validation Seen Validation Unseen

Dataset size Strategy PL NE ↓ SR ↑ SPL ↑ PL NE ↓ SR ↑ SPL ↑

1%
Top 11.1 8.5 21.2 17.6 11.2 8.5 20.4 16.6

Bottom 10.7 9.0 16.3 13.1 10.8 8.9 15.4 14.1

2%
Top 11.7 7.9 25.5 21.0 11.3 8.2 22.3 18.5

Bottom 14.5 9.1 17.7 12.7 11.4 8.4 17.5 14.1

Table 2: Results for Validation Seen and Validation Unseen, when trained with a small fraction of Fried-Augmented

ordered by scores given by model trained on CMA. SPL and SR are reported as percentages and NE and PL in meters.

1

(a)

1 2 3 4 5 6 1 2 3 4 5 6

(b)

2

3 4

5 6

Turn
right
and
exit
the

door
.

Once
out
turn
right
and
go
to
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end
of
the

hallway
and
turn
right

,
enter
the

bedroom
and
stop

.

Figure 2: Alignment matrix (Eq. 7) for model trained on the dataset containing (a) PS, PR, RW negatives (b) PS negatives only.

Note that darker means higher alignment.

the ones trained using low-quality examples. Note that the

performance is low in both cases because none of the origi-

nal human-created instructions were used—what is impor-

tant is the relative performance between examples judged

higher or lower. This clearly indicates that the model scores

instruction-path pairs effectively.

Visualizing Cross-Modal Alignment. Fig. 2 gives the

alignment matrix A (Eq. 7) from the model trained on CMA

for a given instruction-path pair to try to better understand

how well the model learns to align the two modalities as

hypothesized. As a comparison point, we also plot the align-

ment matrix for a model trained on the dataset with PS nega-

tives only. While scoring PR and RW negatives may require

carefully aligning the full sequence in the pair, it is easier to

score PS negatives by just attending to first or last locations

on the path. It is expected that the model trained on the

dataset containing only PS negatives will exploit these easy-

to-find patterns in negatives and make predictions without

carefully attending to full instruction-path sequence.

The figure shows the difference between cross-modal

alignment for the two models. While there is no clear align-

ment between the two sequences for the model trained with

PS negatives only (except maybe towards the end of se-

quences, as expected), there is a visible diagonal pattern in

the alignment for the model trained on all negatives in CMA.

In fact, there is appreciable alignment at the correct positions

in the two sequences, e.g., the phrase exit the door aligns

with the image(s) in the path containing the object door, and

similarly for the phrase enter the bedroom.

Improvements from Adding Coherence Loss. Finally

we show that training a model on CMA and NVS simulta-

neously improves the model’s performance when evaluated

on CMA alone. The model is trained using combined loss

αLalignment +(1−α)Lcoherence with α = 0.5 and is evaluated

on its ability to differentiate incorrect instruction-path pairs

from correct ones. As noted earlier, PS negatives are easier

to discriminate, therefore, to keep the task challenging, the

validation sets were limited to contain validation splits from
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Training Val. Seen Val. Unseen

CMA 82.6 72.0

NVS 63.0 62.1

CMA + NVS 84.0 79.2

Table 3: AUC performance when the model is trained on

different combinations of the two tasks and evaluated on the

dataset containing only PR and RW negatives.

PR and RW negative sampling strategies only. The area-

under ROC curve (AUC) is used as the evaluation metric.

The results in Table 3 demonstrate that adding Lcoherence as

auxiliary loss improves the model’s performance on CMA by

7% absolute measure.

7.3. Transfer Learning to Navigation Agent

The language and visual encoders in the RCM navigation

agent (Sec. 6) are warm-started from the model trained on

CMA and NVS simultaneously. The agent is then allowed to

train on R2R train and Fried-Augmented as other exist-

ing baseline models do. We call this agent ALTR – to mean an

Agent initialized by Learned Transferable Representations

from auxiliary tasks. The standard testing scenario of the

VLN task is to train the agent in seen environments and

then test it in previously unseen environments in a zero-shot

fashion. There is no prior exploration on the test set. This

setting is able to clearly measure the generalizability of the

navigation policy, and we evaluate our ALTR agent only

under this standard testing scenario.

7.4. Comparison with SOTA

Table 4 shows the comparison of the performance of our

ALTR agent to the previous state-of-the-art (SOTA) meth-

ods on the test set of the R2R dataset, which is held out as

the VLN Challenge. Our ALTR agent significantly outper-

forms the SOTA at the time on SPL–the primary metric for

R2R–improving it by 5% absolute measure, and it has the

lowest navigation error (NE). It furthermore ties the other

two best models for SR. Compared to RCM, our ALTR agent

is able to learn a more efficient policy resulting in shorter

trajectories to reach the goal state, as indicated by its lower

path length. Figure 3 compares some sample paths from

the RCM baseline and our ALTR agent, illustrating that the

ALTR agent often stays closer to the true path and does less

doubling back compared to the RCM agent.

It is worth noting that the R2R leaderboard has models

that use beam-search and/or explore the test environment

before submission. For a fair comparison, we only compare

against models that, like ours, return exactly one trajectory

per sample without pre-exploring the test environment (in

accordance with VLN challenge submission guidelines).

We show in the next section that our transfer learning

Model PL NE ↓ SR ↑ SPL ↑

Random [2] 9.89 9.79 13.2 12.0

Seq-to-Seq [2] 8.13 7.85 20.4 18.0

Look Before You Leap [40] 9.15 7.53 25.3 23.0

Speaker-Follower [14] 14.8 6.62 35.0 28.0

Self-Monitoring [24] 18.0 5.67 48.0 35.0

Reinforced Cross-Modal [39] 12.0 6.12 43.1 38.0

The Regretful Agent [25] 13.7 5.69 48.0 40.0

ALTR (Ours) 10.3 5.49 48.0 45.0

Table 4: Comparison on R2R Leaderboard Test Set. Our

navigation model benefits from transfer learned representa-

tions and outperforms the known SOTA on SPL. SPL and

SR are reported as percentages and NE and PL in meters.

Figure 3: Sample visualizations comparing reference paths

(blue), paths from RCM baseline agent (red) and our ALTR

agent (orange).

approach improves the Speaker-Follower agent [14]. In

general, this strategy is complementary to the improvements

from the other agents, so it is likely it would help others too.

7.5. Ablation Studies

The first ablation study analyzes the effectiveness of each

task individually in learning representations that can benefit

the navigation agent. Since the agent is rewarded for reach-

ing the goal (Eq. 17), we expect SR results to align well

with our training objective. Table 5 shows that agents benefit

the most when initialized with representations learned on

both the tasks simultaneously. When pre-trainning CMA and

NVS jointly, we see a consistent 11-12% improvement in SR

for both the SF and RCM agents as well as improvement in

agent’s path length, thereby also improving SPL. When pre-

training CMA only, we see a consistent 8-9% improvement
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Validation Seen Validation Unseen

Method CMA NVS PL NE ↓ SR ↑ SPL ↑ PL NE ↓ SR ↑ SPL ↑

Speaker-Follower [14] - - - 3.36 66.4 - - 6.62 35.5 -

RCM[39] - - 12.1 3.25 67.6 - 15.0 6.01 40.6 -

Speaker-Follower (Ours)

✗ ✗ 15.9 4.90 51.9 43.0 15.6 6.40 36.0 29.0

✓ ✗ 14.9 5.04 50.2 39.2 16.8 5.85 39.1 26.8

✗ ✓ 16.5 5.12 48.7 34.9 18.0 6.30 34.9 20.9

✓ ✓ 11.3 4.06 60.8 55.9 14.6 6.06 40.0 31.2

RCM (Ours)

✗ ✗ 13.7 4.48 55.3 47.9 14.8 6.00 41.1 32.7

✓ ✗ 10.2 5.10 51.8 49.0 9.5 5.81 44.8 42.0

✗ ✓ 19.5 6.53 34.6 20.8 18.8 6.79 33.7 20.6

✓ ✓ 13.2 4.68 55.8 52.7 9.8 5.61 46.1 43.0

Table 5: Ablations on R2R Validation Seen and Validation Unseen sets, showing results in VLN for different combinations of

pre-training tasks. SPL and SR are reported as percentages and NE and PL in meters.

Validation Seen Validation Unseen

Image encoder Language encoder PL NE ↓ SR ↑ SPL ↑ PL NE ↓ SR ↑ SPL ↑

✗ ✗ 13.7 4.48 55.3 47.9 14.8 6.00 41.1 32.7

✓ ✗ 15.9 5.05 50.6 38.2 14.9 5.94 42.5 33.1

✗ ✓ 13.8 4.68 56.3 46.6 13.5 5.66 43.9 35.8

✓ ✓ 13.2 4.68 55.8 52.7 9.8 5.61 46.1 43.0

Table 6: Ablations showing the effect of adapting (or not) the learned representations in each branch of our RCM agent on

Validation Seen and Validation Unseen. SPL and SR are reported as percentages and NE and PL in meters.

in SR for both the SF and RCM agents. When pre-training

NVS only, we see a drop in performance. Since there are

no cross-modal components to train the language encoder in

NVS, training on NVS alone fails to provide a good initial-

ization point for the downstream navigation task that requires

cross-modal associations. However, pre-training with NVS

and CMA jointly affords the model additional opportunities

to improve visual-only pre-training (due to NVS), without

compromising cross-modal alignment (due to CMA).

The second ablation analyzes the effect of transferring

representations to either of the language and visual encoders.

Table 6 shows the results for the RCM agent. The learned

representations help the agent to generalize on previously

unseen environments. When either of the encoders is warm-

started, the agent outperforms the baseline success rates and

SPL on validation unseen dataset. In the absence of learned

representations, the agent overfits on seen environments and

as a result the performance improves on the validation seen

dataset. Among the agents that have at least one of the

encoders warm-started, the agent with both encoders warm-

started has significantly higher SPL (7%+) on the validation

unseen dataset.

The results of both the studies demonstrate that the two

tasks, CMA and NVS, learn complementary representations

which benefit the navigation agent. Furthermore, the agent

benefits the most when both the encoders are warm-started

from the learned representations.

8. Conclusion

We demonstrate the model trained on two complementary

auxiliary tasks, Cross-Modal Alignment (CMA) and Next

Visual Scene (NVS), learns visual and textual representations

that can be transferred to navigation agents. The transferred

representations improve both the SF and RCM agents in

key navigation metrics. Our ALTR agent–RCM initialized

with domain adapted representations–outperforms published

models at the time by 5% absolute measure. We expect our

approach to be complementary to the latest state-of-the-art

from Tan et al. [34].

Similar to our work, there can be other auxiliary tasks

that could be designed without requiring any additional hu-

man annotations. The scoring model trained on the tasks

also has additional capabilities like cross-modal alignment.

We expect this could help improve methods that generate

additional paired instruction-path pairs. It could also allow

us to automatically segment long instruction-path sequences

and thus create a curriculum of easy to hard tasks for agent

training. For the future, it would be desirable to jointly train

the agent with the auxiliary tasks.
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