
Conditional Recurrent Flow: Conditional Generation of Longitudinal Samples

with Applications to Neuroimaging

Seong Jae Hwang1

Univ. of Pittsburgh

Zirui Tao

Univ. of Wisconsin-Madison

Won Hwa Kim2

Univ. of Texas at Arlington

Vikas Singh2

Univ. of Wisconsin-Madison

Abstract

We develop a conditional generative model for longitu-

dinal image datasets based on sequential invertible neural

networks. Longitudinal image acquisitions are common in

various scientific and biomedical studies where often each

image sequence sample may also come together with var-

ious secondary (fixed or temporally dependent) measure-

ments. The key goal is not only to estimate the parameters of

a deep generative model for the given longitudinal data, but

also to enable evaluation of how the temporal course of the

generated longitudinal samples are influenced as a function

of induced changes in the (secondary) temporal measure-

ments (or events). Our proposed formulation incorporates

recurrent subnetworks and temporal context gating, which

provide a smooth transition in a temporal sequence of gen-

erated data that can be easily informed or modulated by

secondary temporal conditioning variables. We show that

the formulation works well despite the smaller sample sizes

common in these applications. Our model is validated on

two video datasets and a longitudinal Alzheimer’s disease

(AD) dataset for both quantitative and qualitative evalua-

tions of the generated samples. Further, using our gener-

ated longitudinal image samples, we show that we can cap-

ture the pathological progressions in the brain that turn out

to be consistent with the existing literature, and could facil-

itate various types of downstream statistical analysis.

1. Introduction

Consider a dataset of longitudinal or temporal sequences

of data samples {xt}Ni=1
where each sample xi comes with

sequential covariates {yt}Ni=1
, one for each time point

t. In other words, we assume that for each sequential

sample i, x1

i , · · · ,x
T
i = {xt}i, the sequential covariates

y1

i , · · · ,y
T
i = {yt}i provide some pertinent auxiliary in-

formation associated with that sequential sample. For ex-

ample, in a neuroimaging study, if the sequential samples

correspond to several longitudinal image scans of a partici-

pant over multiple years, the sequential covariate associated
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Figure 1: Conditional sequence generation illustration. 1) Given: a

sequential condition of decreasing cognition (i.e., a memory test score se-

quence y1

i
→ y2

i
→ y3

i
indicating High→Medium→Low Cognition per-

formance). 2) Model: Conditional Recurrent Flow (CRow). 3) Generate:

a sequence of brain image progression x1

i
→ x2

i
→ x3

i
corresponding to

the given cognition progression (i.e., brain regions with high (red) and low

(blue) disease pathology). The Generated Sequence follows the trend of

the Real Data Sequence (i.e., similar (≈) to the real brain image progres-

sion) from the subjects with similarly decreasing cognition scores.

with each time point may be an assessment of disease sever-

ity or some other clinical measurement.

Our high level goal is to design conditional generative

models for such sequential image data. In particular, we

want a model which provides us a type of flexibility that is

highly desirable in this setting. For instance, for a sample

drawn from the distribution after the generative model has

been estimated, we should be able to “adjust” the sequential

covariates, say at a time point t, dynamically to influence

the expected future predictions after t for that sample. It

makes sense that for a heart rate sequence, the appropriate

subsequence should be influenced by when the “violence”

stimulus was introduced as well as the default heart rate

pattern of the specific sample (participant) [2]. Notice that

when t = 1, this construction is similar to conditional gen-

erative models where the “covariate” or condition y may

simply denote an attribute that we may want to adjust for a

sample: for example, increase the smile or age attribute for

a face image sampled from the distribution as in [26].

We want our formulation to provide a modified set of xts

adaptively, if we adjust sequential covariates yts for that
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sample. If we know some important clinical information

at some point during the study (say, at t = 5), this infor-

mation should influence the future generation xt>5 condi-

tioned both on this sequential covariate or event y5 as well

as the past sequence of this sample xt<5. This will require

conditioning on the corresponding sequential covariates at

each time point t by accurately capturing the posterior dis-

tribution p(xt|yt). Such conditional sequence generation

needs a generative model for sequential data which can

dynamically incorporate time-specific sequential covariates

yt of interest to adaptively modify sequences.

The setup above models a number of applications in

medical imaging and computer vision that require genera-

tion of frame sequences conditioned on frame-level covari-

ates. In neuroimaging, many longitudinal studies focus on

identifying disease trajectories [3, 5, 28, 18]: for example,

at what point in the future will specific regions in the brain

exceed a threshold for brain atrophy? The future trend is

invariably a function of clinical measures that a participant

provides at each visit as well as the past trend of the subject.

From a methodological standpoint, constructing a sequen-

tial generative model may appear feasible by appropriately

augmenting the generation process using existing genera-

tive models. For example, one could simply concatenate

the sequential measurements {xt} as a single input for ex-

isting non-sequential conditional generative models such as

conditional GANs [31, 19] and conditional variational au-

toencoders [38, 1]. We will see why this is not ideal shortly.

We find that for our application, an attractive alternative

to discriminator-generator based GANs, is a family of neu-

ral networks called normalizing flow [36, 35, 10, 9] which

involve invertible networks (i.e., reconstruct input from its

output). What is particularly relevant is that such formu-

lations work well for conditionally generating diverse sam-

ples with controllable degrees of freedom [4] – with an ex-

plicit mechanism to adjust the conditioning variable. But

the reader will notice that while these models, in principle,

can be used to approximate the posterior probability given

an input of any dimension, concatenating a series of sequen-

tial inputs quickly blows up the size for these highly ex-

pressive models and renders them impractical to run, even

on high-end GPU clusters. Even if we optimistically as-

sume computational feasibility, variable length sequences

cannot easily be adapted to these innately non-sequential

generative models, especially for those that extend beyond

the training sequence length. Also, data generated in this

manner involve simply “concatenated” sequential data and

do not consider the innate temporal relationships among the

sequences, which is fundamental in recurrent models. For

these reasons, adapting existing generative models, will in-

volve setting up a generative model which is recursive for

variable length inputs.

Given various potential downstream applications and the

issues identified above with conditional sequential genera-

tion problem, we seek a model which (i) efficiently gener-

ates high dimensional sequence samples of variable lengths

(ii) with dynamic time-specific conditions reflecting up-

stream observations (iii) with fast posterior probability es-

timation. We tackle the foregoing issues by introducing an

invertible recurrent neural network, CRow, that includes re-

current subnetwork and temporal context gating. These

modifications are critical in the following sense. Invertibil-

ity lets us precisely estimate the distribution of p(xt|yt) in

latent space. Introducing recurrent subnetworks and tem-

poral context gating enables obtaining cues from previ-

ous time points x<t to generate temporally sensible sub-

sequent time points x≥t. Specifically, our contributions

are: (A) Our model generates conditional sequential sam-

ples {xt} given sequential covariates {yt} for t = 1, . . . , T
time points where T can be arbitrarily long. Specifically,

we allow this by posing the task as a conditional sequence

inverse problem based on a conditional invertible neural net-

work [4]. (B) Assessing the quality of the generated sam-

ples may not be trivial for certain modalities (e.g., non-

visual features). With the specialized capability of the nor-

malizing flow construction, our model estimates the pos-

terior probabilities p(xt|yt) of the generated sequences at

each time point for potential downstream analyses involv-

ing uncertainty. (C) We demonstrate an interesting practi-

cal application of our model in a longitudinal neuroimag-

ing dataset. We show that the generated longitudinal brain

pathology trajectories (an illustration in Fig. 1) can lead to

identifying specific regions in the brain which are statisti-

cally associated with Alzheimer’s disease (AD).

2. Preliminary: Invertible Neural Networks

We first describe an invertible neural network (INN)

which inverts an output back to its input for solving inverse

problems (i.e., z = f(x) ⇔ x = f−1(z)). This becomes

the building block of our method; thus, before we present

our main model, let us briefly describe a specific type of in-

vertible structure which was originally specialized for den-

sity estimation with neural network models.

2.1. Normalizing Flow

Estimating the density pX(x) of sample x is a classi-

cal statistical problem in various fields including computer

vision and machine learning in, e.g., uncertainty estimation

[14, 15]. For tractable computation throughout the network,

Bayesian adaptations are popular [34, 12, 33, 27, 23, 18],

but these methods make assumptions on the prior distribu-

tions (e.g., exponential families).

A normalizing flow [36, 35] first learns a function f(·)
which maps a sample x to a latent variable z = f(x) where

z is from a standard normal distribution Z. Then, with a

change of variables formula, we estimate

pX(x) = pZ(z)/|JX|, |JX| =

∣

∣

∣

∣

∂[x = f−1(z)]

∂z

∣

∣

∣

∣

(1)
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(a) Forward map (Eq. (2)) (b) Inverse map (Eq. (3))

Figure 2: Coupling layer in normalizing flow. Note the change of operation

orders: u → v in forward and v → u in inverse.

where |JX| is a Jacobian determinant. Thus, f(·) must be

invertible, i.e., x = f−1(z), and to use a neural network

as f(·), a coupling layer structure was introduced in Real-

NVP [9, 10] for an easy inversion and efficient |JX| com-

putation as we describe next.

Forward map (Fig. 2a). Without loss of generality, in

the context of network structures, we use an input u ∈ R
d

and an output v ∈ R
d (i.e., u → v). First, we split u into

u1 ∈ R
d1 and u2 ∈ R

d2 where d = d1 + d2 (e.g., partition

u → [u1,u2]). Then, we forward map u1 and u2 to v1 and

v2 respectively:

v1 = u1, v2 = u2 ⊗ exp(s(u1)) + r(u1) (2)

where s and r are independent functions (i.e., subnetworks),

and ⊗ and + are element-wise product and addition respec-

tively. Then, v1 and v2 construct v (e.g., [v1,v2] → v).

Inverse map (Fig. 2b). A straightforward arithmetic al-

lows an exact inverse from v to u (i.e., v → u):

u1 = v1, u2 = (v2 − r(v1))⊘ exp(s(v1)) (3)

where the subnetworks s and r are identical to those used

in the forward map in Eq. (2), and ⊘ and − are element-

wise division and subtraction respectively. Note that the

subnetworks are not explicitly inverted, thus any arbitrarily

complex network can be utilized.

Also, the Jacobian matrix Jv = ∂v/∂u is triangular so

its determinant |Jv| is just the product of diagonal entries

(i.e.,
∏

i exp(s(u1))i) which is extremely easy to compute

(we will discuss this further in Sec. 3.2.1).

To transform the “bypassed” split u1 (since u1 = v1), a

coupling block consisting of two complementary coupling

layers is constructed to transform both u1 and u2:

v1 = u1 ⊗ exp(s2(u2)) + r2(u2)

v2 = u2 ⊗ exp(s1(v1)) + r1(v1)
(4)

and its inverse

u2 = (v2 − r1(v1))⊘ exp(s1(v1))

u1 = (v1 − r2(u2))⊘ exp(s2(u2)).
(5)

Such a series of transformations allow a more complex

mapping which still comes with a chain of efficient Jacobian

determinant computations, i.e., det(AB) = det(A) det(B)
where A and B are the Jacobian matrices of two coupling

layers. More details are included in the supplement.

Note that we have used (and will be using) u and v as

generic input and output of an INN. Thus, specifically in

the context of normalizing flow, by simply considering u

and v to be x and z respectively, we can use a coupling

layer based INN as a powerful invertible function f(·) to

perform the normalizing flow described in Eq. (1).

3. Model Setup: Conditional Recurrent Flow

In this section, we describe our conditional sequence

generation method called Conditional Recurrent Flow

(CRow). We first describe a conditional invertible neural

network (cINN) [4] which is one component of our model.

Then, we explain how to incorporate temporal context gat-

ing and discuss the settings where CRow can be useful.

3.1. Conditional Sample Generation

Naturally, an inverse problem can be posed as a sam-

ple generation procedure by sampling a latent variable z

and inverse mapping it to x = f−1(z), thus generating a

new sample x. The concern is that we cannot specifically

‘choose’ to generate an x of interest since a latent variable

z does not provide any interpretable associations with x.

In other words, estimating the conditional probability

p(x|y) is desirable since it represents an underlying phe-

nomenon of the input x ∈ R
d and covariate y ∈ R

k (e.g.,

the probability of a specific brain imaging measure x of in-

terest given a diagnosis y). In fact, when we cast this prob-

lem into a normalizing flow, the goal becomes constructing

an invertible network f(·) which maps a given input x ∈ R
d

to its corresponding covariate/label y ∈ R
k and its latent

variable z ∈ R
m such that [y, z] = f(x). The mapping

must have an inverse for x = f−1([y, z]) to be recovered.

Specifically, when a flow-based model jointly encodes

label and latent information (i.e., [y, z] = v = f(x) via

Eq. (4)) while ensuring that p(y) and p(z) are independent,

then the network becomes conditionally invertible (i.e.,

x = f−1([y, z]) conditioned on given y). Such a network

can be theoretically constructed through a bidirectional-

type training [4], and this allows a conditional sampling

x = f−1([y, z]) and the posterior estimation p(x|y).

Bidirectional training. This training process involves

three losses: (1) LZ(p(y, z), p(y)p(z)) enforces p(y) and

p(z) to be independent by making the network output

p(y, z) to follow p(y)p(z) which is true if and only if p(y)
and p(z) are independent. (2) LY(y,ygt) is the supervised

label loss between our prediction y and the ground truth

ygt. (3) LX(p(x), pX) improves the likelihood of the input

x with respect to the prior pX. LZ and LX are based on

a kernel-based moment matching measure Maximum Mean

Discrepancy (MMD) [11, 44], also see appendix.

In practice, x and [y, z] may not be of the same dimen-
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Figure 3: The CRow model. Only the forward map of a single block (two

coupling layers) is shown for brevity. The inverse map involves a similar

order of operations (analogous to Fig. 2a and Fig. 2b)

sions. To construct a square triangular Jacobian matrix,

zero-padding both x and [y, z] can alleviate this issue while

also increasing the intermediate subnetwork dimensions for

higher expressive power. Also, the forward mapping is es-

sentially a prediction task that we encounter often in com-

puter vision and machine learning, i.e., predicting y = f(x)
or maximizing the likelihood p(y|x) without explicitly uti-

lizing the latent z. On the other hand, the inverse process

of deriving x = f−1(y), allows a more scientifically based

analysis of the underlying phenomena, e.g., the interaction

between brain (x) and observed cognitive function (y).

3.2. Conditional Recurrent Flow (CRow)

The existing normalizing flow type networks cannot ex-

plicitly incorporate sequential data which are now increas-

ingly becoming important in various applications. Success-

ful recurrent models such as gated recurrent unit (GRU)

[6, 40] and long short-term memory (LSTM) [16, 37] ex-

plicitly focus on encoding the “memory” from the past and

output proper state information for accurate sequential pre-

dictions given the past. Similarly, generated sample se-

quences must also follow sequentially sensible patterns or

trajectories resembling likely sequences by encoding appro-

priate temporal information for the subsequent time points.

To overcome these issues, we introduce Conditional Re-

current Flow (CRow) model for conditional sequence gen-

eration. Given a sequence of input/output pairs {ut,vt}
for t = 1, . . . , T time points, modeling the relationship be-

tween the variables across time needs to also account for the

temporal characteristic of the sequence. Variants of recur-

rent neural networks (RNN) such as GRU and LSTM have

been showing success in sequential problems, but they only

enable forward mapping. We are specifically interested in

an invertible network which is also recurrent such that given

a sequence of inputs {ut} (i.e., features {xt}) and their se-

quence of outputs {vt} (i.e., covariates/labels and latent in-

formation {yt, zt}), we can model the invertible relation-

ship between those sequences for posterior estimation and

conditional sequence generation as illustrated in Fig. 1.

Without loss of generality, we can describe our model

in terms of generic {ut} and {vt}. We follow the coupling

block described in Eq. (4) and Eq. (5) to setup a normalizing

flow type invertible model. Then, we impose the recurrent

nature on the model by allowing the model to learn and pass

down a hidden state ht to the next time point through the

recurrent subnetworks. Specifically, we construct a recur-

rent subnetwork q which also contains a recurrent network

(e.g., GRU) internally. This allows q to take the previous

hidden state ht−1 and output the next hidden state ht as

[q,ht] = q(u,ht−1) where q is an element-wise transfor-

mation vector derived from u analogous to the output of

a subnetwork s(u) in Eq. (2). In previous coupling lay-

ers (i.e., Eq. (2)), two transformation vectors s = s(·) and

r = r(·) were explicitly computed from two subnetworks

for each layer. For CRow, we follow the structure of Glow

[26] which computes a single vector q = q(·) and splits it as

[s, r] = q. This allows us to use a single hidden state while

concurrently learning [s, r] which we denote as s = qs(·)
and r = qr(·) to indicate the individual vectors. Thus, at

each t with given [ut
1
,ut

2
] = ut and [vt

1
,vt

2
] = vt,

vt
1 = ut

1 ⊗ exp(qs2 (u
t
2,h

t−1

2
)) + qr2 (u

t
2,h

t−1

2
)

vt
2 = ut

2 ⊗ exp(qs1 (v
t
1,h

t−1

1
)) + qr1 (v

t
1,h

t−1

1
)

(6)

and the inverse is

ut
2 = (vt

2 − qr1 (v
t
1,h

t−1

1
))⊘ exp(qs1 (v

t
1,h

t−1

1
))

ut
1 = (vt

1 − qr2 (u
t
2,h

t−1

2
))⊘ exp(qs2 (u

t
2,h

t−1

2
)).

(7)

Note that the hidden states ht
1

and ht
2

generated from the

recurrent network of the subnetworks are implicitly used

within the subnetwork architecture (i.e., inputs to additional

fully connected layers) and also passed to their correspond-

ing recurrent network in the next time point as in Fig. 3.

3.2.1 Temporal Context Gating (TCG)

A standard (single) coupling layer transforms only a part of

the input (i.e., u1 in Eq. (2)) by design which results in the

determinant of a triangular Jacobian matrix Jv:

|Jv| =

∣

∣

∣

∣

∂v

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂v1

∂u1

∂v1

∂u2

∂v2

∂u1

∂v2

∂u2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

I 0
∂v2

∂u1

diag(exp s(u1))

∣

∣

∣

∣

∣

(8)

thus |Jv| = exp(
∑

i(s(u1))i). This is a result from Eq. (2):

(1) the element-wise operations on u2 for the diagonal sub-

matrix of partial derivatives ∂v2/∂u2 = diag(exp s(u1)),
(2) the bypassing of u1 = v1 for ∂v1/∂u1 = I , and (3)

∂v1/∂u2 = 0. Ideally, transforming u1 would be bene-

ficial. However, this is explicitly avoided in the coupling

layer design since this should not involve u1 or u2 directly;

otherwise, Jv will not be triangular.

Using ht in CRow. In the case of CRow, it incorporates

a hidden state ht−1 from the previous time point which is

neither u nor v. This is our temporal information which

adjusts the mapping function f(·) to allow more accurate

mapping depending on the previous time points of the se-

quence which is crucial for sequential modeling.
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Specifically, we incorporate a temporal context gating

fTCG(α
t,ht−1) using the temporal information ht−1 on a

given input αt at t as follows:

fTCG(α
t,ht−1) = αt ⊗ cgate(ht−1) (forward)

f−1

TCG
(αt,ht−1) = αt ⊘ cgate(ht−1) (inverse)

(9)

where cgate(ht−1) can be any learnable function/network

with a sigmoid function at the end. This is analogous to the

context gating [30] in video analysis which scales the input

αt (since cgate(ht−1) ∈ (0, 1)) based on useful context,

which in our setup is the temporal information ht−1.

Preserving the Jacobian structure. In the context of

|Jv| computation in Eq. (8), we perform fTCG(u1,h
t−1) =

u1 ⊗ cgate(ht−1) (w.l.o.g., we omit t for u and v). Im-

portantly, we observe that this ‘auxiliary’ variable ht−1

could safely be used to transform u1 without altering the

triangular structure of the Jacobian matrix for the following

two reasons: (1) we still perform an element-wise opera-

tion u1 ⊗ cgate(ht−1) resulting a diagonal submatrix for

∂v1/∂u1, and (2) ∂v1/∂u2 is still 0 since u2 is not in-

volved in fTCG(u1,h
t−1). Thus, we now have

|Jv| =

∣

∣

∣

∣

∣

∂v1

∂u1

∂v1

∂u2

∂v2

∂u1

∂v2

∂u2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

diag(cgate(ht−1)) 0
∂v2

∂u1

diag(exp s(u1))

∣

∣

∣

∣

∣

(10)

where |Jv| = [
∏

j cgate(h
t−1)j ] ∗ [exp(

∑
i(s(u1))i)].

As seen in Fig. 3, we place fTCG to transform the “by-

passing” split (non-transforming partition) of each layer of

a block (i.e., the “bypassing” partition ut
2

gets transformed

by fTCG2
). We specifically chose a gating mechanism for

conservative adjustments so that the original information

is preserved to a large degree through simple but learn-

able ‘weighting’. The full forward and inverse steps in-

volving fTCG can easily be formulated by following Eq. (6)

and Eq. (7) while respecting the order of operations seen in

Fig. 3. See appendix for details.

3.3. How do we use CRow?

In essence, CRow aims to model an invertible mapping

[{yt}, {zt}] = f({xt}) between sequential/longitudinal

measures {xt} and their corresponding observations {yt}
with {zt} encoding the latent information across t =
1, . . . , T time points. Once we train f(·), we can perform

the following exemplary tasks:

(1) Conditional sequence generation: Given a series of

observations of interest {yt}, we can sample {zt} (each in-

dependently from a standard normal distribution) to gener-

ate {xt} = f−1([{yt}, {zt}]). The advantage comes from

how {yt} can be flexibly constructed (either seen or unseen

from the data) such as an arbitrary disease progression over

time (see Fig. 1). Then, we randomly generate correspond-

ing measures {xt} to observe the corresponding longitudi-

nal measures for both quantitative and qualitative analyses.

Since the model is recurrent, the sequence length can be ex-

tended beyond the training data to model future trajectory.

A potential direction would be to use the generated se-

quences to directly enable common data analysis proce-

dures (i.e., statistical analysis on synthetic data) and help

evaluate scientific hypotheses.

(2) Sequential density estimation: Conversely, given

{xt}, we can predict {yt}, and more importantly, estimate

the density pX({xt}) at each t. When {xt} is generated

from {yt}, the estimated density can indicate the ‘integrity’

of the generated sample (i.e., low pX implies that the se-

quence is perhaps less common with respect to {yt}).

4. Experiments

We validate our framework in both a qualitative and

quantitative manner with two sets of experiments: (1) two

image sequence datasets and (2) a neuroimaging study.

4.1. Conditional Moving MNIST Generation

Moving Digit MNIST: We first test our model on a

controlled Moving Digit MNIST dataset [39] of image se-

quences showing a hand-written digit from 0 to 9 moving

in a path and bouncing off the boundary (see supplement

for animations). This experiment qualitatively shows that

the images in a generated sequence with specific conditions

(i.e., image labels) are consistent across the sequence. Here,

we specifically chose two digits (e.g., 0 and 1) to construct

∼13K controlled sequences of frame length T = 6 where

each frame of a sequence is an image of size 20 by 20 (vec-

torized as xt ∈ R
400) and has a one-hot vector yt ∈ R

2 of

digit label at t indicating one of the two possible digits. We

found this intuitive and interpretable assessment before ex-

perimenting with arguably less interpretable datasets (i.e.,

neuroimaging data we show later).

Training. Our model consists of three coupling blocks,

each block shown in Fig. 3, where each subnetwork q con-

tains one GRU cell and three layers of residual fully con-

nected networks with ReLU activation. For each TCG

(fTCG in Fig. 3, Eq. (9)), the network cgate(·) is a single

fully connected network with sigmoid activation. Each in-

put frame ut = xt is split into two halves u1 and u2. Mod-

els were trained on T = 6 time points, but further time

points data can be generated since our model is recurrent.

Each training sequence has a digit label sequence {yt} for

t = 1, . . . , 6 where all yt are “identical” in each sequence

since the the same digit is shown throughout the sequence.

Generation. Now, we want to generate sequences show-

Ours:

cINN:

Figure 4: Examples of generated sequences given the changing condition

1→1→0→0→0→0 (top of each frame, [digit label]: density). Ours

shows smooth transition while cINN shows temporally drastic transition.

10696



3→5:

5→9:

Figure 5: Examples of generated sequences using CRow.

ing digits gradually transform (e.g., changing from 1 to 0).

We first specified sequential conditions (i.e., digit label) that

change midway through the sequence (e.g., {yt} sequence

indicating digit labels 1→1→0→0→0→0). Then, we gen-

erated the corresponding sequences {xt} and visually check

if the changes across the frames look natural. Note that we

trained only the image sequences with consistent digit la-

bels. One demonstrative result is shown in Fig. 4 where

we compare the generated image sequences with condition

(i.e., digit label) changing from 1 to 0. Our result at the top

of Fig. 4 shows gradual transition while cINN result does

not show such temporally smooth and consistent behavior.

Density estimation. Our model quantifies its output con-

fidence in the form of density (i.e., likelihood) shown at the

top of each generated images in Fig. 4. Not only our model

adjusts generation based on inputs, but it also outputs lower

density at the frame showing the most drastic transforma-

tion as such patterns were not observed during the training,

i.e., the likelihood decreases when then condition changes

and then increase as the sequence goes. This means that

our model simultaneously shows the conditional genera-

tion ability and estimates outputs’ relative density given the

training data seen. Different from other generative models,

it allows conditional generation on sequential data while

maintaining exact and efficient density estimation. More

examples are shown in Fig. 5 (and appendix).

Moving Fashion MNIST: We also tested our model on

a more challenging dataset called Moving Fashion MNIST

[43] of moving apparel image sequences. The image sizes.

frames lengths, and moving paths are identical to those of

Moving Digit MNIST. An important difference is that they

are real images of 10 types of apparels (i.e., T-shirt, Bag,

etc. see supplement for the full list) instead of hand-written

digits. The same models and training setups were used to

generate the transforming sequences in a similar manner. In

Fig. 6, we show the examples of various apparels success-

fully transforming to other types while moving. Compared

to Moving Digit MNIST, capturing the smooth transforma-

tions of these apparel images are more challenging as the

apparel shapes vary more in terms of shapes and sizes.

4.2. Longitudinal Neuroimaging Analysis

In this neuroimaging experiment, we evaluate if our con-

ditionally generated samples actually exhibit statistically

robust and clinically sound characteristics when trained

with a longitudinal Alzheimer’s disease (AD) brain imaging

dataset. We generated a sufficient number of longitudinal

T-shirt [0] → Bag [8]

Ankle boot [9] → Sneaker [7]

T-shirt [0] → Long sleeve [4]

Figure 6: Examples of generated Moving Fashion MNIST sequences using

CRow (apparel type [label index]). More examples are in the supplement.

brain imaging measures (i.e., {xt}) conditioned on various

covariates (i.e., labels {yt}) associated with AD progres-

sion (e.g., memory). Thus, the generated brain imaging se-

quences should show the pathology progression consistent

with the covariate progression (see Fig. 1 and Fig. 7 for il-

lustrations). We then performed a statistical group analysis

(i.e., healthy vs. disease progressions) to detect disease re-

lated features from the imaging measures. In the end, we

expected that the brain regions of interests (ROIs) identified

by the statistical group analysis are consistent with other

AD literature with statistically stronger signal (i.e., lower

p-value) than the results using the original training data.

Dataset. The Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) database (adni.loni.usc.edu) is one

of the largest and still growing neuroimaging databases.

Originated from ADNI, we use a longitudinal neuroimaging

dataset called The Alzheimer’s Disease Prediction of Lon-

gitudinal Evolution (TADPOLE) [29]. We used data from

N=276 participants with T = 3 time points.

Input. For the longitudinal brain imaging sequence {xt},

we chose Florbetapir (AV45) Positron Emission Tomogra-

phy (PET) scan measuring the level of amyloid-beta de-

posited in brain which has been a known type of pathology

associated with Alzheimer’s disease [42, 22]. The AV45 im-

ages were registered to a common brain template (MNI152)

to derive the gray matter regions of interests (82 Desikan

atlas ROIs [8], see appendix). Thus, each of the 82 ROIs

(xt ∈ R
82) holds an average Standard Uptake Value Ratio

(SUVR) measure of AV45 where high AV45 implies more

amyloid pathology in that region.

Condition. For the corresponding labels {yt} for lon-

gitudinal conditions, we chose five covariates known to be

tied to AD progression (normal to impaired range in square

brackets): (1) Diagnosis: Normal/Control (CN), Mild Cog-

nitive Impairment (MCI), and Alzheimer’s Disease (AD)

[CN→MCI→AD]. (2) ADAS13: Alzheimer’s Disease As-

sessment Scale [0→85]. (3) MMSE: Mini Mental State

Exam [0→30]. (4) RAVLT-I: Rey Auditory Verbal Learning

Test - Immediate [0→75]. (5) CDR: Clinical Dementia Rat-

ing [0→18]. These assessments impose disease progression
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≈

Figure 7: Generated sequences vs. real data sequences comparison for CN (top)→MCI (middle)→AD (bottom). Each blue/pink frame has top, side

(interior of right hemisphere), and front views. Left (blue frames): The average of the 100 generated sequences conditioned on CN→MCI→AD. Right

(pink frames): The average of the real samples with CN→MCI→AD in the dataset. Red/blue indicate high/low AV45. ROIs are expected to turn more red

as CN→MCI→AD. The generated samples show magnitudes and sequential patterns similar (≈) to those of the real samples from the training data.

of samples. See supplement and [29] for details.

Analysis. We performed a statistical group analysis

on each condition {yt} independently with the following

pipeline: (1) Training: First, we trained our model (the

same subnetwork as Sec. 4.1) using the sequences of SUVR

in 82 ROIs for {xt} and the covariate (‘label’) sequences

for {yt}. (2) Conditional longitudinal sample genera-

tion: Then, we generated longitudinal samples {x̂t} con-

ditioned on two distinct longitudinal conditions: Control

(healthy covariate sequence) versus Progression (worsen-

ing covariate sequence). Specifically, for each condition

(e.g., Diagnosis), we generate N1 samples of Control (e.g.,

{x̂t
1
}N1

i=1
conditioned on {yt}= CN→CN→CN) and N2

samples of Progression ({x̂t
2
}N2

i=1
conditioned on {yt} =

CN→MCI→AD). Then, we perform a two sample t-test at

t = 3 for each of 82 ROIs between {x̂3

1
}N1

i=1
and {x̂3

2
}N2

i=1

groups, and derive p-values to tell whether the pathology

levels between the groups significantly differ in those ROIs.

Result 1: Control vs. Progression (Table 1, Top row

block). We set the longitudinal conditions for each covari-

ate based on its associated to healthy progression (e.g., low

ADAS13 throughout) and disease progression (e.g., high

ADAS13 related to eventual AD onset). We generated

N1 = 100 and N2 = 100 samples for each group respec-

tively. Then, we performed the above statistical group dif-

ference analysis under 4 setups: (1) Raw training data, (2)

cINN [4], (3) Our model, and (4) Our model + TCG. With

the raw data, the sample sizes of the desirable longitudinal

conditions were extremely small for all setups, so no statis-

tical significance was found after type-I error control. With

cINN, we occasionally found few significant ROIs, but the

non-sequential samples with only t = 3 could not generate

realistic samples. With CRow we consistently found signif-

icant ROIs and detected the most number of ROIs (the ROIs

for Diagnosis shown in Fig. 8) including many AD-specific

regions reported in the aging literature such as hippocampus

and amygdala [20, 22] (see appendix for the full list).

Result 2: Control vs. Early-progression (Table 1, Bot-

tom row block). We setup a more challenging task where

we generate samples which resemble the subjects that show

slower progression of the disease (i.e., lower rate of covari-

ate change over time). This case is especially important in

# of Statistically Significant ROIs (# of ROIs after type-I error correction)

Covariates Diagnosis ADAS13 MMSE RAVLT-I CDR-SB

Control CN→CN→CN 10→10→10 30→30→30 70→70→70 0→0→0

Progression CN→MCI→AD 10→20→30 30→26→22 70→50→30 0→5→10

cINN (N1=100 / N2= 100) 11 (4) 5 (2) 5 (0) 3 (0) 7 (0)

Ours (N1=100 / N2= 100) 25 (11) 24 (12) 19 (2) 15 (2) 18 (7)

Ours + TCG (N1=100 / N2= 100) 28 (12) 32 (14) 31 (2) 19 (2) 25 (9)

Control CN→CN→CN 10→10→10 30→30→30 70→70→70 0→0→0

Early-progression CN→MCI→MCI 10→13→16 30→28→26 70→60→50 0→2→4

cINN (N1=150 / N2= 150) 2 (0) 2 (2) 2 (0) 0 (0) 1 (0)

Ours (N1=150 / N2= 150) 6 (2) 6 (4) 11 (4) 5 (1) 2 (0)

Ours + TCG (N1=150 / N2= 150) 6 (4) 8 (5) 12 (4) 5 (1) 5 (1)

Table 1: Number of ROIs identified by statistical group analysis using the generated measures with respect to various covariates associated with AD at

significance level α = 0.01 (type-I error controlled result shown in parenthesis). Each column denotes sequences of disease progression represented by

diagnosis/test scores. In all cases, using CRow with TCG yielded the most number of statistically significant ROIs.
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Figure 8: 12 Significant ROIs found between two Diagnosis groups

(CN→CN→CN vs. CN→MCI→AD) at t = 3 using our model under

‘Diagnosis’ in Table 1. The colors denote the -log p-value. AD-related

ROIs such as hippocampus, putamen, caudate, and amygdala are included.

AD when early detection leads to effective prevention. With

N1 = 100 and N2 = 100 samples, no significant ROIs were

found in all models. To improve the sensitivity, we gener-

ated N1 = 150 and N2 = 150 samples in all models and

found several significant ROIs only with CRow related to an

early AD progression such as hippocampus [13, 21, 24, 17]

(full list in the appendix).

Statistical advantages. By generating realistic samples

with CRow, we achieve the following advantages: (1) In-

creasing sample size makes the hypothesis test more sensi-

tive and robust – rejecting the null when it is indeed false

– leading to a lower type-II error. (2) Also, we do not sim-

ply detect spurious significant ROIs because (i) we control

for type-I error via the most conservative Bonferroni multi-

ple testing correction, and (ii) we additionally improve the

statistical power of detecting the true effects (i.e., signifi-

cant ROIs) that at least need to be detected with the raw

data only. In Table 2, we show that the significant ROIs

identified with the real data only are also detected through

our framework with improved p-values from the Control vs.

Progression experiment. These results on the generated data

suggest that one can utilize CRow in a statistically mean-

ingful manner without neglecting the true signals from im-

portant AD-specific ROIs [13, 32]. Note that the scientific

validity of our findings requires further investigation on ad-

ditional real data. These preliminary results, however, point

to the promise of using such models to partly mitigate prob-

lems related to recruiting large number of participants for

statistically identifying weak disease effects.

Generation assessments. In Fig. 7, we see the gener-

ated samples (Left) through CN→MCI→AD in three views

of the ROIs and compare them to the real training samples

(Right). We observe that the generated samples have sim-

ilar AV45 loads through the ROIs, and more importantly,

the progression pattern across the ROIs (i.e., ROIs turning

more red indicating amyloid accumulation) follows that of

the real sequence as well. We also quantified the similarities

between the generated and real data sequences by comput-

ROI
p-value

Real CRow

Diagnosis
Left Amygdala 5.51E-03 1.18E-06

Left Putamen 7.38E-03 3.99E-05

ADAS13
Left Inferior Temporal 3.34E-03 7.93E-04

Left Middle Temporal 6.83E-03 2.02E-03

MMSE
Left Superior Parietal 7.13E-03 1.52E-05

Left Supramarginal 6.75E-03 8.20E-08

RAVLT-I Left Paracentral 9.16E-03 8.09E-05

CDR-SB Left Hippocampus 4.01E-03 3.36E-06

Table 2: p-values in ROIs improve (get lower) with the sequences gener-

ated by CRow with increased sample size over using real sequence data.

ing effect size (Cohen’s d [7]) which measures the differ-

ence between the two distributions (Table 3) showing that

CRow generates the most realistic sequences.

Scientific remarks. Throughout our analyses, the signif-

icant ROIs found such as amygdala, putamen, temporal re-

gions, hippocampus (e.g., shown in Fig. 8) and many oth-

ers reported as AD-specific regions in the aging literature

[13, 20, 21, 32, 41, 25]. This implies that the generated

longitudinal sequences could resemble the underlying dis-

tribution of the real data which we may not be available

with large enough sample sizes. The appendix includes ad-

ditional details on the scientific interpretation of the results.

5. Conclusion

We design generative models for longitudinal datasets

that can be modulated by secondary conditional variables.

Our architecture is based on an invertible neural network

that incorporates recurrent subnetworks and temporal con-

text gating to pass information within a sequence genera-

tion, the network seeks to “learn” the conditional distri-

bution of training data in a latent space and generate a

sequence of samples whose longitudinal behavior can be

modulated based on given conditions. We demonstrate ex-

perimental results using three datasets (2 moving videos, 1

neuroimaging) to evaluate longitudinal progression in se-

quentially generated samples. In neuroimaging problems

which suffer from small sample sizes, our model can gener-

ate realistic samples which is promising.
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Cohen’s d of Generated vs. Real of Progressions Cohen’s d of Generated vs. Real of Early-progressions

Covariates Diagnosis ADAS13 MMSE RAVLT-I CDR-SB Diagnosis ADAS13 MMSE RAVLT-I CDR-SB

cINN 1.2551 1.5968 1.1498 1.8948 1.5516 1.0656 1.4985 0.9482 1.8435 1.4541

Ours 0.4193 0.5562 0.3485 0.7112 0.6456 0.3591 0.5612 0.2953 0.6133 0.6254

Ours + TCG 0.2828 0.3915 0.1679 0.5889 0.3775 0.2341 0.5248 0.0902 0.5448 0.4998

Table 3: Difference between the generated sequences and the real sequences at t = 3. Lower the effect size (Cohen’s d), smaller the difference between the

comparing distributions. In all settings, CRow with TCG generates the most realistic sequences with the smallest effect sizes.
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