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Abstract

Convolutional neural networks (CNNs) based ap-

proaches for semantic alignment and object landmark de-

tection have improved their performance significantly. Cur-

rent efforts for the two tasks focus on addressing the lack

of massive training data through weakly- or unsupervised

learning frameworks. In this paper, we present a joint learn-

ing approach for obtaining dense correspondences and dis-

covering object landmarks from semantically similar im-

ages. Based on the key insight that the two tasks can mu-

tually provide supervisions to each other, our networks ac-

complish this through a joint loss function that alternatively

imposes a consistency constraint between the two tasks,

thereby boosting the performance and addressing the lack

of training data in a principled manner. To the best of

our knowledge, this is the first attempt to address the lack

of training data for the two tasks through the joint learn-

ing. To further improve the robustness of our framework,

we introduce a probabilistic learning formulation that al-

lows only reliable matches to be used in the joint learning

process. With the proposed method, state-of-the-art perfor-

mance is attained on several standard benchmarks for se-

mantic matching and landmark detection, including a newly

introduced dataset, JLAD, which contains larger number of

challenging image pairs than existing datasets.

1. Introduction

Establishing dense correspondences and discovering ob-

ject landmarks over semantically similar images can facil-

itate a variety of computer vision and computational pho-

tography applications [3, 21, 22, 33, 2]. Both tasks aim to

understand the underlying structure of an object that is ge-

ometrically consistent across different but semantically re-
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Figure 1. Illustration of the proposed joint learning framework:

given only semantically similar image pairs, we address the cru-

cial drawbacks of current weakly- or unsupervised models for the

object landmark detection and semantic alignment task by alterna-

tively leveraging mutual guidance information between them.

lated instances.

Recently, numerous approaches for the semantic align-

ment [24, 25, 26, 9, 27, 15] and object landmark detec-

tion [30, 29, 33, 8] have been proposed to tackle each prob-

lem with deep convolutional neural networks (CNNs) in an

end-to-end manner. However, supervised training for such

tasks often involves in constructing large-scale and diverse

annotations of dense semantic correspondence maps or ob-

ject landmarks. Collecting such annotations under large

intra-class appearance and shape variations requires a great

deal of manual works and is prone to error due to its sub-

jectiveness. Consequently, current efforts have focused on

using additional constraints or assumptions that help their

networks to automatically learn each task in a weakly- or

unsupervised setting.

To overcome the limitations of insufficient training data

for semantic correspondence, several works [24, 27] have

been proposed to utilize a set of sparse corresponding points

between source and target images as an additional cue for

supervising their networks. The key idea is to regulate

the densely estimated transformation fields to be consistent

with the given sparse corresponding points. A possible ap-

proach is to synthetically generate the corresponding points

from an image itself, i.e., by uniformly sampling grid points

from a source image and then globally deforming them with
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random transformations [10]. However, these synthetic su-

pervisions do not consider photometric variations at all and

have difficulties in capturing realisitic geometric deforma-

tions. Alternatively, several methods [25, 9] alleviate this

issue by collecting tentative correspondence samples from

real image pairs during training, but this is done in a sim-

ple manner, e.g., by thresholding [25] or checking consis-

tency [9] with the matching scores. More recently, instead

of using sparsely collected samples, some methods [15, 26]

have employed a complete set of dense pixel-wise matches

to estimate locally-varying transformation fields, outper-

forming previous methods based on a global transfoma-

tion model [24, 25, 27]. However, they often show limited

performances in handling relatively large geometric varia-

tions due to their weak implicit smoothness constraints such

as constraining transformation candidates within local win-

dow [15] and analyzing local neighbourhood patterns [26].

Meanwhile, to automatically discover object landmarks

without the need of ground-truth labels, following a pio-

neering work of Thewlis et al. [30], dense correspondence

information across the different instances have been used to

impose the equivariance constraint, such that the landmarks

should be consistently detectable with respect to given spa-

tial deformations [30, 29, 33, 28]. However, while seman-

tically meaningful and highly accurate correspondences are

required to meet the full equivariance, existing techniques

mostly rely on synthetic supervisions in a way of gen-

erating dense correspondence maps with randomly trans-

formed imagery. Similar to existing semantic alignment

approaches that leverage synthetic supervision [24, 27], as

shown in [25, 9], they usually do not generalize well to real

image pairs and often fail to detect landmarks at semanti-

cally meaningful locations of the object.

In this paper, we present a method for jointly learning ob-

ject landmark detection and semantic alignment to address

the aforementioned limitations of current weakly- or unsu-

pervised learning models of each task. As illustrated in Fig.

1, our key observation is that the two tasks are mutually

complementary to each other since more realistic and in-

formative supervisions can be provided from their counter-

parts. To be specific, the detected landmarks can offer struc-

ture information of an object for the semantic alignment

networks where the estimated correspondence fields are en-

couraged to be consistent with provided object structures.

At the same time, densely estimated correspondences across

semantically similar image pairs facilitate the landmarks to

be consistently localized even under large intra-class varia-

tions. Our networks accomplish this by introducing a novel

joint objective function that alternatively imposes the con-

sistency constraints between the two tasks, thereby boosting

the performance and addressing the lack of training data in

a principled manner. We further improve the robustness of

our framework by allowing only reliable matches to be used

in the joint learning process through a probabilistic learning

formulation of the semantic alignment networks. Experi-

mental results on various benchmarks demonstrate the ef-

fectiveness of the proposed model over the latest methods

for object landmark detection and semantic alignment.

2. Related Work

Semantic alignment Recent state-of-the-art techniques

for semantic alignment generally regress the transformation

parameters directly through an end-to-end CNN model [24,

25, 9, 15, 27], outperforming conventional methods based

on hand-crafted descriptor or optimization [14, 21, 4].

Rocco et al. [24, 25] proposed a CNN architecture that

estimates image-level transformation parameters mimick-

ing traditional matching pipeline, such that feature extrac-

tion, matching, and parameter regression. Seo et al. [27]

extended this idea with an offset-aware correlation ker-

nel to focus on reliable correlations, filtering out distrac-

tors. While providing the robustness against semantic vari-

ations to some extent, they have difficulties in yielding fine-

grained localization due to the assumption of a global trans-

formation model. To address this issue, Jeon et al. [9]

proposed a pyramidal graph model that estimates locally-

varying geometric fields with coarse-to-fine scheme. Kim

et al. [15] presented recurrent transformation networks that

iteratively align features of source and target and finally ob-

tain precisely refined local translational fields. Rocco et

al. [26] proposed to analyze neighbourhood consensus pat-

terns by imposing local constraints to find reliable matches

among correspondence candidates. However, they rely on

weak implicit smoothness constraints such as coarse-to-fine

inference [9], constrained local search spaces [15], and lo-

cal neighbourhood consensus [26]. In contrast, we explic-

itly regularize the estimated transformation fields to be con-

sistent with the detected object landmarks through the joint

learning process.

Object landmark detection Methods for unsupervised

landmark detection generally rely on the equivariance prop-

erty such that the object landmarks should be consistently

detected with respect to given image deformations. As a pi-

oneering work, Thewlis et al. [30] proposed to randomly

synthesize the image transformations for learning to dis-

cover the object landmarks that are equivariant with respect

to those transformations. They further extended this idea

to learn dense object-centric coordinate frame [29]. Both

of them rely on the synthetically generated supervisory sig-

nals and thus provide inherently limited performance when

substantial intra-class variations are given.

Afterward, several works [33, 8] proposed an autoencod-

ing formulation to discover landmarks as explicit structural

representations in a way of generating new images condi-

tioned on them. Zhang et al. [33] proposed to take object
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Figure 2. Summary of the methods for: (a) semantic alignment [24, 25, 27, 9], (b) object landmark detection [30, 29, 33], and (c) the

proposed joint learning framework. Our key observation is that each task can provide an essential supervisory signals to another one. With

this motivation, we seamlessly weave both techniques to overcome the lack of training data.

landmarks as an intermediate learnable latent variable for

reproducing the input image. Jakab et al. [8] proposed to

generate images combining the appearance of the source

image and the geometry of the target one by minimizing

the perceptual distance. However, the ablation studies re-

ported in [33, 8] show that they still rely on the supervi-

sion from an image itself such as synthesized image pairs

or adjacent frames in videos instead of considering rich ap-

pearance variation between different object instances, thus

yielding limited performance.

3. Method

3.1. Problem Statement and Overview

Let us denote semantically similar source and target im-

ages as x
s and x

t ∈ R
H×W×3 where H and W denotes

height and width of an image. We are interested in learn-

ing two mapping functions, φ : x → R
K×2 that extracts

the spatial coordinates of K keypoints from an image x and

τ : (xs,xt) → R
H×W×2 that infers a dense correspon-

dence field from source to target image defined for each

pixel in x
s. We specifically learn the two functions through

the joint prediction model using only weak supervision in

the form of semantically similar image pairs. To address

the insufficient training data for semantic correspondence,

several methods [24, 25, 27, 9] utilized a set of sparse cor-

responding points on the source and target images, called

anchor pairs, as an additional cue for supervising their net-

works. The key intuition is that the networks automatically

learn to estimate geometric transformation fields over a set

of transformation candidates by minimizing the discrepancy

between given sparse correspondences. Specifically, denot-

ing anchor pairs on source and target image as Φs and Φt,

they define the semantic alignment loss as

LA(τ) =
∑

n
||Φt

n − τ(xs,xt) ◦ Φs
n||

2, (1)

where n is the number of anchor pairs and ◦ is an warping

operation. This is illustrated in Fig. 2(a). Meanwhile,

to address the lack of training data for the landmark detec-

tion, the state-of-the-art techniques [29, 30, 33] generally

employ dense correspondences between the training image

pairs. The main idea lies in the equivariance constraint such

that the detected landmarks should be equivariant with re-

spect to given geometric deformation. Formally, denoting

a dense correspondence map between source and target im-

ages as T, they aim to learn the landmark detection net-

works through a siamese configuration by minimizing

LD(φ) =
∑

m
||φm(xt)− T ◦ φm(xs)||2, (2)

where m is the number of detected landmarks. This is illus-

trated in Fig. 2(b).

However, current weakly- or unsupervised learning

models for both tasks still suffer from the lack of super-

visions of good quality, which may not fully satisfy their

consistency constraints. To overcome this, we propose to

leverage guidance information from each task for supervis-

ing another networks, as exemplified in Fig. 2(c). The pro-

posed method offers a principled solution that overcomes

the lack of massive training data by jointly learning the ob-

ject landmark detection and semantic alignment in an end-

to-end and boosting manner. To this end, we introduce a

novel joint loss function that alternatively imposes the con-

sistency constraints between the two tasks. To further en-

hance the joint learning process, we propose a probabilistic

formulation that predicts and penalizes unreliable matches

in the semantic alignment networks.

3.2. Network Architectures

The proposed networks consist of three sub-networks,

including feature extraction networks with parameters WF

to extract feature maps from input images, landmark de-

tection networks with parameters WD to detect probability

maps of landmarks, and semantic alignment networks with

parameters WA and WC to infer a geometric transforma-

tion field and a uncertainty map, as illustrated in Fig. 3.

Feature extraction and similarity score computation

To extract convolutional feature maps of source and tar-

get images, the input images are passed through a fully-
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Figure 3. Network configuration of our framework, consisting of feature extraction networks, landmark detection networks, semantic

alignment networks. We alternatively leverage the outputs from each landmark detection and semantic alignment networks as a guidance

information for supervising the another one.

convolutional feature extraction networks with shared pa-

rameters WF such that F = F(x;WF ) ∈ R
H×W×C . We

share the parameters WF for both feature extractions. After

extracting the features, we normalize them using L2 norm

along the C channels.

The similarity between two extracted features is then

computed as the cosine similarity with L2 normalization:

CAB
i = < FA

i , F
B
j >/

√

∑

l
< FA

i , F
B
l >2, (3)

where j, l ∈ Ni belong to the search window Ni centered at

pixel i. Different from [24] that consider all possible sam-

ples within an image, we constrain search candidates within

a local window to reduce matching ambiguity and runtime.

The similarity score is finally normalized over the search

candidates to reliably prune incorrect matches by down-

weighting the influence of features that have multiple high

scores [25]. Note that A and B represents source (s) or

target (t) images. For instance, Css and Ctt indicate self -

similarities computed from the source and target images,

respectively. Cst is the cross similarity between source and

target images.

Semantic alignment networks Our semantic alignment

networks consist of two modules: an alignment module

that estimates geometric transformation fields, and an un-

certainty module that identifies which regions in an image

are likely to be mismatched.

Taking the cross similarity scores between source and

target images as an input, the alignment module based on

an encoder-decoder architecture with parameters WA es-

timates locally-varying transformation fields to deal with

non-rigid geometric deformations more effectively, such

that τ = F(Cst;WA) ∈ R
H×W×2. Different from recent

semantic alignment approaches [15, 26] that estimate local

geometric transformations, our alignment module employs

the detected landmarks as an additional guidance informa-

tion to focus more on the salient parts of the objects.

Additionally, inspired by the probabilistic learning

model [12, 11], we formulate an uncertainty module that

predicts how accurately the correspondences will be estab-

lished at a certain image location. The predicted unreli-

able matches are prevented from being utilized during joint

learning process to improve the robustness of our model

against possible occlusions or ambiguous matches. Unlike

existing methods [23, 22, 19, 12] where the uncertainty map

is inferred from an input image, our uncertainty module

leverages the matching score volume Cst to provide more

informative cues, as in the approaches for confidence esti-

mation in stereo matching [17]. Concretely, a series of con-

volutional layers with parameters WC are applied to predict

the uncertainty map σ from matching similarity scores Cst

such that σ = F(Cst;WC) ∈ R
H×W×1.

Landmark detection networks To enable our landmark

detection networks to focus on more discriminative regions

of the object, we explicitly supply local structures of an im-

age by leveraging self-similarity scores Css and Ctt com-

puted within a local window, as examplified in Fig. 5. This

is different from existing methods [33, 8] that employ only

convolutional features of images and thus often fail to de-

tect semantically meaningful landmarks under challenging

conditions.

Formally, we concatenate the extracted features F s and

F t with self-similarity scores Css and Ctt respectively,

and then pass them through the decoder style networks

with parameters WD to estimate K + 1 detection score

maps for K landmarks and one background, such that φ =
F(F

⋃

C;WD) ∈ R
H×W×(K+1) where

⋃

denotes a con-

catenation operator. The softmax layer is applied at the end

of the networks to transform raw score maps into probabil-

ity maps by normalizing across the K + 1 channels,

ψk
i = exp(φki )/

∑K

m=0
exp(φmi ), (4)

where φk is the score map of the kth landmark. The spa-

tial coordinate of the kth landmark is then computed as an

expected value over the spatial coordinate i weighted by its

probability ψk
i , similar to the soft argmax operator in [13]:

ψ̂k =
∑

i
i · ψk

i /
∑

i
ψk
i . (5)
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(a) (b) (c) (d)

Figure 4. Visualization of the effectiveness of self-similarity: (a)

an image, (b) arbitrary two coordinates, i and j, (c) Css
i , and (d)

Css
j . Css has high variance at more discriminative regions, pro-

viding local structure information to landmark detection networks.

This layer is differentiable, enabling us to formulate loss

functions with respect to the landmark coordinates, which

will be described in the next section.

3.3. Objective Functions

Loss for semantic alignment networks Our semantic

alignment networks are learned using weak image-level su-

pervision in a form of matching image pairs. Concretely,

we start with recent weakly-supervised learning techniques

proposed in [16, 15]. Under the assumption that corre-

sponding features of source and target images are identical,

they cast the semantic alignment into a classification task

such that the networks can learn the geometric field as a hid-

den variable over a set of transformation candidates. How-

ever, this strict assumption is often violated, e.g. around oc-

clusions, textureless regions and background clutters, thus

requiring additional object location priors to penalize re-

gions where the assumption is invalid.

To address this, we propose to identify unreliable

matches through the probabilistic formulation of cross-

entropy loss such that

LA(τ, σ) =
∑

i

(−
∑

j∈Mi

s∗j
σi

log(si,j(τi)) + log σi), (6)

where σ is the predicted uncertainty map with parameters

WC and si,j(τ) is a softmax probability defined as

si,j(τ) =
exp(< F s

i , [τ ◦ F
t]j >)

∑

l∈Mi

exp(< F s
i , [τ ◦ F

t]l >)
. (7)

For j ∈ Mi, a class label s∗j is set to 1 if j = i, and 0 oth-

erwise such that a center point i becomes a positive sample

while other points within Mi are negative samples. By di-

viding the cross entropy loss with the predicted uncertainty

map σ, we can penalize unreliable matches and avoid them

to disrupt the loss function. The log σ serves as a regular-

ization term to prevent σ them from becoming too large.

Losses for landmark detection networks Following [30,

33, 28], our landmark detection networks are designed to

meet the two common characteristics of landmarks, such

that each probability map ψ̂ should concentrate on a dis-

criminative local region and, at the same time, distributed at

different parts of an object.

(a) (b) (c) (d)

Figure 5. Visualization of the effectiveness of probabilistic learn-

ing formulation: warped results using correspondences learned (a)

from (1) with synthetic supervisions, (b) from (6) without proba-

bilistic formulation, (c) from (6), and (d) uncertainty map where

the darker pixels represent high degree of uncertainty.

The first constraint is used to define a concentration loss

Lcon(ψ) that minimizes the variance over the spatial coor-

dinate i with respect to the landmark coordinate φ [33]:

Lcon(ψ) =
∑

k

(
∑

i

(i− ψ̂k)
2
· ψk

i /
∑

i

ψk
i ). (8)

For the second constraint, we define a hinge embedding loss

that encourages the landmarks to be far away than a margin

c [28], such that

Lsep(ψ) =
∑

k

∑

k′ 6=k

max(0, c− ||ψ̂k − ψ̂k′

||2). (9)

A final loss for the landmark detection networks is defined

as a weighted sum of concentration and separation loss,

such that LD(ψ) = λconLcon(ψ) + λsepLsep(ψ).
Note that similar loss functions are used in the landmark

detection literatures [30, 33], but our method is different in

that more realistic supervisory signals for training the land-

mark detection networks are provided from the semantic

alignment networks.

Loss for joint training Here, we integrate two indepen-

dent learning processes into a single model by formulating

an additional constraint for joint training. We apply the out-

puts of two tasks to a joint distance function as a form of

LJ(ψ, τ, σ) =
∑

k

∑

i

1

σi
||ψk

i (x
s)− τ ◦ ψk

i (x
t)||2. (10)

By imposing the consistency constraint between the land-

mark detection and semantic alignment, the joint loss func-

tion allows us to mutually take advantage of guidance in-

formation from both tasks, boosting the performance and

addressing the lack of training data in a principled manner.

Furthermore, we mitigate the adverse impact of unreliable

matches in the joint learning process by discounting the

contributions of them with the predicted uncertainty map

σi. Note that instead of landmark coordinates ψ̂ in (10), the

probability map ψ is utilized for a stronger spatial consis-

tency between two tasks. A final objective can be defined

as a weighted summation of the presented three losses:

LJDA(ψ, τ, σ) = λDLD(ψ)+λALA(τ, σ)+λJLJ(ψ, τ, σ).
(11)
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Figure 6. The effectiveness of the proposed joint learning frame-

work: detected landmarks and aligned images (a), (b) when

learned separately, and (c), (d) when learned jointly .

3.4. Training

Alternative Optimization To optimize the landmark de-

tection and semantic alignment networks in a mutually re-

inforced way, we learn the landmark detection networks

and semantic alignment networks in an alternating fash-

ion. For better initialization, we first pretrain both net-

works independently with synthetically generated image

pairs, similar to [25]. Randomly perturbed images are gen-

erated by applying global affine or TPS transformation to

the original images from the Pascal VOC 2012 segmen-

tation dataset [1], and utilize these image pairs for learn-

ing each networks with loss functions (2) and (1). In se-

quence, we finetune both pretrained networks in an end-to-

end manner for semantically similar images pairs from the

JLAD dataset described in the following section. Specif-

ically, the network parameters {WF ,WA,WC} are op-

timized for semantic alignment by setting {λD, λA, λJ} as

{1, 10, 10}, and {WF ,WD} for landmark detection by set-

ting {λD, λA, λJ} as {10, 1, 100}. We iterate this process

until the final objective converges.

JLAD Dataset To learn our networks with the proposed

consistency constraint (11), large-scale semantically sim-

ilar image pairs are required, but existing public datasets

are limited quantitatively. To overcome this, we introduce

a new dataset that contains a larger number of challenging

image pairs, called JLAD dataset. The images and keypoint

annotations are sampled and refined from the original ones

of PASCAL 3D benchmark [31] and MAFL dataset [34].

For each object category in PASCAL 3D dataset [31] which

provides about 36,000 images for 12 categories, we first

preprocessed their images to contain only a single object.

Specifically, the images are cropped according to the pro-

vided object bounding box annotations, including margins

for background clutters. Then using the ground-truth view-

point annotations such as azimuth and elevation angles, we

sampled about 1,000 image pairs for each category. For hu-

man faces, we sampled image pairs randomly from MAFL

dataset [34] excluding testing set without considering ge-

ometric constraints since their images are already cropped

and aligned. We used the split which divides the collected

Methods
Alignment acc. Detection acc.

PCK@α = 0.1 IOD

Separate learning 63.2 7.97

Iteration 1 67.0 7.36

Iteration 2 70.2 7.16

Iteration 3 72.1 7.05

Ours 72.7 6.92

Table 1. Ablation study for the effectiveness of the proposed joint

learning framework on the JLAD dataset. The accuracies for se-

mantic alignment and object landmark detection are reported with

PCK and IOD metrics, respectively.

image pairs into roughly 70 percent for training, 20 percent

for validation, and 10 percent for testing.

4. Experimental Results

4.1. Experimental Settings

For feature extraction, we used the ImageNet-pretrained

ResNet [7], where the activations are sampled after pooling

layers such as ‘conv4-23’ for ResNet-101 [7]. Margin c is

set to be 0.05, 0.03, 0.02 for detecting 10, 15, 30 landmarks

respectively. The radius of the search space for Ni is set to

5, which is equivalent to 40×40 window at the original res-

olution. Following [12], our uncertainty networks are for-

mulated to predict log variance of uncertainty, i.e. logσ, to

avoid a potential division of (6) by zero. During alternative

optimization, we set the maximum number of alternation to

4 to avoid overfitting. We used ADAM optimizer [18] with

β1 = 0.9 and β2 = 0.999. We set the training batch size

to 16. A learning rate initially set to 10−3 and decreases to

10−4 and 10−5 later.

In the following, we comprehensively evaluated our

framework in comparison to state-of-the-art methods for

landmark detection, including FPE [30], DEIL [29], Stru-

cRep [33], CIG [8], and for semantic alignment, includ-

ing CNNgeo [24], CNNinlier [25], A2Net [27] and NC-

Net [26]. Performance was measured on JLAD dataset and

PF-PASCAL [5] for 12 object categories, and on MAFL

dataset [34] and AFLW dataset [20] for human faces. See

the supplemental material for more details on the imple-

mentation of our system and more qualitative results.

4.2. Ablation Study

We first analyze the effectiveness of the components

within our method. The performances of landmark de-

tection and semantic alignment are examined for differ-

ent numbers of alternative iterations. The qualitative and

quantitatve assessments are conducted on the testing image

pairs of JLAD dataset. As shown in Table 1 and Fig. 6,

the results of our joint learning model show significant im-

provements in comparision to separate estimation models

that rely on synthetic transformations. We also conducted
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Methods aero. bicy. boat bott. bus car chair d.table motor. sofa train tv. All

CNNgeo [24] 71.3 74.4 44.4 60.9 79.6 83.8 63.9 36.6 72.1 43.8 42.5 48.0 60.1

CNNinlier [25] 79.6 82.9 54.4 68.7 89.5 88.5 70.7 39.2 79.4 48.2 49.4 51.1 66.8

A2Net [27] 80.9 81.4 53.6 69.5 88.6 89.5 71.3 41.2 78.1 51.8 52.0 51.7 67.5

RTNs [15] 81.5 85.4 56.3 70.8 87.4 92.7 72.3 43.6 84.3 59.8 55.2 53.5 70.2

NCNet [26] 82.4 85.2 57.9 71.2 88.8 93.1 75.8 46.9 87.8 57.7 57.1 56.5 71.7

Ours 84.7 89.1 62.5 74.5 90.3 93.3 73.3 46.7 89.4 60.7 62.1 56.3 73.6

Table 2. Matching accuracy compared to the state-of-the-art semantic alignment techniques over various object categories on the JLAD

dataset. The distance threshold of PCK α is set to 0.01.

Methods
PCK

α = 0.05 α = 0.1 α = 0.15

CNNgeo [24] 36.9 62.3 71.4

CNNinlier [25] 44.1 68.2 74.8

A2Net [27] 43.1 68.4 74.1

RTNs [15] 49.2 69.3 76.2

NCNet [26] 50.7 70.9 78.1

Ours wo/UM 49.4 68.2 76.9

Ours 52.8 72.7 79.2

Table 3. Matching accuracy compared to the state-of-the-art cor-

respondence techniques on the PF-PASCAL benchmark [5].

an ablation study by removing the uncertainty prediction

model within semantic alignment networks (Ours wo/UM)

and the correlation layer within landmark detection network

that computes local self-similarties (Ours wo/SS). Degraded

performance of “Ours wo/SS” and “Ours wo/UM” in Ta-

ble 1 and Table 2 highlights the importance of encoding

local structure through self-similarities for landmark detec-

tion and considering possible ambiguous matches for se-

mantic alignment.

4.3. Results

Semantic alignment We evaluated our semantic align-

ment networks over 12 object categories on the JLAD

dataset and the PF-PASCAL benchmark [5]. For the eval-

uation metric, we used the percentage of correct keypoints

(PCK) metric [32] which counts the number of keypoints

having a transfer error below a given threshold α, follow-

ing the procedure employed in [6]. Table 2 and Table 3

summarize the PCK values, and Fig. 7 shows qualitative

results. The results of detected landmarks of each image

pair in Fig. 7 are visualized in Fig. 8. As shown in Ta-

ble 2, Table 3, Fig. 7 our results have shown highly im-

proved performance qualitatively and quantitatively com-

pared to the methods [24, 25, 9, 27] that rely on synthet-

ically or heuristically collected correspondence samples.

This reveals the effect of the proposed joint learning tech-

nique where the structural smoothness is naturally imposed

with respect to the detected object landmarks. This is in

contrast to the methods that employ weak implicit smooth-

ness constraints, such as image-level global transformation

model [24, 25, 27], locally constrained transformation can-

Methods K MAFL ALFW K JLAD

FPE [30] 50 6.67 10.53 20 13.32

DEIL [29] - 5.83 8.80 - 10.76

StrucRep [33] 30 3.16 6.58 20 7.33

CIG [8] 30 3.08 6.98 20 12.87

Ours wo/SS 30 3.58 7.72 20 8.16

Ours
10 3.33 7.17 10 7.54

30 2.98 6.51 20 6.92

Table 4. Comparison with state-of-the-art landmark detection tech-

niques on the MAFL [34], ALFW [20], and JLAD dataset. K

denotes the number of used landmarks for linear regressor.

didates [15], or local neighbourhood consensus [26].

Object landmark detection We evaluated our landmark

detection networks for human faces on MAFL and AFLW

benchmarks [34, 20], including various objects on JLAD

dataset. For the evaluation on MAFL benchmark [34], we

trained our model with facial image pairs in the CelebA

training set excluding those appearing in the MAFL test

set. For AFLW benckmark [20], we further finetune the

pretrained networks on AFLW training image sets, simlar

to [33, 30]. To evaluate our discovered landmarks quality,

we use a linear model without a bias term to regress from

the discovered landmarks to the human-annotated land-

marks [33, 30, 29, 8]. Ground-truth landmark annotations

of testing image pairs are provided to train this linear re-

gressor. We follow the standard MSE metric in [34] and

report performances in inter-ocular distance (IOD). Fig. 8

shows qualitative results on JLAD dataset and Fig. 9 for

MAFL benchmark [34]. Table 4 shows that our method

achieves the state-of-the-art performance compared with

existing models [33, 30] that use synthesized image defor-

mations for training their networks. The relatively modest

gain on human faces compared to other object catogories

may come from the limited appearance and geometric vari-

ations on MAFL and AFLW benchmarks, where the faces

are cropped and aligned including little background clut-

ters. A visual comparison of Fig. 8 and quantitative re-

sults of Table 4 demonstrate the benefits of joint learning

with semantic alignment networks. Unlike existing meth-

ods [33, 30, 29, 8] that do not consider rich variations from

the real image pairs, our method consistently discovers se-

mantically meaningful landmarks over various object cate-
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Qualitative results of the semantic alignment on the JLAD dataset: (a) source image, (b) target image, (c) CNNgeo [24], (d)

CNNinlier [25], (e) A2Net [27], (f) RTNs [15], (g) NCNet [26], and (h) Ours. The source images were warped to the target images using

correspondences.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Qualitative results of the object landmark detection on the JLAD dataset: (a), (b) ground-truth landmarks, the image pairs of Fig.

7 are used to discover landmarks with (c), (d) CIG [8], (e), (f) StrucRep [33], and (g), (h) Ours.

(a) (b) (c) (d) (e)

Figure 9. Qualitative results of the object landmark detection

on the MAFL benchmark [34]: (a) ground-truth landmarks, (b)

FPE [30], (c) StrucRep [33], (d) CIG [8], (e) Ours.

gories even under large appearance and shape variations.

5. Conclusion

We presented a joint learning framework for the land-

mark detection and semantic correspondence that utilizes

the complementary interactions between the two tasks to

overcome the lack of training data by alternatively imposing

(a) (b) (c) (d) (e)

Figure 10. Qualitative results of our semantic aligment networks

on the MAFL benchmark: (a) source image, (b) target image, (c),

(d) detected landmarks on source and target image, (e) warped

image using correspondences.

the consistent constraints. Experimental results on various

benchmarks, including a newly introduced JLAD dataset,

demonstrate the effectiveness of our method, such that the

image pairs can be precisely aligned with the intrinsic struc-

tures of detected landmarks, and at the same time the land-

marks can be consistently discovered with estimated seman-

tic correspondence fields.
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