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Abstract

We achieve 3D semantic scene labeling by exploring

semantic relation between each point and its contextual

neighbors through edges. Besides an encoder-decoder

branch for predicting point labels, we construct an edge

branch to hierarchically integrate point features and

generate edge features. To incorporate point features in the

edge branch, we establish a hierarchical graph framework,

where the graph is initialized from a coarse layer and

gradually enriched along the point decoding process.

For each edge in the final graph, we predict a label to

indicate the semantic consistency of the two connected

points to enhance point prediction. At different layers, edge

features are also fed into the corresponding point module

to integrate contextual information for message passing

enhancement in local regions. The two branches interact

with each other and cooperate in segmentation. Decent

experimental results on several 3D semantic labeling

datasets demonstrate the effectiveness of our work.

1. Introduction

With increasing capability of 3D sensing hardware, it is

now easy to capture 3D data in many scenarios. Compared

with 2D images, 3D data provides richer information about

the environment. 3D data is in general view-independent

and captures 3D structure, making it possible to incorporate

geometry information in scene understanding tasks.

Learning-based approaches [28, 3, 10, 12, 25, 30, 15]

were proposed to solve various 3D vision problems, e.g.,

shape classification, scene semantic/instance segmentation,

and 3D object detection. Unlike 2D images, in which

pixel grids are regular with object color information, 3D

object data scatters, with most space actually not occupied.

Therefore, directly voxelizing 3D scenes and extending

deep neural network operations from 2D to 3D is inefficient.

Several voxel-based methods, such as Submanifold Sparse

Convolution [3] and O-CNN [23], improve the 3D convo-

lution efficiency. However, since voxelization is accom-
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Figure 1. Simple illustration of our framework. The point and

edge branches work together to predict the semantic labels. Self-

connected edges and edge directions are omitted.

panied by loss of information, high-resolution 3D models

are needed to uphold the data precision, even though it

unavoidably costs large memory and computation resource.

From another perspective, PointNet [10] directly pro-

cesses 3D points in a network, only considering regions

covered by the 3D points. PointNet++ [12] further adopts

a hierarchical encoder-decoder structure to consider local

regions, which downsamples point clouds in layers first

and gradually interpolates them to the original resolution.

This framework just utilizes weak connection between each

point and its local context, since point features are extracted

independently by the multi-layer perceptrons (MLP). In

segmentation tasks, it is commonly known that local context

is crucial for labeling the semantic categories. This mo-

tivates us to further explore the semantic relation between

points and their local contextual neighbors to extract more

discriminative features for 3D semantic scene labeling.

Our Contributions To explore the semantic relation be-

tween points in a local region and utilize the contextual

information, we explicitly build edges between points and

their contextual neighbors and establish a hierarchical edge

branch with an auxiliary edge loss, as shown in Figure 1.

Specifically, besides the encoder-decoder point branch as

in PointNet++, our new edge branch accepts point features

from different layers and progressively produces edge fea-

tures, which are then fed to point branch for fusing infor-

mation in local graphs. For each point, the corresponding

edge features provide local intrinsic geometric and regional

semantic information to enhance point representation.

Instead of building isolated graphs for points in each
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layer, we design a hierarchical graph construction process to

gradually take point features at different layers into the edge

branch. Edge features of adjacent layers are connected by

an operator, named “edge upsample”. Consequently, edges

on full-resolution point cloud encode multi-layer features,

providing comprehensive data for final prediction.

We regularize the final edge features considering seman-

tic consistency of the two connected points, which helps

increase the discrimination ability between inter- and intra-

category feature pairs, implicitly pulling points with the

same semantic label closer in the feature space.

The decent performance of our method compared with

all existing point-based neural networks on the large-scale

scene labeling datasets, i.e., Stanford Large Scale 3D Indoor

Space (S3DIS) [1] and ScanNet [2], manifests the effective-

ness of our framework.

2. Related Work

2.1. 3D Representation

To process 3D data, one typical approach is to store the

data in volume grids and adopt 3D convolutions [28, 8, 11].

Since most voxels are unoccupied, Submanifold Sparse

Convolution Network [3] defines a sparse convolution op-

eration to process spatially-sparse 3D data. OctNet [13], on

the other hand, represents the data using unbalanced octrees

and defines network operations on these octrees to enable

deeper neural networks without sacrificing the precision.

Similarly, O-CNN [23] uses an octree to enable 3D CNN

on high-resolution 3D data.

Another approach is to use multi-view 2D images, to

which 2D convolutions [18, 11] can be directly applied.

However, these approaches overlook the geometric struc-

ture in objects and scenes, especially the view-occluded

3D structures. Other methods [19, 9] consider 3D object

surface and apply convolutions on it for semantic analysis.

2.2. Point­based Deep Neural Network

PointNet [10] is the first deep neural network to di-

rectly process 3D point coordinates, with MLPs and max-

pooling for extracting features. Since max-pooling is a

global operation on all the points, PointNet lacks local

region understanding. PointNet++ [12] further applies a

hierarchical structure and uses k-NN followed by max-

pooling to capture regional information. Since it aggregates

local features simply via a max-pooling, regional informa-

tion is not yet fully utilized.

Recently, much effort has been made for effective local

feature aggregation. SPLATNet [17] maps points into a

high-dimensional sparse lattice and performs convolution

on it. RSNet [4] projects features of unordered points

into an ordered sequence of feature vectors and applies

Recurrent Neural Network layers to model local depen-

dency. PointCNN [7] explores convolution on point clouds

and addresses the point ordering issue by permuting and

weighting input points and features with the X -Conv oper-

ator. Besides, methods of [16, 22, 27, 26, 24] explore local

context based on graphs.

Graph-based Methods ECC [16] organizes point clouds

as graphs and uses graph convolutions to dynamically learn

weights to combine local features. DGCNN [26] proposes

the EdgeConv module to generate edge features that de-

scribe the connection between a point and its nearest neigh-

bors. PointWeb [29] further connects every point pairs in a

local region to obtain more representative region features.

KCNet [14] creates k-nearest neighbor graphs and applies

kernel correlation to learn local structures over point neigh-

borhood. PCCN [24] and PointConv [27] connect each

point with its k-nearest neighbors and extend the convolu-

tion operation from regular grids to irregular point clouds

by adaptively projecting the relative position of two points

to a convolution weight. Compared to PCCN, PointConv

additionally considers point distribution density. Spectral

Graph Convolution [22] performs graph convolution after a

graph Fourier transform. Superpoint Graph (SPG) [6] splits

the point cloud into geometrically-homogeneous partitions

and builds a super-point graph, followed by a graph neural

network to produce semantic labels.

In our work, we also propose a graph for point cloud pro-

cessing, and yet focus particularly on exploring the seman-

tic relation between points and their contextual neighbors

for semantic segmentation through explicit edges. The key

distinction of our method from other graph-based frame-

works is that instead of fixing the graph and point resolution

(e.g., PCCN [24] and KCNet [14]) or building independent

graphs at each scale (e.g., PointConv [27], PointWeb [29]

and ECC [16]), our graph is hierarchically constructed. We

construct an edge branch, in which we fuse multi-scale

point features and propagate edge features over multiple

scales to enable longer distances of message passing hierar-

chically over edges without large memory overhead. More-

over, we propose edge loss aiming to encode the edges with

exact semantic consistency information and increase the

discrimination power among point features with different

categories.

With meaningful edge features, we further feed edge fea-

tures into each scale of the point branch to offer contextual

information. To pass messages via edges, PointConv [27]

and PCCN [24] adaptively learn weights from edges to fuse

point features, while KCNet [14] defines a point-set kernel

and kernel correlation to aggregate local features along

edges. Different from these methods, our approach concate-

nates each point feature with the max-pooled corresponding

edge features. Our approach requires less parameters to

learn and preserves the distinctiveness of individual point

features (Section 4.4 provides more discussions).
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Figure 2. Overall architecture. N denotes the number of points in the original point cloud. The subscript of N is the layer index. Larger

indices indicate layers with more points. C denotes the number of point feature channels. K denotes the number of edge feature channels.

E denotes the edge set. The edge feature is encoded from the coarsest layer 0, and is gradually refined with the point features from later

layers. Edge features in different layers also participate in the corresponding point modules to provide contextual information.

3. Our Approach

We design a hierarchical edge branch collaborating with

the point prediction branch for point cloud semantic seg-

mentation, as shown in Fig. 2. We progressively enlarge the

graph, upsample edge features, and accept point features in

different layers to refine the edge features. Edge features in

different layers then provide extra contextual information

for point feature learning. The final edge features are reg-

ularized with semantic consistency of their two-end points,

which serve as auxiliary supervision for point features.

In this section, we first introduce the new edge branch,

covering especially the interaction between point and edge

branches, in Section 3.1. Then the hierarchical graph con-

struction framework, which enables integration of different-

layer information for edge prediction is described in Sec-

tion 3.2. Section 3.3 depicts the loss regularizing both

category prediction of each point and semantic-consistency

prediction of each edge.

3.1. Edge Branch

Given a point cloud with N points P = {p1, p2, ..., pN},

we construct a directed graph G = (V,E), where V =
P and E includes the edges that connect each point to its

contextual points. Here, G is hierarchically constructed in

a coarse to fine manner. We denote the graph in layer L as

GL. A larger L indicates a layer with more points, and layer

0 is the coarsest layer with the least points. The detailed

graph construction process is depicted later in Section 3.2.

Here, we first introduce the constitution of edge branch and

how it interacts with the point branch.

As shown in Fig. 2, for the point branch, we follow

PointNet++ [12] to create a hierarchical encoder-decoder

structure with previous features in point encoder connected

to the corresponding point decoder layers through skip-

connection, thus passing detailed low-level information.

The point cloud is downsampled and then upsampled in
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Figure 3. (a) Architecture of the Edge Module. (b) Edge Encoder

block in (a). KL and CL represent the channel numbers in edge

and point features in layer L, respectively. For simplicity, we only

illustrate the edge encoding process for a single edge in (b). Edge

features for all the edges in EL constitute HEL
.

the process. Meanwhile, we construct an edge branch with

consecutive edge modules, taking both features from the

corresponding point module and the previous edge module.

The procedure is to extract edge features from the coars-

est layer to grab high-level information with the largest

receptive field, and progressively fuse point features from

finer layers into edges, in parallel with the point decoding

stage. Point features from the encoder layers are also used

in the process, along with skip-connection to the corre-
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sponding decoder layers.

Although both abstract global features from the coarser

layers and detailed information from finer layers are im-

portant, the most essential data for edge prediction is from

the last layer with the most refined point features. With

this consideration, edge features are encoded in a coarse-

to-fine manner, making point features in the finest layer

fused at last. The hierarchical edge features are also fed

to the corresponding point modules to provide additional

contextual information.

3.1.1 Edge Module

At the decoding stage, for layer L, we denote the graph as

GL = (VL, EL) and the number of points as NL. The edge

module accepts the L-layer point features FVL
and (L −

1)-layer edge features HEL−1
as arguments and returns the

edge features in layer L. As shown in Fig. 3(a), the edge

module is expressed as

HEL
= Mencoder(FVL

,Mupsample(HEL−1
)), (1)

where Mencoder denotes the edge encoder and Mupsample

is the edge upsampling module, which maps edge features

in graph GL−1 to graph GL. The graph construction and

edge upsampling process will be described in Section 3.2.

For each edge ei,j = (pi, pj) ∈ EL, its edge feature at

layer L is written as

HL
i,j = Mencoder(F

L
i , FL

j , HL−1→L
i,j ), (2)

where FL
i and FL

j are the point features of pi and pj ,

respectively. HL−1→L
i,j is the edge feature upsampled from

layer L− 1 to layer L.

As illustrated in Fig. 3(b), Mencoder for a single edge can

be expanded as

HL
i,j = f

(1)
ext([f

(2)
ext(fedge(F

L
i , FL

j )), HL−1→L
i,j ]), (3)

where [·, ·] represents concatenation. The feature extractor

fext : R
n → R

m can be any differentiable function. In our

implementation, we apply MLP as fext. The edge function

fedge takes the two point features it connects as input and

outputs a feature for the edge. We formulate fedge as

fedge(F
L
i , FL

j ) = [(pj − pi), F
L
j , FL

i ], (4)

where [·, ·, ·] concatenates the three elements, and pi, pj
here represent 3D point coordinates. The two point features

are concatenated for completely preserving information of

the two points. Also, we provide (pj − pi) to indicate the

relative position between the two points. Other implemen-

tations of fedge are discussed in the experiment part.
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Figure 4. Architecture of the Point Module. KL denotes the

channel number of the L-layer edge features, while CL denotes

the channel number of the L-layer point feature.

3.1.2 Incorporation of Edges in Point Prediction

For layer L, every point in graph GL links to other contex-

tual points. So corresponding edges are expected to pass

the contextual information back to the point. To this end,

the edge features with respect to point pi are operated by

max-pooling as a region guidance. Let EL(pi) denote the

set containing all edges starting from pi, the corresponding

set of edge features is

HEL(pi) = {HL
i,j |(pi, pj) ∈ EL(pi)}. (5)

The point feature FL
i is then updated by

(FL
i )new = [FL

i , MaxPool(HEL(pi))]. (6)

Fig. 4 gives an illustration of the process.

By incorporating edge information in point features, we

enlarge the message passing range. The local region feature

provided by the edges allows the point feature extractor to

see farther in each layer. Additional contextual information

including intrinsic geometry and semantic relation in the

local region is incorporated in the region feature to bene-

fit segmentation. We experiment with other schemes for

message passing. Section 4.4 gives more discussions.

By helping feature extraction in the other branch, point

and edge features become more powerful in final prediction.

3.2. Hierarchical Graph Construction

Instead of building graphs separately at each layer, we

build the graph hierarchically, as shown in Fig. 5. By

designing the “edge upsample” operation with each edge

aware of associated edges in previous layer, we enlarge the

receptive field and enable longer-range message passing for

edges.

3.2.1 Graph Initialization

As shown in Fig. 5, the graph is initialized in the coarsest

layer (layer 0). The initial graph G0 is constructed by
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Figure 5. Hierarchical Graph Construction. The graph is initialized in the coarsest layer and is progressively enlarged by considering both

point coordinates in the current layer and the graph in previous layer.

connecting each point with its nearest k0 points. Mathe-

matically, G0 = (V0, E0) is formulated as
{

V0 = P0,

E0 = {(pi, pj)| pi ∈ P0, pj ∈ Nk0
(pi)},

(7)

where P0 is the point set in layer 0, which is downsampled

from the original point set with farthest point sampling

(FPS) in encoding layers. Nk0
(pi) is the set of the k0-

nearest neighbors of point pi, including itself.

3.2.2 Hierarchical Architecture

Along with the decoding process of point features, we

gradually enlarge the graph and enrich the edge features

with more details. The process is illustrated in Fig. 5.

Graph Construction of Layer L Consider two adjacent

layers L−1 and L with vertices VL−1 and VL as the point set

in that layer, respectively. The graph GL is constructed by

first finding the kL nearest neighbors for each point in VL.

Let G
(0)
L = (VL, E

(0)
L ) denote such initial L-layer graph.

For each edge ei,j = (pi, pj) ∈ E
(0)
L , we consider the set

consisting of possible neighboring edges in layer L− 1 as

EL−1
ne (ei,j) = {(p′i, p

′

j)| p
′

i ∈ NL−1
k (pi), p

′

j ∈ NL−1
k (pj)},

where NL−1
k (pi) ⊆ VL−1 is the k-nearest neighbors of pi ∈

VL in layer L−1. pi is included in NL−1
k (pi) if pi ∈ VL−1.

We then check whether edges in EL−1
ne (ei,j) exist in

EL−1 – the edge set of GL−1. If edge ei,j connects two

distant points, for which even in the coarser layer L−1 there

is no connection between the two corresponding regions, we

do not take the edge into consideration in layer L. Hence, if

EL−1
ne (ei,j) ∩EL−1 = Ø, edge ei,j is discarded from E

(0)
L .

Following this principle, the final graph GL = (VL, EL)
has an edge set of

EL =
⋃

pi∈VL

EL(pi),

where EL(pi) (edges starting from pi) is expressed as

EL(pi) = {(pi, pj)|pj ∈ NkL
(pi), E

L−1
ne (ei,j)∩EL−1 6= Ø}.

Note that at least ei,i is reserved in EL(pi) in some extreme

cases.
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Figure 6. Demonstration of edge upsampling. Points in layer L−1
(blue ones) also exist in layer L. Self-connected edges are omitted.

For edge ei,j in layer L, we propagate edge features in layer

L− 1 by finding its neighboring edges in EL−1 and interpolating

features of these edges. Red arrows represent edges in GL−1 for

interpolation, which denote intersection of EL−1 (blue arrows)

and EL−1

ne (ei,j) (yellow arrows).

Edge Upsampling In PointNet++ [12], point feature of pi
in layer L is propagated from layer L − 1 by interpolating

feature values of its k nearest neighbors in layer L− 1 as

FL−1→L
i = f

p
interp({F

L−1
j | pj ∈ NL−1

k (pi)}). (8)

We similarly propagate edge features in layer L−1 to layer

L as

HL−1→L
i,j = fe

interp({H
L−1
i′,j′ | (pi′ , pj′) ∈ EL−1

ne (ei,j)∩EL−1}).

A demonstration is given in Fig. 6.

The interpolation weights are based on the inverse dis-

tance of the two pairs of end points. For HL−1
i′,j′ , the weight

is formulated as

wi′,j′ =
1

(‖pi − pi′‖t + ǫ) · (‖pj − pj′‖t + ǫ)
, (9)
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where pi′ , pj′ ∈ VL−1, pi, pj ∈ VL represent point coordi-

nates, ǫ = 1e − 8 and t is set to 2. The weights are then

normalized as

wn
i′,j′ =

wi′,j′
∑

(pi′′ ,pj′′ )∈E
L−1

ne (ei,j)∩EL−1
wi′′,j′′

. (10)

3.3. Loss Function

We optimize the point and edge branches jointly with the

combined loss on the two branches as

L = λ1Lpoint + λ2Ledge, (11)

where λ1 and λ2 adjust the ratio of the two losses.

Point Loss The final point features are followed by an

MLP to produce point-wise semantic predictions. We fur-

ther use the final edge predictions as weights to aggregate

point scores and get refined point predictions. Cross entropy

loss is applied to constrain the point predictions.

Edge Loss The edge features in the final graph G are

regularized by the edge labels, which represent whether the

two-end points of the edge are in the same category or not.

The label for edge ei,j = (pi, pj) ∈ E is set as

lei,j =

{

1, if l
p
i = l

p
j

0, if l
p
i 6= l

p
j

. (12)

where l
p
i and l

p
j are the point semantic labels of pi and

pj . An MLP is adopted to produce the per-edge prediction.

Binary cross entropy loss is chosen for the edge loss as

Ledge = −
1

|E|

∑

ei,j∈E

(lei,j log(pred
e
i,j)+α(1−lei,j) log(1−predei,j)),

(13)

where predei,j is the edge prediction for ei,j , and α balances

the two kinds of edges, as there are more intra-class edges

than inter-class ones considering the local neighborhood.

The final edge feature for each edge can be deemed

as a function on features of the two regions centered at

the two-end points. Information from different layers are

taken into account. More details are preserved by encoding

at last. Hence, the edge loss guides the edge encoder to

seek difference between the intra- and inter-class feature

pairs, and implicitly serves as auxiliary supervision for

point features. It increases the discrimination power among

point features in different categories. Also, with the edge

supervision, more exact contextual information is passed to

points via edges to enhance point features.

4. Experiments

We conducted experiments on two representative

and challenging large-scale scene labeling datasets, i.e.,

S3DIS [1] and ScanNet v2 [2], with ablation analysis

presented on the ScanNet v2 val set and S3DIS Area 5.

4.1. Implementation Details

The point branch contains an encoder with four down-

sampling layers and a decoder with four upsampling layers.

The numbers of points, N0, N1, N2, N3, N4 = N , in the

decoder are 16, 64, 256, 1,024, and 4,096, respectively.

The edge branch has five blocks with k (number of nearest

neighbors) set to 4, 6, 10, 14, 16 from layer 0 to 4. k is

chosen as 3 for point and edge feature interpolation.

The whole network was trained in an end-to-end man-

ner using the SGD optimizer with batch size 16 and base

learning rate 0.05. For S3DIS, we train the network for 100

epochs and decay the rate by 0.1 for every 25 epochs. For

ScanNet, we train the network for 120 epochs and decay the

rate by 0.1 for every 30 epochs. The momentum and weight

decay are set to 0.9 and 0.0001 respectively.

4.2. Datasets

S3DIS The dataset [1] has 6 areas with a total of 271

rooms. Each room is provided as points with RGB infor-

mation. Each point has a semantic label from 13 categories

of floor, window, door, etc. In each training iteration, we

randomly sample blocks in the training areas, with 4,096

points randomly selected per block. We set the block size as

0.8m × 0.8m with 0.1m padding. Also, we represent each

point as a 9D vector with XY Z, RGB, and normalized

position in room. All points in the test areas are used in

evaluation. Two settings are adopted [20, 6, 7]: (i) splitting

Area 5 as the test set and using others for training; and (ii)

adopting 6-fold cross validation, with each of the 6 areas

taking as the test set once.

ScanNet v2 The dataset has 1,613 scans with a

train/validation/test split of 1,201/312/100. Excluding

the ‘unannotated’ points, each point in the scans has a

label from 20 categories of wall, shower curtain, etc. To

prepare the input data, we follow previous work [12] to

randomly sample blocks in rooms and sample 4,096 points

per block. Again, we use 0.8m × 0.8m block size and

0.1m padding. Here, each input point feature is a 6D vector

(XY Z & RGB). We evaluated on both the validation and

test sets. Since the semantic annotation for the test sets is

not publicly available, we submitted our predictions to the

official server to obtain the evaluation results.

Evaluation Metric It includes the class-wise mean of in-

tersection over union (mIoU), class-wise mean of accuracy

(mAcc) and point-wise overall accuracy (OA).

4.3. Main Results

Table 1 lists quantitative results of different methods on

S3DIS Area 5. Compared to previous approaches, ours

yields the highest scores in terms of all the three metrics.

Specifically, our model yields mIoU 61.85%, exceeding

the former best by 3.58%. Table 2 shows the comparison
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Methods OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [10] - 48.98 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22

SegCloud [20] - 57.35 48.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 70.40 75.89 40.88 58.42 12.96 41.60

PointCNN [7] 85.91 63.86 57.26 92.31 98.24 79.41 0.00 17.60 22.77 62.09 74.39 80.59 31.67 66.67 62.05 56.74

SPGraph [6] 86.38 66.50 58.04 89.35 96.87 78.12 0.00 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22

PCCN [24] - 67.01 58.27 92.26 96.20 75.89 0.27 5.98 69.49 63.45 66.87 65.63 47.28 68.91 59.10 46.22

Our Method 87.18 68.30 61.85 91.47 98.16 81.38 0.00 23.34 65.30 40.02 75.46 87.70 58.45 67.78 65.61 49.36

Table 1. Semantic segmentation results evaluated on S3DIS Area 5. Most methods do not perform well on the “beam” category, which has

few points (0.029%).
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Figure 7. Visualization of the semantic segmentation results on the S3DIS dataset.

Methods OA mAcc mIoU

PointNet [10] 78.5 66.2 47.6

RSNet [4] - 66.45 56.47

SPGraph [6] 85.5 73.0 62.1

PointCNN [7] 88.14 75.61 65.39

Our Method 88.20 76.26 67.83

Table 2. Semantic segmentation results on the S3DIS dataset with

6-fold cross validation.

among different architectures on 6-fold cross validation.

Ours also reaches the first place for all the three items.

Table 3 lists results of our framework and other point-

based methods on ScanNet v2 test set. All methods use only

point clouds with RGB color as input without voxelization.

Our approach outperforms others by a large margin: 6.2%

higher in absolute mIoU and 11.2% better relatively. Visual

results are shown in Figs. 7 and 8. Our method segments

objects even in complex scenes. It is notable that several

detailed structures are classified and segmented from the

surroundings, manifesting the effectiveness of our method.

4.4. Ablation Study

For ScanNet v2, the models are trained on training set

and evaluated on validation set. For S3DIS, the models are

Method mIoU

PointNet++ [12] 33.9

SPLATNet [17] 39.3

PointCNN [7] 45.8

PointConv [27] 55.6

Our Method 61.8

Table 3. Semantic segmentation results on ScanNet v2 test set.

trained on Areas 1-4 & 6 and evaluated on Area 5.

Edge Function We explore different ways of incorpo-

rating point information into edges, including Subtraction,

Summation, Hadamard product, ‘ConcatSub’, and Concate-

nation. Here ‘ConcatSub’ is defined as

fedge(F
L
i , FL

j ) = [(pj − pi), F
L
j , (FL

j − FL
i )]. (14)

Table 4 shows comparison of the results. Overall, concate-

nation yields the best result due to preservation of most

point information. Summation, Subtraction, and Hadamard

Product all cause information loss in the level of point

features. ‘ConcatSub’ achieves similar performance with

Concatenation, since the two-point features can be restored

in this type of operations.
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Figure 8. Visualization of the semantic segmentation results on the ScanNet v2 dataset.

Methods mIoU mAcc OA

Subtraction 58.31 / 58.85 67.95 / 65.66 84.02 / 86.44

Summation 57.86 / 58.96 67.25 / 65.87 83.69 / 86.48

Hadamard Product 59.07 / 58.79 68.02 / 65.27 85.31 / 86.16

ConcatSub 63.09 / 59.37 71.82 / 66.19 86.12 / 86.53

Concatenation 63.36 / 61.85 72.61 / 68.30 86.13 / 87.18

Table 4. Ablation study results for edge function fedge on ScanNet

v2 and S3DIS. The results are shown in format of ScanNet v2 /

S3DIS. The ablation on two datasets share similar observation.

Methods mIoU mAcc OA

AdaAggre (w. softmax) 56.44 66.17 83.06

AdaAggre (w.o. softmax) 55.01 64.12 82.67

MaxPool + Concat 63.36 72.61 86.13

Table 5. Ablation results for message passing by edges.

Message Passing by Edges Besides the approach de-

scribed in Section 3.1.2, we also experimented with another

scheme which is inspired by graph convolution [5, 21],

where the edge features are further encoded to form weights

for the linked points. The point features are then updated

as a weighted sum of the adjacent point features. We

denote this scheme as adaptive aggregation (AdaAggre) and

test the two settings, with and without softmax, for the

weights. Table 5 lists the experimental results on ScanNet

v2 validation set.

The performance gain for the graph-convolution-style

methods is lower than max-pooling followed by concate-

nation. It may be because during the point decoding, it

is not very helpful to mix point features in each local

neighborhood. Instead, the combined contextual feature

reveals the relation of a point with its neighborhood. It can

better preserve the point’s own distinctiveness.

Hierarchical Graph Construction and Edge Upsampling

We build connection between edge features of adjacent lay-

ers by “edge upsample”. We also experimented on ScanNet

dataset with removing hierarchical graph construction and

building the graph of each layer separately without edge

upsampling.

The mIoU/mAcc/OA (%) results are 57.01/66.52/83.57

respectively, much lower than our full framework with

63.36/72.61/86.13. The connected edge branch optimally

incorporates the point features in different layers, enabling

effective learning for the edge features.

5. Conclusion

We have designed a hierarchical point-edge interaction

network, in which an edge branch is proposed to work with

the encoder-decoder point branch for point cloud semantic

segmentation. The proposed hierarchical graph framework

enables the edge branch to progressively integrate different-

layer point features. Also, the generated edge features are

incorporated into the point branch to provide contextual

information. The final edge features are supervised by the

semantic consistency of related points to implicitly regu-

larize the point features. All these steps make semantic

relationship with local context well utilized via edges.

With the high-quality point prediction results and gen-

erality of the framework applicable to different datasets,

we believe the proposed method will broadly benefit 3D

understanding in the community. In the future, we will

explore multi-range edge construction to gather both close-

range and long-distance contextual information.
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