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Abstract

Video surveillance systems have wide range of utilities,

yet easily suffer from great quality degeneration under dim

light circumstances. Industrial solutions mainly use ex-

tra near-infrared illuminations, even though it doesn’t pre-

serve color and texture information. A variety of researches

enhanced low-light videos shot by visible light cameras,

while they either relied on task specific preconditions or

trained with synthetic datasets. We propose a novel opti-

cal system to capture bright and dark videos of the exact

same scenes, generating training and ground truth pairs

for authentic low-light video dataset. A fully convolutional

network with 3D and 2D miscellaneous operations is uti-

lized to learn an enhancement mapping with proper spatial-

temporal transformation from raw camera sensor data to

bright RGB videos. Experiments show promising results

by our method, and it outperforms state-of-the-art low-light

image/video enhancement algorithms.

1. Introduction

Video surveillance systems have been vastly used

throughout industry, military, and academia. Nonetheless,

they commonly encounter situations with extremely low

level of illumination, e.g. security cameras at night [41],

and long time continuous wild animal monitoring for re-

search purposes [5]. Under these circumstances, in order

not to expose recording devices and not to interfere with

photographed objects, extra visible-light source is usually

not a viable option.

Current solutions mainly involve near-infrared (NIR)

LED [42] or diodes [11] as shown in Figure 1 (a). In-

frared illumination helps gain better vision in low-light en-

vironments, in the mean time, however, introducing sev-

eral additional drawbacks compared to natural light cam-

era systems. Inevitable are additional energy consumption

and heat generation with the presence of extra light sources,
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Figure 1. Comparison between widely used industrial systems for

low-light situations and our proposed solution. (a) A surveillance

camera equipped with NIR diodes; (b) Texture on the sleeve is

visible in the RGB image; (c) Texture information disappears in

the NIR image; (d) Our low-light video enhancement solution.

which can increase operation and maintenance costs of a

system. More importantly, visible color and even texture in-

formation, which can be crucial in some cases e.g. patterns

on clothes of a suspect or physical properties of an animal’s

coat, suffer from extensive loss [25], as demonstrated by a

typical example in (b) and (c) of Figure 1. Besides, even

with NIR LED sources, there is still risk of becoming in-

vasive recording, especially when target creatures have dif-

ferent spectra of visible light from human being. In such

situations, infrared radiation has potential to trigger uncon-

trollable animal reactions.

Based on these reasons, a more reasonable choice is to

directly enhance videos captured by ordinary camera sys-

tems. Researchers have proposed a variety of approaches to

enhance low light images and videos, including contrast en-

hancement [26, 1, 2, 20, 34], denoising [28, 15, 43], retinex

algorithms [37, 21, 22] and so on. Among all those re-
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searches, we found two closest related researches handling

insufficient light problem [3, 24]. These two researches

both adopt deep convolutional network (DCN) approach to

learn an enhancement mapping. In order to train and test

the networks, low-light and well-lighted image/video pairs

are generated as basic elements in a dataset. The state-of-

the-art low-light image enhancement technique, proposed

by Chen et al. [3], trained a DCN on a dataset called See-

in-the-Dark (SID) that was built by taking pictures of iden-

tical scenes with different exposure time. Their network can

brighten extreme dark images with amplification ratio being

as high as 300. This long-exposure-time approach of build-

ing a dataset, nevertheless, limits its scope to static settings.

Lv et al. [24] proposed a multi-branch network (MBLLEN)

and trained it on synthetic dataset. Both of these training

datasets lose details of real world low light videos. They ei-

ther omit dynamic temporal information in a video, or dis-

tort video information by artificial transformation.

In this paper, we propose a novel optical system to shoot

bright videos, as ground truth, and dark videos, as training

input, of the exact same scenes simultaneously. In this man-

ner, we introduce a dataset of 179 pairs of videos consist-

ing of 35800 extremely low-light raw images and their cor-

responding well-lighted RGB counterparts. This enabled

us to train on them a modified U-Net [29] with miscella-

neous 2D and 3D operations capable of manipulating tem-

poral details embedded in a video better than usual 2D

networks. Our experiments show that the newly captured

dataset with this network structure outperforms state-of-

the-art low-light image/video enhancement techniques by

a large margin both in our test cases and real world tasks.

The major contributions of this paper can be summarized

as

1. We build a novel co-axis optical system to capture

temporally synchronized and spatially aligned low-light and

well-lighted video pairs.

2. We collect the first low-light/well-lighted video pair

dataset of street views with moving vehicles and pedestri-

ans, which will be publicly released to facilitate further re-

searches.

3. We propose a 3D U-Net based network for low-light

video enhancement, which reveals superior performance in

color fidelity and temporal consistency.

2. Related Work

Low-light video enhancement spans a variety of research

fields, all of which have tremendous amount of studied lit-

erature. This section provides a quick review on related ap-

proaches.

Low-light image enhancement. Methods for dark im-

age enhancement can be applied to dark videos in a frame-

by-frame pattern. There are a vast number of conventional

enhancement approaches derived from histogram equaliza-

tion. Arici et al. [1] proposed an algorithm to exploit con-

ditional histogram information and enhance image contrast

while preserving naturalness. CVC [2] uses 2D histogram

to take interpixel contextual information into account. LDR

[20] solves optimization problems at different layer of a 2D

histogram to generate unified transformation function. DHE

[26] captures edge information of input images to enhance

contrast.

Retinex theory [18] is another remarkable foundation in

poorly-lighted image enhancement researches. Jobson et

al. [14, 13] based on retinex theory discovered best place-

ment of log function and Gaussian form, and developed a

multiscale algorithm along with a color restoration method

to deal with cases where gray-world assumptions are vio-

lated. LIME [10] estimates a pixel-wise illumination map,

and refines it by a structure prior to achieve enhancement.

Fu et al. [7] proposed a fusion-based enhancing method that

estimates illumination and fuses derived images by a mul-

tiscale strategy. Fu et al. [8] pointed out disadvantages of

using log transformation and proposed a weighted varia-

tional model to estimate reflectance and illumination from

an image. AMSR (adaptive multiscale retinex) [21] infers

weights for multiple SSR (single-scale retinex) to produce

naturally enhanced images. Liu et al. [22] applied Gaus-

sian filters to get illumination and reflection components,

with Gamma correction to enhance saturation in HSI color

space. NPE [35] tries to overcome naturalness preserving

problem of retinex-based algorithms by balancing between

image details and natural view. There are also researches

that define novel models similar to retinex theory or other

optical systems. A dual-exposure fusion algorithm, pro-

posed by Ying et al. [39], imitates human visual system to

enhance image contrast. Ying et al. [40] established a cam-

era response model and used that model to adjust illumina-

tion of each pixel in an image. Generally, low-light image

enhancement methods requires task specific adjustment to

reinforce model hypotheses’ validity.

Deep learning based methods. Data driven models

have been demonstrating powers in the field of image and

video enhancement. CNN is one of the most common mod-

els. Remez et al. [28] illustrated that class information ob-

tained by a DCN helps image denoising. DnCNN [43] uses

residual learning and batch normalization to speed up and

improve performances. CNNs are also directly applied to

low-light image enhancement tasks, e.g. DCNN [32] and

LLCNN [33]. More recently, GANs [9] have been drawing

increasing attention. They are capable of generating generic

image transformation, e.g. conditional GAN [12] and cycle-

GAN [44], and super-resolution tasks, e.g. SRGAN [19].

Other deep learning based methods include LLNET [23],

which uses stacked-sparse denoising autoencoder to en-

hance and denoise low-light images, and deep Retinex-Net

[37] that combines retinex theory and deep learning.

7325



Signal Generator

Camera 1 (Bright)
Beam Splitter

Camera 2 (Dark)

(a)

ND Filter

(b)

Relay Lens

(c)

Figure 2. The camera system we built to capture bright and dark videos of the same scenes concurrently. (a) Optical paths of the system;

(b) a demonstration of an ND filter’s effect; (c) a photo of the installed system.

Low light video enhancement and training dataset. A

commonly shared theoretical model has not been put for-

ward in the field of low-light video enhancement, except

for methods that borrow aforementioned image enhance-

ment models to process videos frame-by-frame or those

built upon retinex theory e.g. a piecewise-based framework

[34]. There are methods that adopt similar approaches of

dehazing inverted frames [6, 27]. Kim et al. [15] pro-

posed a method that separates temporal and spatial filter-

ing to denoise extremely low-light videos, and uses gamma

correction histogram adjustment with clipping thresholds

to increase dynamic range. Ko et al. [17] used similar

patches among adjacent frames to accumulate extra infor-

mation. They also used a guide map to better preserve

bright regions and avoid color distortion, ghosting effect,

or flickering. MBLLVEN [24] is the generalized 3D ver-

sion of MBLLEN. It incorporate temporal information into

their network process. This network is trained on syn-

thetic dataset generated by uniformly randomized gamma

correction and Poisson noise [23]. There are authentic

low-light image training sets, e.g. SID [3] and Low-Light

dataset (LOL) [37]. However, to the best of our knowledge,

public authentic dark video training dataset does not ex-

ist yet. Therefore, we collected sufficient number of video

pairs to establish a systematic low-light video enhancement

pipeline.

3. See-Moving-Objects-in-the-Dark Dataset

3.1. Camera System

In order to overcome blurry effects introduced by long-

exposure approach, we constructed a camera system (as

shown in figure 2 (c)) to capture low light videos.

This system is designed to work under sufficiently il-

luminated circumstances so that generated bright videos

(ground-truth) could have acceptable quality. Ambient light

goes through a relay lens in order to adjust focal lengths

and light beam directions. A beam splitter is then set up to

divide input light and feed identical brightness information

to two cameras separately. One of the cameras is equipped

with a neutral density (ND) filter so that weakly brightened

videos could be produced. An ND filter is able to diminish

light intensity throughout all wavelengths without modify-

ing hue of color rendition. In our settings, we chose an

ND filter with 1% ratio between transmitted through opti-

cal power and incident light intensity. Its effect can be seen

in Figure 2 (b), where halation of overexposed light tubes

becomes visible shapes after passing through an ND filter.

Two cameras are perfectly synchronized by a signal gen-

erator to take raw pictures at video frame rate. Specifically,

we set it to be 15, 30, 60, and 120 frames per second. With

these rates, we are able to gather thousands of sequential

images within a few minutes. Furthermore, our system’s

mobility allows us to take pictures in multiple places ef-

fortlessly. This gave us an advantage of creating our whole

dataset within 12 hours, indicating large potentials in data

augmentation for future applications.

Cameras’ ADC modules generate image pixel values

with 12-bit depth, and save them in 16 bits. Table 1 gives

more detailed information on equipment we selected.

Components Specifications

Camera Model: FLIR GS3-U3-23S6C

Shutting: Video Mode 7

Filter: Bayer pattern

ND Filter Model: Thorlabs Reflective ND Filter ND20B
Table 1. Camera system specifications.

Although the whole optical system is mounted on a

sturdy base, with standard screw interfaces and C-mount

tube systems and two cameras are aiming at matched sights,
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Figure 3. A subset of training dataset. From top to bottom, each row represents a distinct gain level of 0, 5, 10, 15, 20 in ADC module.

Ground truth video frames are in the front, for training input video frames are basically black.

there are still pixel-level misalignments, both translational

and rotational. We addressed this issue by removing the

ND filter first and taking 50 pairs of bright pictures with

two installed cameras respectively. We then applied ho-

mography feature matching operations on these clear im-

age pairs to acquire optimal geometric mappings in which

differences after alignment was the minimum between two

camera’s visual fields. All bright videos were transformed

accordingly to enforce pixel-wise rigorous correspondence

between video pairs. In each pair, bright and dark videos

were cropped to their overlapping rectangle area (around

1800 pixels × 1000 pixels) after geometric mapping. We

compelled the height and width of the area to be even num-

bers for the purpose of a following demosaicing operation.

3.2. Dataset

With the constructed optical system and alignment pre-

processing, we collected 179 video pairs of street views

with moving vehicles and pedestrians under different con-

ditions. We referred to this dataset as See-Moving-Objects-

in-the-Dark (SMOID) dataset. Five various ADC gain lev-

els, ranging from 0 to 20 at an interval of 5, were utilized to

maintain a diverse dataset. Each video is of 200 frames.

All video frames are in a 16-bit unsigned integer format

organized in a ”GBRG” (left to right, top to bottom, in

each 2x2 cells starting from top left) Bayer pattern. Bright

videos had gone through a demosaicing procedure to form

ground truth videos in a normal 8-bit sRGB form. Specific

converters employed for ground truth videos’ demosaicing

were adapted depending on parities of starting coordinates

when we cropped videos, e.g. an even starting row num-

ber and even starting column number case would require a

GR2RGB converter, while an odd starting row number and

even starting column number case demanded a BG2RGB

converter, etc.

Among all the pairs, 125 of them are chosen as training

samples, 27 as validation set, and the rest 27 as test set.

Figure 3 displays a subset of SMOID dataset. Five rows

from top to bottom correspond to videos with different ADC

gain levels in an increasing order. Each row contains ex-

tracted key frames from ground truth and training input

videos. Because of the fact that dark images are mainly

all black, bright images are displayed in the foreground. In

spite of the fact that key frames presented here are all street

views, actual training videos incorporate a vast number of

features that are adequate for our network to grasp a generic

enhancement mapping for various dark scenes. Detailed ex-

periment results in section 5 corroborates this conclusion.

4. Method

4.1. Pipeline

An overview of our pipeline is shown in Figure 4. Our

pipeline reconstructs RGB formatted bright videos from

raw sensor data. This is because of the fact that extreme

black situations results in extraordinarily low signal-to-

noise rate (SNR) images, in which case RGB 8-bit format

fails to keep fidelity to the real world information. In our

SMOID dataset, raw images were obtained by cameras with

Bayer filters. Thus, before feeding videos into the network,

we packed each frame into 4 channels in a ”GRBG” order,

which reduced videos’ spatial sizes by a factor of two. Res-

olution restoration was taken care by inserting a sub-pixel

depth-to-space layer [31] applied to each frame at the end

of our network.

Given the fact that raw values can fluctuate in much

wider range than common RGB values, particularly in high

ADC gain levels, we adjusted entire video clip values by a
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Figure 4. An overview of our modified U-Net enhancement pipeline. On the top is modularized structure illustration; on the bottom, details

of the U-Net are demonstrated.

linear scaling process so that their mean values after ad-

justment lie in the vicinity of 1

5
of the maximum values

determined by storing formats. This ratio is an empiri-

cal value properly chosen after preparatory experiments and

was maintained throughout subsequent processes. Still, this

could bring a degree of freedom to fine-tune a model in de-

ployment stage.

4.2. Network

Recent researches [30, 4, 38] have explored DCN’s ef-

fectiveness in image-to-image tasks, especially U-Net [3].

Inspired by this fact, we based our main enhancing module

on an end-to-end U-Net framework.

Low-light image enhancement algorithms directly ap-

plied to each frame of a video can easily cause flickering

problems. To avoid such drawbacks and take advantage of

temporal information, 3D convolution layers were adopted

in our network to substitute for traditional 2D ones. In con-

trast to MBLLVEN derived from MBLLEN [24], we didn’t

simply upgrade all layers to 3D calculations, as we found

out that even though 2D pooling and deconvolution layers

help networks perceive abstract elements in feature maps,

3D versions of them could mishandle sequential temporal

information. Hence our modified U-Net combined 3D con-

volutions and 2D pooling/deconvolutions together to better

integrate spatial-temporal information.

During preliminary trials, we tried to reduce the depth of

a U-Net and channel numbers of feature maps to determine

whether redundancy exists. After a few investigations, we

settled down to three downsampling/upsampling layer com-

binations only (compared to originally four pairs) with the

same channel numbers as before.

Final step of the U-Net changes output channel number

to 12 by a 1 × 1 convolutional layer to accommodate depth-

to-space layer’s dimension requirements. Detailed dimen-

sional information of our modified U-Net can be found in

Figure 4.

4.3. Training

Our network was trained from scratch with the L1 loss

function and Adam Optimizer [16]. For a packed training

input video, it was cut to 16 × 256 × 256, where 16 is the

frame number and the rest are spatial size. The beginning

frame numbers of cropped data were multiples of 4 starting

from 0, meaning that each video clip could generate (200 -

16) / 4 = 46 training data arrays in one epoch. 256 × 256

spatial windows were randomly chosen for each data array.

Random transpose along spatial-temporal dimensions were

also applied for data augmentation. Learning rate was set

to 10−4 initially and dropped to 10−5 after 15 epochs, 10−6

after 30 epochs. Training process proceeded for 60 epochs.
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Figure 5. Key frames of qualitative results comparison. From top to bottom: 1. RGB formatted input; 2. Linearly scaled input; 3.

MBLLVEN result; 4. Chen et al.’s work; 5. Our result; 6. Ground truth.

5. Experiments

5.1. Qualitative Results

Comparisons overview. We compared our pipeline’s re-

sults to direct linearly scaled result/input, MBLLVEN[24]

trained on our dataset, and Chen et al.’s work [3] trained on

our dataset in a frame-by-frame approach. An overview of

the qualitative comparison results is demonstrated in Figure

5.

From top to bottom, each row corresponds to key frames

of: 1) RGB formatted input, 2) scaled frames, 3) MBLL-

VEN result, 4) Chen et al.’s work’s result, 6) our result, and

7) ground truth. Linearly scaled videos are presented here

as a reference of our network’s direct input and provides a

concept of noise level inside the video.

MBLLVEN was implemented and trained on our dataset

according to Lv et al.’s work [24]. Original MBLLVEN en-

hances videos from ordinary RGB format to ordinary RGB

format. We changed the shape of its first layer’s kernel, so

that 12-bit raw data can be processed directly. From the

comparison results it can be seen that results produced by

MBLLVEN suffer from noise and over adjusting problems,

losing naturalness of videos.

For Chen et al.’s work, we shuffled all the frames we

had in training dataset to train their 2D U-Net and applied

it to each frame during test phase. From the overview pic-

ture, we could see that both Chen et al.’s results and our

network’s recover brightness and color accurately. With

that being said, pictures from Chen et al.’s network result

showed subtle evidence of overshooting in terms of light

intensity restoration, e.g. the fifth key frame in their result

seemed brighter compared to ours and ground truth. Our

results, on the contrary, followed ground truth’s luminance

perfectly.

Comparison with Chen et al.’s method. We further

compared our method with Chen et al.’s work on different

aspects to demonstrate clearer distinctions. We first tested

to what extent did our SMOID dataset serve as a helpful tool

by reporting results from a SID trained network. As can be

seen from 6, using SID trained network didn’t accurately

learn a color mapping of enhancing low light video frames.

Because Chen et al.’s work could only process videos

frame-by-frame, we would then like to demonstrate easily

occurring flickering problem. However, we present only a

brief analysis here to help capture the gist. It is strongly

recommended that effects of flickering are to be perceived

by video clips bundled in supplementary materials of this

paper.

In Figure 7, separate adjacent frames were extracted

from representative videos generated by Chen et al.’s work

and our pipeline. Picture (a) and (b) in Figure 7 are starting

points from Chen et al.’s network and our network gener-

ated results separately. The following 10 frames are on the

top right side of the figure, showing brightness and color

differences.

In picture (d), two curves of relative luminances related

to each frame in the clip are portrayed. We can see despite

that they are on different average levels, dispersion in the

red curve, corresponding to Chen et al.’s network result, is

higher than ours. Our network, by introducing 3D opera-

7329



Figure 6. Comparison between Chen et al.’s pipeline trained on different dataset. First row: trained on their own dataset, SID; Second row:

trained on our dataset, SMOID.

(a)

(b)

(c)

(d)

Figure 7. Example of flickering effect in results. (a) frame 26 from Chen et al.’s result; (b) frame 26 from our method’s result; (c) continuous

10 frames from both videos; (d) average luminance in each frame of these two clips.

tions, maintains a smooth overall intensity.

Qualitative results on different cameras and of differ-

ent scenes.

We also tested our trained network on raw videos ob-

tained by other cameras, aiming at different scenes and with

various gain levels. This is to examine generalization ability

of our proposed pipeline.

From presented frames of result videos, we could see

that our network was not overfitting to street views in

SMOID, rather capable of generic dark video enhancement

tasks, successfully improve visibility and color rendering.

Full-length cross camera test result videos are available in

supplementary materials.

5.2. Quantitative Results

For detailed quantitative measurements, we used three

criteria to perform our analysis. PSNR, SSIM [36], and

mean square error (MSE) of mean absolute brightness dif-

ferences (MABD) vectors. PSNR results are shown in Table

new camera 1 gain 05 new camera 1 gain 10

new camera 2 gain 00 new camera 2 gain 20
Figure 8. Uncurated example frames of cross-camera tests. Two

new cameras (new camera 1 and new camera 2) were used, along

with different gain levels. Each image’s left part is one frame from

the corresponding input, and right part is one frame from the out-

put.

2. SSIM results are shown in Table 3. These values corrob-

orate that Chen et al.’s work and MBLLVEN lacks ability to

accurately recover details from real world low-light videos

compared to our method.
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PSNR Chen et al.’s MBLLVEN Ours

Gain 0 Test 24.73 24.33 25.19

Gain 5 Test 24.42 25.62 30.59

Gain 10 Test 24.68 26.72 30.46

Gain 15 Test 27.28 27.06 31.67

Gain 20 Test 27.96 26.97 30.06

Average 25.81 26.23 29.86
Table 2. PSNR of different methods’ result on test dataset.

SSIM Chen et al.’s MBLLVEN Ours

Gain 0 Test 0.8372 0.7840 0.8868

Gain 5 Test 0.8499 0.7991 0.9596

Gain 10 Test 0.8516 0.8112 0.9626

Gain 15 Test 0.8732 0.8188 0.9528

Gain 20 Test 0.8586 0.8192 0.9575

Average 0.8541 0.8074 0.9480
Table 3. SSIM of different methods’ result on test dataset.

Mean absolute brightness differences (MABD) can be

viewed as a general level of time derivatives of brightness

value on each pixel location. It is calculated by:

MABD(k) =
1

MN

M∑

i=1

N∑

j=1

|brk+1(i, j)− brk(i, j)| (1)

M and N are height and width of frames. brk(i, j) is the

brightness of pixel (i, j) at frame k, with k being in the

range of 1 ≤ k < Nframes. A result of MABD vectors

from different methods can be found in Figure 9.

Figure 9. MABD vectors for different networks.

MABD vector of our result follows the one of ground

truth better than all other curves, preserving the naturalness

of the real world. Chen et al.’s and MBLLVEN’s varia-

tion levels are all above ground truth, showing instabilities

in the time axis. We also attached a black curve depict-

ing MABD of smoothed Chen et al.’s result. Smoothing

method was carried out by a 3-frame temporal filtering. Its

over-smoothing effect can be inferred from the fact that its

MABD vector is always below the level of ground truth.

Mean square error (MSE) between MABD vector of a re-

sult video and that of its ground truth could serve as an indi-

cation of its flickering effect. Those values are displayed in

Table 4. In this chart, we can see that our pipeline achieved

the best temporal smoothness among all approaches.

MSE(MABD)

MBLLVEN 39.31

Chen et al.’s 29.44

Chen et al.’s + smooth 27.57

Ours 4.436
Table 4. MSE between MABD vectors of different methods’ re-

sults and MABD vector of corresponding ground truth.

6. Conclusion

In this paper, we proposed a new synchronized dual-

camera system. A large paired dataset was gathered by

the system, enabling accurate enhancement network train-

ing and testing. Modified 3D U-Net was put forward, and

trained on our dataset, with complicated scenes and multi-

ple gain levels. Comparison experiments were conducted

to show this pipeline’s advantages over state-of-the-art low-

light video enhancement algorithms. We also demonstrated

impressive results of directly applying our trained network

to real world dark videos recorded by other equipment dif-

ferent from the system we used to build up SMOID.

With all that being said, there are still various aspects

to improve in the future. Dataset capacity will be contin-

uously increased to cover more diverse scenes and objects.

Network complexity can be reduced by systematically op-

timization for possible real-time processing. Different gain

level, ISO, aperture, and ND filters with various transmis-

sion rates need to be handled by the pipeline more naturally.

We hope our work could provide foundations for further ex-

ploration in the field of extreme low-light video enhance-

ment as well as its applications.
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