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Abstract

We introduce a compact network for holistic scene flow

estimation, called SENSE, which shares common encoder

features among four closely-related tasks: optical flow es-

timation, disparity estimation from stereo, occlusion esti-

mation, and semantic segmentation. Our key insight is that

sharing features makes the network more compact, induces

better feature representations, and can better exploit inter-

actions among these tasks to handle partially labeled data.

With a shared encoder, we can flexibly add decoders for dif-

ferent tasks during training. This modular design leads to

a compact and efficient model at inference time. Exploiting

the interactions among these tasks allows us to introduce

distillation and self-supervised losses in addition to super-

vised losses, which can better handle partially labeled real-

world data. SENSE achieves state-of-the-art results on sev-

eral optical flow benchmarks and runs as fast as networks

specifically designed for optical flow. It also compares fa-

vorably against the state of the art on stereo and scene flow,

while consuming much less memory.

1. Introduction

Scene flow estimation aims at recovering the 3D struc-

ture (disparity) and motion of a scene from image sequences

captured by two or more cameras [52]. It generalizes the

classical problems of optical flow estimation for monocular

image sequences and disparity prediction for stereo image

pairs. There has been steady and impressive progress on

scene flow estimation, as evidenced by results on the KITTI

benchmark [39]. State-of-the-art scene flow methods out-

perform the best disparity (stereo) and optical flow methods

by a significant margin, demonstrating the benefit of addi-

tional information in the stereo video sequences. However,

the top-performing scene flow methods [5, 54] are based

on the energy minimization framework [18] and are thus

computationally expensive for real-time applications, such
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Figure 1. Given stereo videos, we train compact networks for sev-

eral holistic scene understanding problems by sharing features.

as 3D motion capture [11] and autonomous driving [27].

Recently, a flurry of convolutional neural network

(CNN)-based methods have been developed for the sub-

problems of stereo and optical flow. These methods achieve

state-of-the-art performance and run in real-time. How-

ever, while stereo and flow are closely-related, the top-

performing networks for stereo and flow adopt significantly

different architectures. Further, existing networks for scene

flow stack sub-networks for stereo and optical flow to-

gether [37, 25], which does not fully exploit the structure

of the two tightly-coupled problems.

As both stereo and flow rely on pixel features to establish

correspondences, will the same features work for these two

or more related tasks? To answer this question, we take

a modular approach and build a Shared Encoder Network

for Scene-flow Estimation (SENSE). Specifically, we share

a feature encoder among four closely-related tasks: optical

flow, stereo, occlusion, and semantic segmentation. Sharing

features makes the network compact and also leads to better

feature representation via multi-task learning.

The interactions among closely-related tasks further con-
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strain the network training, ameliorating the issue of sparse

ground-truth annotations for scene flow estimation. Un-

like many other vision tasks, it is inherently difficult to col-

lect ground-truth optical flow and stereo for real-world data.

Training data-hungry deep CNNs often relies on synthetic

data [7, 10, 37], which lacks the fine details and diversity

ubiquitous in the real world. To narrow the domain gap,

fine-tuning on real-world data is necessary, but the scarcity

of annotated real-world data has been a serious bottleneck

for learning CNN models for scene flow.

To address the data scarcity issue, we introduce a semi-

supervised loss for SENSE by adding distillation and self-

supervised loss terms to the supervised losses. First, no ex-

isting dataset provides ground truth annotations for all the

four tasks we address. For example, the KITTI benchmark

has no ground truth annotations for occlusion and seman-

tic segmentation.1 Thus, we train separate models for tasks

with missing ground truth annotations using other annotated

data, and use the pre-trained models to “supervise” our net-

work on the real data via a distillation loss [17]. Second, we

use self-supervision loss terms that encourage correspond-

ing visible pixels to have similar pixel values and semantic

classes, according to either optical flow or stereo. The self-

supervision loss terms tightly couple the four tasks together

and are critical for improvement in regions without ground

truth, such as sky regions.

Experiments on both synthetic and real-world bench-

mark datasets demonstrate that SENSE achieves state-of-

the-art results for optical flow, while maintaining the same

run-time efficiency as specialized networks for flow. It also

compares favorably against state of the art on disparity and

scene flow estimation, while having a much smaller mem-

ory footprint. Ablation studies confirm the utility of our

design choices, and show that our proposed distillation and

self-supervised loss terms help mitigate issues with partially

labeled data.

To summarize, we make the following contributions:

• We introduce a modular network design for holistic

scene understanding, called SENSE, to integrate opti-

cal flow, stereo, occlusion, and semantic segmentation.

• SENSE shares an encoder among these four tasks,

which makes networks compact and also induces bet-

ter feature representation via multi-task learning.

• SENSE can better handle partially labeled data by ex-

ploiting interactions among tasks in a semi-supervised

approach; it leads to qualitatively better results in re-

gions without ground-truth annotations.

• SENSE achieves state-of-the-art flow results while

running as fast as specialized flow networks. It com-

pares favorably against state of the art on stereo and

scene flow, while consuming much less memory.

1Segmentation is only available for left images of KITTI 2015 [1].

2. Related Work

A comprehensive survey of holistic scene understanding

is beyond our scope and we review the most relevant work.

Energy minimization for scene flow estimation. Scene

flow was first introduced by Vedula et al. [52] as the dense

3D motion of all points in an observed scene from several

calibrated cameras. Several classical methods adopt energy

minimization approaches, such as joint recovery of flow and

stereo [20] and decoupled inference of stereo and flow for

efficiency [56]. Compared with optical flow and stereo, the

solution space of scene flow is of higher dimension and

thus more challenging. Vogel et al. [53] reduce the solution

space by assuming a scene flow of piecewise rigid moving

planes over superpixels. Their work first tackles scene flow

from a holistic perspective and outperforms contemporary

stereo and optical flow methods by a large margin on the

KITTI benchmark [12].

Joint scene understanding. Motion and segmentation

are chicken-and-egg problems: knowing one simplifies the

other. While the layered approach has long been regarded

as an elegant solution to these two problems [55], exist-

ing solutions tend to get stuck in local minima [47]. In

the motion segmentation literature, most methods start from

an estimate of optical flow as input, and segment the scene

by jointly estimating (either implicitly or explicitly) camera

motion, object motion, and scene appearance, e.g. [6, 51].

Lv et al. [35] show that motion can be segmented directly

from two images, without first calculating optical flow. Tay-

lor et al. [50] demonstrate that occlusion can also be a useful

cue.

Exploiting advances in semantic segmentation, Sevilla

et al. [46] show that semantic information is good enough

to initialize the layered segmentation and thereby improves

optical flow. Bai et al. [2] use instance-level segmentation

to deal with a small number of traffic participants. Hur

and Roth [22] jointly estimate optical flow and temporally

consistent semantic segmentation and obtain gains on both

tasks. The object scene flow algorithm [39] segments a

scene into independently moving regions and enforces su-

perpixels within each region to have similar 3D motion. The

“objects” in their model are assumed to be planar and ini-

tialized via bottom-up motion estimation. Behl et al. [5],

Ren et al. [42], and Ma et al. [36] all show that instance seg-

mentation helps scene flow estimation in the autonomous

setting. While assuming a rigid motion for each individ-

ual instance works well for cars, this assumption tends to

fail in general scenes, such as Sintel, on which our holistic

approach achieves state-of-the-art performance.

The top-performing energy-based approaches are too

computationally expensive for real-time applications. Here

we present a compact CNN model to holistically reason

about geometry (disparity), motion (flow), and semantics,

which runs much faster than energy-based approaches.
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End-to-end learning of optical flow and disparity. Re-

cently CNN based methods have made significant progress

on optical flow and disparity, two sub-problems of scene

flow estimation. Dosovitskiy et al. [10] first introduce two

CNN models, FlowNetS and FlowNetC, for optical flow

and bring about a paradigm shift to optical flow and dis-

parity estimation. Ilg et al. [24] propose several technical

improvements, such as dataset scheduling and stacking ba-

sic models into a big one, i.e., FlowNet2. FlowNet2 has

near real-time performance and obtains competitive results

against hand-designed methods. Ilg et al. [25] stack net-

works for flow, disparity together for the joint task of scene

flow estimation. However, there is no information sharing

between the networks for flow and disparity. Ranjan and

Black [41] introduce a spatial pyramid network that per-

forms on par with FlowNetC but has more than 100 times

fewer parameters, due to the use of two classical principles:

pyramids and warping. Sun et al. [48] develop a compact

yet effective network, called PWC-Net, which makes fre-

quent use of three principles to construct the network: pyra-

mids of learnable features, warping operations, and cost

volume processing. PWC-Net obtains state-of-the-art per-

formance on two major optical flow benchmarks.

The FlowNet work also inspired new CNN models for

stereo estimation [30, 8, 60]. Kendall et al. [30] con-

catenate features to construct the cost volume, followed by

3D convolutions. The 3D convolution becomes commonly-

used for stereo but is computationally expensive in speed

and memory. Chang and Chen [8] introduce a pyramid

pooling module to exploit context information for estab-

lishing correspondences in ambiguous regions. Yang et

al. [60] incorporate semantic cues to tackle textureless re-

gions. Yin et al. cast optical flow and disparity estimations

as probabilistic distribution matching problems [61] to pro-

vide uncertainty estimation. They do not exploit the shared

encoder of the two tasks as we do.

Existing scene flow networks [25, 36, 38] stack indepen-

dent networks for disparity and flow together. We are inter-

ested in exploiting the interactions among multiple related

tasks to design a compact and effective network for holistic

scene understanding. Our holistic scene flow network per-

forms favorably against state of the art while being faster

for inference and consuming less memory. In particular, we

show the benefit of sharing the feature encoder between dif-

ferent tasks, such as flow and disparity.

Self-supervised learning from videos. Supervised learn-

ing often uses synthetic data, as it is hard to obtain ground

truth optical flow and disparity for real-world videos. Re-

cently self-supervised learning methods have been pro-

posed to learn scene flow by minimizing the data matching

cost [65] or interpolation errors [29, 32]. However, the self-

supervised methods have not yet achieved the performance

of their supervised counterparts.

3. Semi-Supervised Scene Flow Estimation

We follow the problem setup of the KITTI scene flow

benchmark [39], as illustrated in Fig. 2. The inputs are two

stereo image pairs over time
(

I1,l, I2,l, I1,r, I2,r
)

, where the

first number in the superscript indicates the time step and

the second symbol denotes the left or right camera. To save

space, we will omit the superscript if the context is clear.

We want to estimate optical flow F1,l from the first left im-

age to the second left image and disparity D1,l and D2,l

from the left image to the right image at the first and second

frames, respectively. We also consider occlusion between

two consecutive frames O
1,l
F and between the two sets of

stereo images O
1,l
D and O

2,l
D , as well as semantic segmen-

tation for the reference (first left) image, i.e., S1,l. These

extra outputs introduce interactions between different tasks

to impose more constraints in the network training. Further,

we hypothesize that sharing features among these closely-

related tasks induces better feature representations.

We will first introduce our modular network design in

Section 3.1, which shares an encoder among different tasks

and supports flexible configurations during training. We

will then explain our semi-supervised loss function in Sec-

tion 3.2, which enables learning with partially labeled data.

3.1. Modular Network Design

To enable feature sharing among different tasks and al-

low flexible configurations during training, we design the

network in a modular way. Specifically, we build our net-

work on top of PWC-Net [48], a compact network for opti-

cal flow estimation. PWC-Net consists of an encoder and a

decoder, where the encoder takes the input images and ex-

tracts features at different hierarchies of the network. The

decoder is specially designed with domain knowledge of

optical flow. The encoder-decoder structure allows us to

design a network in a modular way, with a single shared

encoder and several decoders for different tasks.

Shared encoder. The original encoder of PWC-Net, how-

ever, is not well-suited to multiple tasks because of its small

capacity. More than 80% of the parameters of PWC-Net

are concentrated in the decoder, which uses DenseNet [19]

blocks at each pyramid level. The encoder consists of plain

convolutional layers and uses fewer than 20% of the param-

eters. While sufficient for optical flow, the encoder does

not work well enough for disparity estimation. To make

the encoder versatile for different tasks, we make the fol-

lowing modifications. First, we reduce the number of fea-

ture pyramid levels from 6 to 5, which reduces the num-

ber of parameters by nearly 50%. It also allows us to bor-

row the widely-used 5-level ResNet-like encoder architec-

ture [8, 16], which has been proven to be effective in a va-

riety of vision tasks. Specifically, we replace plain CNN

layers with residual blocks [16] and add Batch Normaliza-
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Figure 2. Illustration of network design. Dashed arrows indicate shared weights. We have a single encoder for all input images and all

different tasks and keep different decoders for different tasks. On the right, from top to bottom are: optical flow, forward occlusion mask,

semantic segmentation, disparity, and disparity occlusion. The PPM (Pyramid Pooling Module) is not helpful for optical flow estimation.

But thanks to the modular network design, we can flexibly configure the network.

tion layers [26] in both encoder and decoder. With these

modifications, the new model has slightly fewer parameters

but gives better disparity estimation results (Table ??) and

also better flow (Table 1).

Decoder for disparity. Next we explain how to adapt

PWC-Net to disparity estimation between two stereo im-

ages. Disparity is a special case of optical flow computa-

tion, with correspondences lying on a horizontal line. As a

result, we need only to build a 1D cost volume for disparity,

while the decoder of the original PWC-Net constructs a 2D

cost volume for optical flow. Specifically, for optical flow, a

feature at p=(x, y) in the first feature map is compared to

features at q ∈ [x−k, x+k]×[y−k, y+k] in the warped sec-

ond feature map. For disparity, we need only to search for

correspondences by comparing p in the left feature map to

q ∈ [x−k, x+k]×y in the warped right feature map. We use

k=4 for both optical flow and disparity estimations. Across

the feature pyramids, our decoder for disparity adopts the

same warping and refinement process as PWC-Net.

To further improve disparity estimation accuracy, we in-

vestigate more design choices. First, we use the Pyramid

Pooling Module (PPM) [64] to aggregate the learned fea-

tures of input images across multiple levels. Second, the

decoder outputs a disparity map one fourth the size of the in-

put resolution, which tends to have blurred disparity bound-

aries. As a remedy, we add a simple hourglass module

widely used in disparity estimation [8]. It takes a twice up-

sampled disparity, a feature map of the first image, and a

warped feature map of the second image to predict a resid-

ual disparity that is added to the upsampled disparity. Both

the PPM and hourglass modifications lead to significant im-

provements in disparity estimation. They are not helpful for

optical flow estimation though, indicating that the original

PWC-Net is well designed for optical flow. The modular

design allows us to flexibly configure networks that work

for different tasks, as shown in Fig. 2. Table ?? summarizes

the effects of our design choices on disparity estimation.

Decoder for segmentation. To introduce more constraints

to network training, we also consider semantic segmenta-

tion. It encourages the encoder to learn some semantic in-

formation, which may help optical flow and disparity esti-

mations. For semantic segmentation decoder, we use the

UPerNet [58] for its simplicity.

Occlusion estimation. For occlusion predictions, we add

sibling branches to optical flow or disparity decoders to per-

form pixel-wise binary classification, where 1 means fully

occluded. Adding such extra modules enables holistic scene

understanding that helps us to induce better feature repre-

sentations in the shared encoder and use extra supervision

signals for network training to deal with partially labeled

data, which is discussed in Section 3.2. Critically, for scene

flow estimation, the shared encoder results in a more com-

pact and efficient model. For optical flow and disparity es-

timations, we can combine modules as needed during train-

ing, with no influence on the inference time. For scene flow

estimation, extra modules can be used optionally, depend-

ing on configuration. See explanations in Section 4.2.

3.2. Semi­Supervised Loss

No fully labeled datasets are available to directly train

our holistic scene flow network. For example, KITTI has

no ground-truth occlusion masks. Even for optical flow

and disparity ground-truths, only around 19% of pixels of

the KITTI data have annotations due to the difficulty in
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Left input image Pre-trained seg. Pre-trained occ.

Supervised loss + segmentation loss + occlusion loss

Disparity error map (blue lower error, red higher error)

Enlarged view of error map for the car (best viewed in color)

Figure 3. Effects of adding distillation losses for semantic segmen-

tation (middle) and occlusion (right) to the supervised loss.

data capturing. The synthetic SceneFlow dataset [38] has

no ground truth for semantic segmentation. To address

these issues, we introduce our semi-supervised loss func-

tions, which consist of supervised, distillation, and self-

supervised loss terms.

Supervised loss. When corresponding ground-truth anno-

tations are available, we define our supervised loss as

Lsp = (LF + LOF
) + (LD + LOD

) , (1)

where LF and LOF
are loss terms for estimating optical

flow and its corresponding occlusion. LD and LOD
are the

loss terms for estimating disparity and its corresponding oc-

clusion. LF is defined across multiple pyramid levels as

LF =

NF
∑

i=1

ωi

∑

p

ρ
(

Fi(p), F̂i(p)
)

, (2)

where ωi denotes optical flow and disparity weights at pyra-
mid level i, NF is the number of pyramid levels, and

ρ(·, ·) is a loss function measuring the similarity between

the ground-truth Fi(p) and estimated optical flow F̂i(p) at

pixel p. Disparity and occlusion loss functions, LD, LOF
,

and LOD
are defined in a similar way. We use L2 and

smooth l1 [13, 8] loss for optical flow and disparity es-

timations, respectively. For the occlusions, we use binary

cross entropy loss when ground-truth annotations are avail-

able (e.g., on FlyingThings3D [37]). For semantic segmen-

tation, only ground-truth annotations of the left images are

available for KITTI2015. We empirically found using dis-

tillation loss only introduced below yields better accuracy.

Figure 4. Illustration of effectiveness of self-supervised loss. From

top to bottom: input images, disparity estimations without us-

ing self-supervised loss, and disparity estimations with using self-

supervised loss. We can see self-supervised loss helps greatly re-

duce artifacts in the sky region.

Distillation loss. For occlusion estimation and semantic

segmentation tasks, ground-truth annotations are not always

available. They are important, however, during network

training. For instance, on KITTI, supervised loss can only

be computed on sparsely annotated pixels. Adding extra su-

pervision for occlusion estimation is helpful for the network

to extrapolate optical flow and disparity estimations to re-

gions where ground-truth annotations are missing, yielding

visually appealing results.

We find the occlusion estimations provided by a pre-

trained model on synthetic data are reasonably good, as

shown in Fig. 3. As a soft supervision, we encourage the

occlusion estimations of the network during training do not

deviate much from what it learned in the pre-training stage.

Therefore, we simply use the estimations of a pre-trained

network as pseudo ground-truth and smooth l1 loss func-

tion during training, computed in multiple pyramid levels as

LF and LD. Adding extra supervision using distillation loss

for occlusion is helpful for reducing artifacts in disparity es-

timation, as shown in Fig. 3.

For semantic segmentation, we use the distillation loss

formulation proposed in [17]. Specifically, semantic seg-

mentation distillation loss LSd
for a single pixel p (omitted

here for simplicity) is defined as

LSd
= T

C
∑

i=1

ỹi log ŷi, ỹi =
exp−zi/T

∑

k exp
−zk/T

, (3)

where C is the number of segmentation categories. zi and
ỹi come from a more powerful teacher segmentation model,

where zi is the output for the i-th category right before the

softmax layer, also known as logit. ỹi is “softened”

posterior probability for the i-th category, controlled by the

hyper-parameter T [17]. We empirically found T =1 works

well on a validation set. ŷi is the estimated posterior prob-

ability of our model. The distillation is aggregated over all

pixels in training images.
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Self-supervised loss. To further constrain the network

training, we also define self-supervised loss. Optical flow

and disparity are defined as correspondence between two

input images. We can therefore compare two corresponding

pixels defined by either optical flow or disparity as supervi-

sion for network training.

The most straightforward metric is to compare values

between two corresponding pixels that are visible in both

frames, known as photometric consistency. In a single pyra-

mid level, it is defined as LPC=

‖Il−g(Ir,Dl)‖1⊙ŌD+‖I1−g(I2,F1)‖1⊙ŌF , (4)

where g(·, ·) is the differentiable warping function, Ō =
1−O, ⊙ denotes element-wise multiplication followed by

summation, and we omit some superscripts when the con-

text is clear. This loss term reasons about occlusion by mod-

ulating the consistency loss using the occlusion map and

tightly couples occlusion with optical flow and stereo.

As photometric consistency is not robust to lighting

changes, we further introduce semantic consistency, en-

couraging two corresponding pixels to have similar seman-

tic segmentation posterior probability. Specifically, this se-

mantic consistency is defined as LSC=

‖ỹl−g(ỹr,Dl)‖1⊙ŌD+‖ỹ1−g(ỹ2,F1)‖1⊙ŌF , (5)

where ỹ denotes a posterior probability image coming from
the teacher segmentation network used in Eq.(3). Unlike

raw pixel values, the segmentation posterior probability is

more robust to lighting changes.

Finally, we consider the structural similarity loss

LSS=γD
(

1−SS(Il, Il ⊗OD + g(Ir,Dl)⊗ ŌD)
)

+

γF
(

1−SS(I1, I1 ⊗OF + g(I2,F1)⊗ ŌF )
)

, (6)

where ⊗ indicates element-wise multiplications only.
SS(·, ·) is a differentiable function that outputs a single

scalar value to measure the structural similarity between

two input images [63]. Note that for occluded pixels in the

warped image, their values are replaced with values of pix-

els at the same position in the left/first image.

There exist trivial solutions for minimizing Eq.(4) and

Eq.(5) by setting OD and OF to all ones. We thus add

regularization terms

LREG = βD

∑

p

OD(p) + βF

∑

p

OF (p), (7)

Although the self-supervised photometric and struc-

tural similarity loss terms have been studied in previous

work [28, 14], our definition differs from theirs in that we

model occlusions. On one hand, we avoid defining loss

terms in the occluded regions. On the other hand, these

self-supervised terms provide modulation for the occlusion

Table 1. Average EPE results on MPI Sintel optical flow dataset.

“-ft” means fine-tuning on the MPI Sintel training set and the num-

bers in parentheses are results on the data the methods have been

fine-tuned on.

Methods
Training Test Time

Clean Final Clean Final (s)

FlowFields [3] - - 3.75 5.81 28.0

MRFlow [57] 1.83 3.59 2.53 5.38 480

FlowFieldsCNN [4] - - 3.78 5.36 23.0

DCFlow [59] - - 3.54 5.12 8.60

SpyNet-ft [41] (3.17) (4.32) 6.64 8.36 0.16

FlowNet2 [24] 2.02 3.14 3.96 6.02 0.12

FlowNet2-ft [24] (1.45) (2.01) 4.16 5.74 0.12

LiteFlowNet [21] (1.64) (2.23) 4.86 6.09 0.09

PWC-Net [48] 2.55 3.93 - - 0.03

PWC-Net-ft [48] (1.70) (2.21) 3.86 5.13 0.03

FlowNet3 [25] 2.08 3.94 3.61 6.03 0.07

FlowNet3-ft [25] (1.47) (2.12) 4.35 5.67 0.07

SENSE 1.91 3.78 - - 0.03

SENSE-ft (1.54) (2.05) 3.60 4.86 0.03

estimation as well. Thus, our networks tightly couple these

four closely-related tasks together.

Our final semi-supervised loss consists of supervised,

distillation, and self-supervised loss terms. More details can

be found in the supplementary material.

4. Experiments

4.1. Implementation Details

Pre-training of stereo and optical flow. We use the syn-

thetic SceneFlow dataset [37], including FlyingThings3D,

Monkaa, and Driving, for pre-training. All three datasets

contain optical flow and disparity ground-truth. Occlusion

labels are only available in FlyingThings3D. During train-

ing, we uniformly sample images from all three datasets and

compute occlusion loss when the ground-truths are avail-

able. During training, we use color jittering for both optical

flow and disparity training. Additionally, we use random

crops and vertical flips for stereo training images. The crop

size is 256× 512. For optical flow training images, we per-

form extensive data augmentations including random crop,

translation, rotation, zooming, squeezing, and horizontal

and vertical flip, where the crop size is 384× 640. The net-

work is trained for 100 epochs with a batch size of 8 using

the Adam optimizer [31]. We use synchronized Batch Nor-

malization [58] to ensure there are enough training samples

for estimating Batch Normalization layers’ statistics when

using multiple GPUs. The initial learning rate is 0.001 and

decreased by factor of 10 after 70 epochs.

Fine-tuning. For Sintel, we use a similar learning rate

schedule as used in [48]. On KITTI 2012 [12] and KITTI

2015 [40] , we use longer learning rate schedule, where the

model is trained for 1.5K epochs with an initial learning rate

is 0.001. We perform another 1K-epoch training with an ini-
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Table 2. Results on the KITTI optical flow dataset. “-ft” means

fine-tuning on the KITTI training set and the numbers in the paren-

thesis are results on the data the methods have been fine-tuned on.

Methods

KITTI 2012 KITTI 2015

AEPE AEPE Fl-Noc AEPE Fl-all Fl-all

train test test train train test

FlowFields [3] - - - - - 19.80%

MRFlow [57] - - - - 14.09 % 12.19 %

DCFlow [59] - - - - 15.09 % 14.83 %

SDF [2] - 2.3 3.80% - - 11.01 %

MirrorFlow [23] - 2.6 4.38% - 9.93% 10.29%

SpyNet-ft [41] (4.13) 4.7 12.31% - - 35.07%

FlowNet2 [24] 4.09 - - 10.06 30.37% -

FlowNet2-ft [24] (1.28) 1.8 4.82% (2.30) (8.61%) 10.41 %

LiteFlowNet [21] (1.26) 1.7 - (2.16) (8.16%) 10.24 %

PWC-Net [48] 4.14 - - 10.35 33.67% -

PWC-Net-ft [48] (1.45) 1.7 4.22% (2.16) (9.80%) 9.60%

FlowNet3 [25] 3:69 - - 9.33 - -

FlowNet3-ft [25] (1.19) - 3.45% (1.79) - 8.60%

SENSE 2.55 - - 6.23 23.29% -

SENSE-ft (1.14) 1.5 3.00% (2.01) (9.20%) 8.38%

SENSE-ft+semi (1.18) 1.5 3.03% (2.05) (9.69%) 8.16%

Table 3. Results on KITTI stereo datasets (test set).

Methods

KITTI 2012 KITTI 2015

TimeAll Non-Occ All Non-Occ

Out-All Out-Noc D1-fg D1-all D1-fg D1-all (s)

Content-CNN [33] 3.07 4.29 8.58 4.54 7.44 4.00 1.0

DispNetC [37] - - 4.41 4.34 3.72 4.05 0.06

MC-CNN [62] 2.43 3.63 8.88 3.89 7.64 3.33 67

PBCP [45] 2.36 3.45 8.74 3.61 7.71 3.17 68

Displets v2 [15] 2.37 3.09 5.56 3.43 4.95 3.09 265

GC-Net [30] 1.77 2.30 6.16 2.87 5.58 2.61 0.9

PSMNet [8] 1.49 1.89 4.62 2.32 4.31 2.14 0.41

SegStereo [60] 1.68 2.03 3.70 2.08 4.07 2.25 0.6

FlowNet3 [25] 1.82 - - 2.19 - - 0.07

SENSE 1.77 2.18 3.13 2.33 2.79 2.13 0.06

SENSE+semi 1.73 2.16 3.01 2.22 2.76 2.05 0.06

tial learning rate of 0.0002. We use a crop size of 320×768
for both disparity and optical flow training images and a

batch size of 8. More training details are provided in the

supplementary material due to limited space here.

Training semantic segmentation. We jointly train all parts

of the entire network, including pre-trained encoder and de-

coders for optical flow and disparity, as well as a randomly

initialized segmentation decoder. We empirically found us-

ing a randomly initialized segmentation decoder yields bet-

ter performance.

For the segmentation distillation loss and semantic con-

sistency loss computation, we first train the teacher segmen-

tation model. We use the ResNet101-UPerNet [58] pre-

trained on CityScapes [9] using its training set with fine

annotations only, which achieves 75.4% IoU on the valida-

tion set. We fine-tune the model on KITTI 2015 [1], where

the segmentation annotations, consistent with CityScapes’

Table 4. Results on KITTI2015 Scene flow dataset. CNN-based

approaches need to deal with refinement of D2, where N and R

indicates network and rigidity-based refinement, respectively.

Method D1-all D2-all Fl-all SF-all D2 ref. Time (s)

ISF [5] 4.46 5.95 6.22 8.08 - 600

CSF [34] 5.98 10.06 12.96 15.71 - 80

SGM+FF[43] 13.37 27.80 22.82 33.57 - 29

SceneFF[44] 6.57 10.69 12.88 15.78 - 65

FlowNet3 [25] 2.16 6.45 8.60 11.34 N 0.25

SENSE 2.23 7.37 8.38 11.71 N 0.16

SENSE+semi 2.22 6.57 8.16 11.35 N 0.16

SENSE+semi 2.22 5.89 7.64 9.55 R+N 0.32

annotation style, for the left images are provided.

4.2. Main Results

Optical flow results. Table 1 shows the results for opti-

cal flow estimation on the MPI Sintel benchmark dataset.

Our approach outperforms CNN-based approaches without

or with fine-tuning. On the more photorealistic (final) pass

of the test set, which involves more rendering details such as

lighting change, shadow, motion blur, etc, our approach out-

performs both CNN-based and traditional hand-designed

approaches by a large margin.

Table 2 shows the results on both KITTI2012 and

KITTI2015. Our approach significantly outperforms both

hand-designed and CNN-based approaches on KITTI 2012

with and without fine-tuning. On KITTI 2015, our model

achieves much lower error rates than CNN-based ap-

proaches without pre-training (including ours). After fine-

tuning, it outperforms all other approaches.

We note that better optical flow results are reported in

an improved version of PWC-Net [49], which uses Fly-

ingChairs followed by FlyingThings3D for pre-training. It

also uses much longer learning rate schedules for fine-

tuning, so the results are not directly comparable to ours.

Disparity results. For disparity estimation, SENSE sig-

nificantly outperforms previous CNN-based approaches in-

cluding DispNetC [37] and GC-Net [30] and achieves com-

parable accuracy with state-of-the-art approaches like PSM-

Net [8], SegStereo [60], and FlowNet3 [25]. Notably, our

approach performs the best on the foreground region in both

all and non-occluded regions on KITTI2015.

Scene flow results. Table 4 shows Scene flow results on

KITTI 2015. SENSE performs the best in general CNN-

based scene flow methods, compared to FlowNet3 [25].

Compared to ISF [5], SENSE is 2K times faster and can

handle general nonrigid scene motions.

To remove artifacts introduced by the second frame dis-

parity warping operation, we use a refinement network of

a encoder-decoder structure with skip connections. It takes

I1,l, O
1,l
F , D1,l, and g(D2,l,F1,l) to generate a residual that

is added to the warped disparity. From our holistic outputs,
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Table 5. Effectiveness of different tasks.

Tasks Results

flow disp seg flow (F1-occ) ↓ disp (D1-occ) ↓ seg (mIoU) ↑

X 11.37% - -

X - 2.73% -

X - - 47.51%

X X 11.59% 2.61% -

X X 11.39% - 49.54%

X X - 2.62% 49.12%

X X X 11.19% 2.59% 48.25%

Table 6. Ablation study of different loss terms.

Distillation Self-supervised Flow Disp Seg

seg. occ. sem. pho. ss F1-Occ↓ D1-Occ↓ mIoU↑

11.16% 2.52% -

X 10.96% 2.44% 51.48%

X 11.07% 2.38% -

X X 11.17% 2.33% 51.26%

X 11.11% 2.38% -

X 11.04% 2.55% -

X 11.16% 2.47% -

X X X 11.21% 2.58% -

X X X X X 11.12% 2.49% 50.92%

we can refine the background scene flow using a rigidity

refinement step. We first determine the static rigid areas ac-

cording to semantic segmentation outputs. We then calcu-

late the ego-motion flow by minimizing the geometry con-

sistency between optical flow and disparity images using the

Gauss-Newton algorithm. Finally, we compute the warped

scene flow using the disparity of the reference frame and the

ego-motion to substitute the raw scene flow only in the rigid

background region. This step additionally produces camera

motion and better scene flow with minimal costs. Details of

refinement steps are provided in supplementary material.

Running time. SENSE is an efficient model. SENSE takes

0.03s to compute optical flow between two images of size

436×1024. For disparity, SENSE is an order of magnitude

faster than PSMNet and SegStereo, and slightly faster than

FlowNet3. For scene flow using KITTI images, SENSE

takes 0.15s to generate one optical flow and two dispar-

ity maps. The additional warping refinement network takes

0.01s and the rigidity refinement takes 0.15s.

Model size and memory. SENSE is small in size. It has

only 8.8M parameters for the optical flow model, and 8.3M

for the disparity model. The scene flow model with shared

encoder has 13.4M parameters. In contrast, FlowNet3 has a

flow model (117M) and a disparity model (117M), which

is 20 times larger. SENSE also has a low GPU mem-

ory footprint. FlowNet3 costs 7.4GB while SENSE needs

1.5GB RAM only. Although PSMNet has fewer parameters

(5.1M), it costs 4.2GB memory due to 3D convolutions.

4.3. Ablation Studies

Performance of different tasks. We report results of dif-

ferent tasks using different combinations of encoder and de-

coders. Our models are trained using 160 images of KITTI

2015 with a half of the aforementioned learning rate sched-

ule. Results are reported on the rest 40 images in Table 5.

We can see that the shared encoder model performs better

than models trained separately.

Semi-supervised loss. To study the effects of distillation

and self-supervised loss terms, we perform ablation studies

using all images of KITTI 2012 and 160 images of KITTI

2015 for training with a half of full learning rate schedule.

The rest 40 ones of KITTI 2015 are used for testing. We

finetune the baseline model using sparse flow and disparity

annotations only. Table 6 shows the quantitative compar-

isons and Fig. 4 highlights the effects qualitatively.

Regarding distillation loss, both segmentation and occlu-

sion distillation loss terms are useful for disparity and opti-

cal flow estimation. However, distillation loss is not help-

ful for reducing the artifacts in sky regions. Thus, the self-

supervised loss is essential, as shown in Fig. 4, though quan-

titatively self-supervised loss is not as effective as the distil-

lation loss. Finally, combining all loss terms yields the best

optical flow and disparity accuracies. We also test SENSE

trained using semi-supervised loss on KITTI, as summa-

rized in Tables 2, 3, and 4. We can see it improves disparity

and optical flow accuracy on KITTI 2015 and also leads to

better disparity on KITTI 2012.

5. Conclusion
We have presented a compact network for four closely-

related tasks in holistic scene understanding: Sharing an en-

coder among these tasks not only makes the network com-

pact but also improves performance by exploiting the inter-

actions among these tasks. It also allows us to introduce

distillation and self-supervision losses to deal with partially

labeled data. Our holistic network has similar accuracy and

running time as specialized networks for optical flow. It per-

forms favorably against state-of-the-art disparity and scene

flow methods while being much faster and memory effi-

cient. Our work shows the benefits of synergizing closely-

related tasks for holistic scene understanding and we hope

the insights will aid new research in this direction.
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[27] Joel Janai, Fatma Güney, Aseem Behl, and Andreas

Geiger. Computer vision for autonomous vehicles:

Problems, datasets and state-of-the-art. arXiv preprint

arXiv:1704.05519, 2017. 1

[28] J Yu Jason, Adam W Harley, and Konstantinos G Derpa-

nis. Back to basics: Unsupervised learning of optical flow

via brightness constancy and motion smoothness. In ECCV,

pages 3–10. Springer, 2016. 6

[29] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan

Yang, Erik Learned-Miller, and Jan Kautz. Super SloMo:

High quality estimation of multiple intermediate frames for

video interpolation. In Proc. CVPR, 2018. 3

[30] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In Proc. ICCV, 2017. 3, 7

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Proc. ICLR, 2015. 6

[32] Ziwei Liu, Raymond Yeh, Xiaoou Tang, Yiming Liu, and

Aseem Agarwala. Video frame synthesis using deep voxel

flow. In Proc. ICCV, 2017. 3

[33] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Ef-

ficient deep learning for stereo matching. In Proc. CVPR,

2016. 7

[34] Zhaoyang Lv, Chris Beall, Pablo F. Alcantarilla, Fuxin Li,

Zsolt Kira, and Frank Dellaert. A continuous optimization

3203



approach for efficient and accurate scene flow. In Proc.

ECCV, 2016. 7

[35] Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing

Sun, James Rehg, and Jan Kautz. Learning rigidity in dy-

namic scenes with a moving camera for 3d motion field esti-

mation. In Proc. ECCV, 2018. 2

[36] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and

Raquel Urtasun. Deep rigid instance scene flow. In Proc.

CVPR, 2019. 2, 3

[37] Nikolaus Mayer, Eddy Ilg, Philip Häusser, Philipp Fischer,
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