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Abstract

This work addresses the problem of 3D human shape

reconstruction from point clouds. Considering that hu-

man shapes are of high dimensions and with large articula-

tions, we adopt the state-of-the-art parametric human body

model, SMPL, to reduce the dimension of learning space

and generate smooth and valid reconstruction. However,

SMPL parameters, especially pose parameters, are not easy

to learn because of ambiguity and locality of the pose repre-

sentation. Thus, we propose to incorporate skeleton aware-

ness into the deep learning based regression of SMPL pa-

rameters for 3D human shape reconstruction. Our basic

idea is to use the state-of-the-art technique PointNet++ to

extract point features, and then map point features to skele-

ton joint features and finally to SMPL parameters for the

reconstruction from point clouds. Particularly, we develop

an end-to-end framework, where we propose a graph aggre-

gation module to augment PointNet++ by extracting bet-

ter point features, an attention module to better map un-

ordered point features into ordered skeleton joint features,

and a skeleton graph module to extract better joint features

for SMPL parameter regression. The entire framework net-

work is first trained in an end-to-end manner on synthe-

sized dataset, and then online fine-tuned on unseen dataset

with unsupervised loss to bridges gaps between training

and testing. The experiments on multiple datasets show that

our method is on par with the state-of-the-art solution.

1. Introduction

3D human reconstruction is of great interest in computer

graphic and computer vision due to its wide applications,

such as personalized human model in VR and AR applica-

tions, human body measurements in virtual dressing rooms,

and human modeling in video-based motion capture [48].

Though the reconstruction from images has made great

progress, it is still difficult to efficiently and reliably recon-

struct accurate body models due to the ambiguity caused by

3D projection. On the other hand, the increasing popularity

of depth cameras such as Kinect and 3D scanning devices

∗mail: hyjiang@ntu.edu.sg

makes the capturing of point clouds become easier, which

opens another door for more reliable 3D reconstruction. In

this paper, we focus on the problem of 3D human recon-

struction from point clouds.

Reconstructing a high-quality human shape is challeng-

ing because of non-rigid human deformations, low-quality

input data, and joint articulations. Emerging deep learning

techniques make it possible to reconstruct human shape in

an end-to-end fashion [42, 31, 16, 13, 20]. Since 3D human

mesh is of high-dimension (e.g. with 6890 vertices in Dyna

dataset [32]), directly learning such a high-dimensional

mesh with articulations is extremely difficult. Previous

works have explored deep neural networks for 3D human

reconstruction, but the results can be either rugged [20],

blurring [42], or even twisted [13]. Fortunately, SMPL [21]

offers a nice compact representation for 3D human shape,

and it has been integrated with deep neural networks for

3D human reconstruction from RGB images in [31, 16].

The basic pipeline is to use deep neural networks to extract

powerful image features, then directly regress SMPL shape

and pose parameters, and finally use the off-the-shelf SMPL

model to generate the reconstructed mesh. However, to our

knowledge, no work has been done to use the SMPL model

in deep learning based 3D human reconstruction from point

clouds.

On a separate track, deep learning based point cloud

analysis has also made great progress. The state-of-the-

art techniques, PointNet and PointNet++ [34, 35], have

proven their capability in extracting powerful features from

3D point clouds for classification and segmentation tasks.

Thus, for 3D human reconstruction from point clouds, a

natural idea would be combining PointNet++ with SMPL

model, i.e. using PointNet++ to extract features from point

clouds, then directly regressing SMPL parameters from the

extracted point features, and finally using SMPL model to

get the 3D mesh.

However, there is a major issue for such a pipeline. That

is, it is hard to directly regress SMPL parameters from im-

age features according to [31, 16] or point cloud features ac-

cording to our study. This is because SMPL shape and pose

parameters interact in a highly nonlinear way. By notic-

ing that SMPL parameters are joint-sensitive and the pose
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Figure 1. Overview of the propose network architecture which takes 3D point cloud as input and outputs SMPL shape and pose parameters.

The entire network consists of three main modules: a modified PointNet++ module (PointNet++ W/ graph aggregation (GA)) to extract

point cloud features, an attention module (AM) to help map unordered point features into ordered skeleton joint features, and a skeleton

graph module (SGM) that uses the graph convolution to extract joint features to regress SMPL parameters. The obtained SMPL parameters

are then fed to the off-the-shelf SMPL model to obtain the reconstructed 3D human mesh, which is compared with the ground truth for

supervised training and compared with the input point cloud during testing as an online tuning.

parameters largely rely on skeleton joints, we propose to

introduce the skeleton awareness into the pipeline. Particu-

larly, we propose to replace the mapping from point features

to SMPL parameters by the mapping from point features to

skeleton features and then from skeleton features to SMPL

parameters.

Nevertheless, this new pipeline introduces another obsta-

cle. As we know, the point features extracted by PointNet++

is orderless since it needs to accommodate point permuta-

tions, while the subsequent joint features we need follow

the special order of the skeleton graph. Mapping from un-

order point features to ordered joint features while being

robust to permutations of points is not trivial, for which we

propose an attention module (AM). In addition, by noticing

that PointNet++ still learns features on individual points in-

dependently with a multi-layer perception (MLP) and accu-

mulates local contexts by pooling among neighbors, we pro-

pose a local graph aggregation (GA) module based on the

graph convolution to leverage local contexts among neigh-

bors without the burden of huge memory demands and loss

of point interactions. Moreover, we also propose a skele-

ton graph module (SGM) based on the graph convolution to

learn better joint features by leveraging the joint dependen-

cies in the skeleton graph. Fig. 1 depicts the entire network

pipeline, which is being trained end-to-end on synthesized

data. An online tuning step is also introduced to exploit

unsupervised loss to alleviate dataset gaps.

The major contributions of this paper are twofold.

• We propose to incorporate skeleton awareness into the

deep learning based regression of SMPL parameters

for 3D human reconstruction. Particularly, we intro-

duce the general pipeline of mapping from point fea-

tures to skeleton joint features and then to SMPL pa-

rameters for the reconstruction from point clouds.

• We develop an end-to-end framework, where we pro-

pose a graph aggregation module that is added into

PointNet++ to extract better point features, an attention

module to better map unordered point features that is

added into ordered skeleton joint features, and a skele-

ton graph module to extract better joint features for

SMPL parameter regression.

We conduct experiments on four datasets, which show

that our method is on par with the state-of-the-art.

2. Related Work

In this section, we review related works on 3D human

shape reconstruction, skeleton-based human analysis, point

cloud analysis, and graph neural networks.

3D Human Shape Reconstruction: With the prolifera-

tion of deep learning, recent works try to use a neural net-

work to directly learn to reconstruct 3D human from point

clouds [13, 20] or images [42, 31, 16, 5, 27, 1, 28]. Groueix

et al. [13] directly learned to deform a given template for

human reconstruction, but often obtained twisted human

shapes, especially in the shape arms. Litany et al. [20]

proposed a variational auto-encoder to learn for deformable

shape completion, which often results in rugged surfaces.

Varol et al. [42] learned to reconstruct volumetric human

shapes with a low resolution volumetric representation. Re-

construction from a single images [31, 16, 5] has also be-

come feasible by leveraging parametric human models. An-

other different methodology [40, 33, 47] is to reconstruct

human shape by predicting dense correspondence to a body

surface. In our work, we also use SMPL model [21] as the

human shape representation.

Another line of related research is dynamic human re-

construction or motion capture, which explores temporal

consistency of acting persons [48, 15, 14] and can even re-

construct clothes and textures [54, 4, 2]. However, robust

human pose estimation is still an open problem, especially

for fast motion, and sequence-based human reconstruction

heavily relies on a good initialization of human pose. Thus,

IMU sensor is introduced for robust pose estimation in re-

cent works [55, 45]. Our work focuses on a different sce-

nario, i.e. 3D human reconstruction from raw point clouds.
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Skeleton-based Human Analysis: Skeleton information

is widely used in motion capture [48, 51, 52], and human

reconstruction [10, 21, 22, 53]. Parametric human models,

e.g. SMPL [21], rely on human skeleton for shape skin-

ning. Several human reconstruction methods [10, 51, 48]

also utilize skeleton estimation as a guidance. However, all

these works mainly focus on exploring skeleton joint posi-

tions and neglect relations among them. Lee et al. [19] pro-

posed to use LSTM to leverage joint relations, but it only

allows to propagate features from parent joints to their chil-

dren. In contrast, we propose to use graph convolution net-

work (GCN) to propagate features among connected skele-

ton graph joints, which facilitates the exploration of both

parent and children joint features.

Another category of related works is about human pose

estimation [37, 38, 9, 29, 30], which focuses on predicting

2D or 3D joint positions. The state-of-the-art 2D pose esti-

mation methods [9] can nicely predict human joints even if

multiple person interactions exist, whose success partially

owes to the supervision of relations among human joints.

Estimation of 3D joint pose is still an unresolved problem,

largely due to the difficulty of 3D labeling and the ambi-

guity in 3D space. Recent works [37, 38, 30] harvest 3D

joint prediction in an unsupervised way by exploring multi-

view consistency or geometry consistency, but do not ex-

plore joint dependency for pose estimation.

Learning-based Point Cloud Analysis: Point cloud anal-

ysis has attracted lots of interests in computer vision com-

munity, because of its important role in 3D analysis [34,

35, 50, 39]. Pioneering works [34, 35] introduced sev-

eral important concepts in point clouds analysis, includ-

ing invariance to point permutations and capture of point

interactions. However, the state-of-the-art method, Point-

Net++ [35], which uses a multi-layer perception (MLP) for

single point feature learning and pooling among neighbors

to obtain permutation-invariant features, sacrifices impor-

tant local information. Though Klokov et al. [18] used kd-

tree to tackle this problems, but the splitting position in kd-

tree may vary abruptly when point clouds are rotated. A

good solution to this problem is EdgeConv [46], but they

require a global knn graph, which results in O(N2) com-

plexity in both space and time. In contrast, we use a lo-

cal KNN graph constructed with very few points to capture

point interactions with neighbors and apply the fast graph

convolution to extract inter-related point features.

Neural Network on Graph Structure: Learning features

on irregular graphs has become popular in many applica-

tions such as 3D geometric data analysis [23, 44], social

network analysis [24], action recognition [49], and pose

estimation [12, 8]. Existing graph convolutional networks

(GCNs) can be divided into two mainstreams: spatial-

based and spectral-based. Spatial-based methods [25, 41]

learn features by directly filtering local neighbors on graph,

and only a limited number of neighbors can be consid-

ered in each layer because of memory restriction. Spectral-

based methods [7, 23] learn features in Fourier domain

constructed by the eigen-decomposition of Laplacian ma-

trix. However, the unstable and computationally expensive

eigen-decomposition makes it unsuitable to process noisy

point data. A compromise is the fast spectral convolution on

graphs [36, 17, 11], which uses a k-order Chebyshev poly-

nomial to approximate the spectral convolution and thus

avoids eigen-decomposition. In this work, we adopt the fast

spectral convolution and apply it on point graph as well as

skeleton graph.

3. Preliminary

3.1. Parametric Human Model

Parametric human models, e.g. SCAPE [3] and

SMPL [21], offer a compact representation of human shapes

by encoding its variations as a function of shape and pose

parameters. Particularly, the state-of-the-art representa-

tion of SMPL provides many benefits. Firstly, human

shape and pose are disentangled, which allows indepen-

dent analysis or control of shape or pose [31, 16]. Sec-

ondly, SMPL avoids the direct modeling of rugged and

twisted shapes, which are headaches for neural network

based methods [42, 20, 13], by modeling the deformation

with a skinning process. Lastly, SMPL is differentiable and

thus can be easily integrated with neural networks [31, 16].

In this research, we adopt SMPL as the underlying repre-

sentation to model 3D human.

In particular, SMPL is composed of shape parameters,

pose parameters, and global translation parameters. Shape

parameters β∈R
10 are used for shape blending, and encode

the global shape information. Pose parameters are used for

pose blending and skinning, and encode local information

between adjacent joints with the exception that the pose pa-

rameters of the root joint denotes the global rotation of the

whole shape. Note that pose parameters in SMPL denote

the relative rotation from a joint to its parent. It is differ-

ent from 2D or 3D human pose estimation [37, 9], where

the pose refers to joint locations. An example is shown in

Fig. 2. Although the original SMPL model uses axis-angle

representation for pose parameters, we choose quaternion

(a) (b)

Figure 2. Two different human poses but with same joint positions.
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representation since it relieves the ambiguity in axis-angle

representation [56]. This leads to pose parameters α ∈ R
96

for 24 joints with each joint represented by quaternion rep-

resentation with four values. In this work, we do not con-

sider the global translation parameters, as it can be easily

inferred once human pose is known or handled by normal-

izing input point clouds.

3.2. Convolutions on Graph Structures

The previous works on human joint or pose estima-

tion [37, 38, 29] mainly use a multi-layer perceptron to es-

timate poses. We argue that such design is hard to learn

relations between joints and propose to use graph convolu-

tion operation to exploit joint relations for feature learning.

Specifically, we adopt the fast localized spectral convolu-

tion [36, 17, 11] to capture joint dependency. Moreover, we

also propose to use the graph convolution to capture point

interactions in 3D point clouds by constructing a neighbor-

hood graph formed by linking k-nearest neighbors.

Consider a graph denoted as G = (V ,W ), where V is

a set of n nodes and Wn×n is the adjacent matrix with ele-

ment wi j = 1 indicating a connection between vertex i and

vertex j and wi j = 0 for no connection. The graph con-

volution is defined on the normalized Laplacian matrix L ,

where L = D− 1
2 (D −W )D− 1

2 with the diagonal matrix D
defined as dii = ∑n

j wi j. The early spectral graph convolu-

tions require to work on the Fourier space determined by

Eigen decomposition of L , which is unstable and computa-

tionally expensive. Thus, the fast localized spectral convo-

lution [36, 17, 11] is introduced by using K-order Cheby-

shev polynomial to approximate the spectral convolution:

y j =
Fin

∑
i=1

Gθi j
(L) · xi, (1)

where xi ∈ R n and y j ∈ R n are the i-th input feature map

and the j-th output feature map, respectively, and θi j ∈ R K

denotes learning parameters. The graph convolution filters

are calculated by Gθi j
(L) = ∑

K−1
k=0 θi j,kTk(L), where the k-

th order Chebyshev polynomial Tk(L) = 2 ·L · Tk−1(L)−
Tk−2(L) with T1(L) = L and T0(L) being the identity ma-

trix in Rn×n.

4. The Proposed Method

Overview. Fig. 1 gives an overview of the proposed net-

work architecture, which takes 3D point cloud {pi}
N1 with

N1 points as input and outputs SMPL shape and pose param-

eters that is subsequently fed into to the off-the-shelf SMPL

model to obtain the reconstructed 3D human mesh. The

entire network mainly consists of three modules: a mod-

ified PointNet++ module (PointNet++ W/ graph aggrega-

tion (GA)) to extract point cloud features, an attention mod-

ule (AM) to help map unordered point features into ordered

skeleton joint features, and a skeleton graph module (SGM)

that uses the graph convolution to extract joint features to

regress SMPL parameters. Finally, the estimated SMPL pa-

rameters are fed into the off-the-shelf SMPL model to ob-

tain the reconstructed 3D human mesh, which is compared

with the ground truth for supervised training and compared

with the input point cloud during testing as an online tun-

ing. Note that SMPL model is differentiable, and thus back-

ward gradient can be easily obtained by back-propagating

through SMPL functions. In the following, we describe the

three major modules in detail.

4.1. Feature Learning for Point Clouds

In this step, we adopt PointNet++ [35] as the backbone

to extract features defined on N2 sampled points, which are

obtained by furthest point sampling as in PointNet++. Al-

though PointNet++ is a very powerful feature extraction

framework for point clouds, its convolutional operation is

still performed on each single point (see Fig. 3(a)), which

does not properly explore point interactions. Motivated by

the great success of convolutional neural network (CNN) on

images, which learns features on neighboring pixels by con-

voluting them with different types of filters, we propose to

modify PointNet++ by incorporating the graph convolution

to learn local patterns.

In particular, given a set of points, we sample and group

local neighbors (S&G module) as PointNet++, but learn

features for each point group by a graph aggregation (GA)

module as shown in Fig. 3(b), instead of using PointNet.

Specifically, GA module constructs a local graph based on

Euclidean distance of neighboring points, and only k near-

est neighbors (k = 2 in our experiments) are kept. Then

we calculate Laplacian matrix L , and perform the fast lo-

calized spectral convolution as described in Sec. 3.2. This

method facilitates learning different weights for point fea-

tures of neighbors in different hops. In our implementation,

S&G module and SA module with different parameters are

applied totally three times for different resolutions, and out-

put the final features on N2 points as shown in Fig. 1, where

we set N2 = 64 and use 1024,256,64 points for three S&G

modules.

𝑁 × 𝐹1 𝑁 × 𝐹2 𝑁 × 𝐹1 𝑁 × 𝐹2𝑁 × 𝐾 × 𝐹1

Shared MLP Shared MLPGraph

(a) (b)

…… … … ……

Figure 3. Comparison between PointNet feature learning (a) and

the proposed graph aggregation module (b).
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4.2. Attention Module

With the extracted N2 point features, the next step is to

map them into the features of N3 skeleton joints, as shown in

Fig. 1. However, the N2 points are not in any specific order

because of the randomness in point clouds. PointNet++[35]

uses a pooling operation to aggregate local point features

into a global one, as shown in Fig. 4(a), which offers an

invariance to permutations of points but results in loss in

point features.

In this research, we propose an attention module to

preserve the local point features while being invariant to

point orders. Particularly, the attention module dynamically

learns relative contributions of each point to different skele-

ton joints according to point features (see Fig. 4(b)). The

contribution weights are learned by a multi-layer percep-

tion (MLP) network adjusted according to their pertinence

to skeleton joints. We take both pooling features and fea-

tures on each point to predict these relative weights. There

are some alternative choices shown in Fig. 4(c,d). The one

in Fig. 4(c) directly replicates the pooling feature N3 times,

which will not work well since features on different joints

are the same. Fig. 4(d) directly use MLP for the mapping.

The weights are fixed once learned, and thus cannot dynam-

ically adapt to permutation or changes in input. In our im-

plementation, N3 is set to 24 as defined in SMPL. An exam-

ple of 24 joints is shown in Fig. 2.

𝑁2 × 𝐹2 𝐹3
(a)

Max Pooling

𝑁2 × 𝐹2 𝑁3 × 𝐹3
(d)

MLP(64, 64, 24)

MLP(64,24)

(b)𝑁2 × 𝐹2 𝑁3 × 𝐹3

𝑁2 × 𝐹2 𝐹3
(c)

𝑁3 × 𝐹3
Max Pooling

Replications
…

…
…

…

…
…

…

…
…

…

…

Figure 4. Feature pooling of PointNet++ (a), the proposed atten-

tion module (b) and other alternatives (c,d).

4.3. Skeleton Graph for Parameter Estimation

The purpose of this step is to regress the SMPL shape

parameters β and pose parameter α. The pervious solu-

tions [31, 16] directly predict SMPL parameters by MLP

networks like Fig. 5 (a). However, their studies show that it

is very hard to predict SMPL parameters even in fully su-

pervised training. This is because SMPL shape and pose

parameters interact in a nonlinear way. Shape parameters

are used for joint predictions in the rest pose, which are fur-

ther coupled with joint transformations derived from pose

24 × 𝐹1
24 × 4

24 × 𝐹2 10
24 × 𝐹1 3072

MLP (3072, 3072)

MLP(128, 10)

GCN(128, 128, 4)

GCN(128, 128)

(a) (b)

MLP(3072, 96)

MLP(3072, 10)

Figure 5. (a) MLP based SMPL parameter regression. (b) Pro-

posed skeleton graph module based on the fast localized spectral

convolution layer [17, 11], where GCN stands for graph convolu-

tion network.

parameters. Due to the skinning process, errors in pose or

shape parameters will lead to large derivations in human

shape, though pose parameters play the major role.

Thus, instead of MLP based direct regression, we pro-

pose to exploit the skeleton graph to incorporate the do-

main knowledge for better SMPL parameter regression.

Particularly, we develop a skeleton graph module (SGM)

(see Fig. 5 (b)), which takes features defined on the 24

skeleton joints as input and replicates them in two differ-

ent branches for regressing shape and pose parameters, re-

spectively. To capture the dependency among neighboring

joints, the graph convolution described in Sec. 3.2 is ap-

plied to learn better joint features. The pose branch directly

predicts four pose parameters on each joint by four layers

of the graph convolution. The shape branch learns features

on local joints with three layers of the graph convolution,

followed by MLP to predict the 10 shape parameters. Note

that Laplacian matrix L in SM is constructed with joints as

nodes and wi j = 1 for any two connected joints i and j.

4.4. Offline Training and Online Tuning

In order to train the entire network in a fully supervised

manner, we need pairs of point clouds and the correspond-

ing 3D ground truth meshes with the same number vertices

(N4 = 6890) and topology as SMPL meshes. It is extremely

time-consuming and costly to construct such a large-scale

training dataset. To avoid this dilemma, we resort to train-

ing on synthesized data. Specifically, we sampled a ran-

dom set of shape and pose parameters as SURREAL [43],

which are then fed into SMPL model to generate 3D human

meshes. The input point clouds are generated by sampling

3D surface points on SMPL meshes.

With the constructed input and output pairs, we train the

network with the following supervised loss:

Lsup = Lv +λlap ·Llap, (2)

where Lv is the vertex loss measuring the vertex distance,

Llap is the common Laplacian term to regularize / smooth
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over-bent shapes (same as that defined in 3DCODED [13]),

and λlap is a hyperparameter to balance the two loss terms.

The vertex loss can be written as

Lv =
1

N4

N4

∑
i=1

||v̂i −vi||
2
2, (3)

where {v̂i}
N4 is the reconstructed mesh and {vi}

N4 is the

corresponding ground truth mesh.

Although the trained network can perform well on syn-

thesized data, it does not work well on real point clouds due

to the domain gap. Thus, we introduce an online tuning

phase, where we measure Chamfer distance between the in-

put point cloud {p j}
N1 and the reconstructed mesh {v̂i}

N4

and use it as an unsupervised loss to guide the online tuning:

Lch =
N4

∑
i=1

min
j∈[1,N1]

||v̂i −p j||
2
2 +

N1

∑
j=1

min
i∈[1,N4]

||p j − v̂i||
2
2. (4)

Training Details. During training, the whole network is

optimized in a supervised way on synthesized dataset with

Adam optimizer and an initial learning rate of 1 × 10−3

scheduled by ReduceOnPlateau method in PyTorch. Dur-

ing online tuning, we use a learning rate of 1×10−4 to tune

parameters of SGM and 1×10−6 for other modules.

5. Experiments

In this part, we evaluated our framework and its individ-

ual modules on different datasets.

5.1. Datasets and Evaluation Metrics

Synthesized Dataset: Our network is trained on the syn-

thesized dataset. We make use of SURREAL dataset [43]

that provides SMPL shape and pose parameters for mod-

els captured in real scenarios, which enables generations of

large numbers of human shapes with large variations and

reasonable poses. Specifically, we directly sample the shape

and pose parameters as SURREAL to generate training data

with 5120 examples, validation data with 128 examples, and

testing data with 1024 examples.

Dyna Dataset: We also evaluate our algorithm on Dyna

dataset [32], which offers registered meshes with SMPL

topology. The testing dataset is generated by randomly sam-

pling 6890 points from each original mesh in two complex

motion sequences ‘jumping jacks’ and ‘running on spot’.

DFAUST dataset [6] provides raw scans of several persons

in different motions. We evaluated our algorithm on all se-

quences in the dataset.

Berkeley MHAD dataset [26] provides two depth se-

quences from Kinect with human joint locations. We

merged the depth images as one point cloud according to

the provided camera parameters, and cropped out human

Figure 6. Some test examples. In each separated column, point

clouds are shown in left, while the ground truth are given in right.

Note that an over-bent shape is shown in the middle.

regions by using bounding boxes spanned by human joints.

The evaluation is conducted on two motion sequences.

In Fig. 6, we show some testing examples.

Evaluation Metrics: We consider the cases with and with-

out ground truth meshes. For the synthesized testing dataset

and Dyna dataset, ground truth meshes are known, and thus

we calculate the average vertex-wise Euclidean distance

from prediction to ground truth as in Eq. (3). Note that we

use vertex-wise distance rather than vertex-to-surface dis-

tance as it can better reflect the distortion of reconstructed

results. For DFAUST dataset and MHAD dataset, where

ground truth meshes are unknown, we calculate the average

point-to-vertex distance Dp2v (i.e. the first term in Eq. (4))

and the average vertex-to-point distance Dv2p (i.e. the sec-

ond term in Eq. (4)). Note that we report mean values and

maximal values over all test instances to show how aver-

agely and badly an algorithm performs.

5.2. Ablation Study

Table 1 shows the mean and maximal average distances

of our method and its variants on the synthesized dataset and

Dyna dataset. Note that all methods yield large maximal

mean mesh errors in the synthesized testing dataset. This is

caused by some over-bent shapes as shown in Fig. 6.

To evaluate the influence of the GA module, we create

a baseline named Ours-GA by replacing GA with the origi-

nal PointNet++ module shown in Fig. 3(a). Comparing the

results of Ours-GA and Ours in Table 1, we can conclude

that incorporating the graph convolution into PointNet++ to

facilitate point interactions is beneficial, boosting the per-

formance by at least 4mm.

To evaluate the effect of the attention module (AM),

we construct two baselines: Ours-AM+POOL and Ours-

AM+MLP by replacing AM with the two alternative mod-

Table 1. Results of mean and maximum distances in mm of our

method and its variants on the synthesized dataset and Dyna

dataset.
Synthesized Jumping jacks Running on spot

Method mean max mean max mean max

Ours-GA 20.6 356.4 31.3 94.9 30.9 88.5

Ours-AM + MLP 36.0 445.0 40.3 81.1 42.7 83.1

Ours-AM + POOL 141.1 403.1 131.6 212.8 132.4 170.1

Ours-SGM +MLP 26.0 446.8 32.1 76.1 38.0 85.7

Ours-AM-SGM+POOL+MLP 29.5 462.4 41.0 107.8 35.7 83.7

Ours 15.5 423.1 26.9 60.4 22.5 45.5
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Figure 7. Reconstruction results on the motion sequence of ‘running on spot’ of Dyna dataset. Top: our results without fine tuning - Ours

(Initial). Bottom: our results with fine tuning - Ours (Final). Mesh colors correspond to different reconstruction errors. Best viewed in

color.

ules depicted in Fig. 4(c) and (d), respectively. It can be

seen from Table 1 that the performance of Ours-AM+POOL

is poor since the operations of pooling and replication of

features give the same features for different joints. With a

simple MLP mapping (Fig. 4(d)), Ours-AM+MLP achieves

reasonable performance, but still has at least 13mm gap

compared with Ours. This is because the mapping weight

matrix of MLP is fixed once training is done, which pre-

vents the network from capturing dynamic mapping rela-

tions for different permutations of inputs.

To evaluate the skeleton graph module (SGM), we con-

struct a baseline named Ours-SGM+MLP by replacing

SGM with a multi-layer perceptron, which is widely used

in pose estimations [31, 16]. Comparing the results of

Ours-SGM+MLP and Ours, we can see that SGM can im-

prove the reconstruction accuracy by at least 5mm. Another

choice for the system is to directly predict SMPL param-

eters rather than using an attention module and a skeleton

graph module. This experiment is conducted by replacing

both AM and SGM with a pooling operation and MLP (de-

noted as Ours-AM-SM+POOL+MLP in Tab. 1). We can see

that this leads to worse results (at least 13mm drops).

At last, we evaluated the proposed online tuning scheme

in the last row of Table 2. Comparing the results of without

and with online fine tuning, denoted respectively as Ours

(Initial) and Ours (Final), we can see that the online tun-

ing can greatly improve the performance, by adapting to

the new data on Dyna dataset, which is different from the

training data from the synthesized dataset. Some visual re-

sults are provided in Fig. 7, which further demonstrates the

combination of offline training and online tuning makes the

network capable of adapting to new domain.

5.3. Comparisons to the Stateoftheart

Table 2. Comparisons with the state-of-the-art methods on Dyna

dataset. The network prediction results are denoted as Initial, and

the final tuning or optimized results are denoted as Final.
Jumping jacks Running on spots

Initial Final Initial Final

Method mean max mean max mean max mean max

3DCODED [13]-syn 41.6 89.2 20.7 53.5 38.1 220.1 16.7 228.1

3DCODED [13]-author 32.5 114.8 17.2 109.6 24.7 290.5 11.8 298.2

SMPLify [5]-mesh - - 8.7 12.2 - - 10.0 14.2

SMPLify [5]-pcd - - 42.5 340.1 - - 88.8 406.7

Ours 26.9 60.4 14.2 67.4 22.5 45.5 11.4 32.1

We compared our method with two state-of-the-art ap-

proaches, i.e. 3DCODED [13] and SMPLify method [5].

For 3DCODED [13], we directly use the authors’ released

code for comparison. We evaluate the model trained on

our training dataset (denoted as 3DCODED-syn) and the

authors’ pretrained model (denoted as 3DCODED-author),

which uses much more data for training (around 200k).

Note that 3DCODED also uses a trained network to pro-

duce an initial reconstruction (Initial) and then optimizes its

representation to obtain a better reconstruction (Final). Due

to the difficulty to directly optimize the SMPL parameters

using SMPL model, Bogo et al. [5] proposed several impor-

tant pose priors to prevent over-bent shapes and achieve suc-

cessful reconstruction. So we compare with the method [5]

instead of directly optimizing with SMPL model. The code

of [5] is also available but is quite slow. Thus, we re-

implemented it on GPU to speed up the process. We con-

sider two versions of the SMPLify method [5]: SMPLify-

mesh and SMPLify-pcd, where the former is to optimize

the SMPL parameters so as to make the reconstructed mesh

close to a given SMPL ground truth mesh and the latter is to
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Figure 8. Visual comparisons of different methods. Note that the result of [20] is a figure directly adapted from the original paper, which is

not corresponding to the input here. It is mainly to show that the mesh produced by [20] is of limited quality. Best viewed in color.

fit the reconstructed mesh to a given point cloud. Note that

SMPLify-mesh is in fact the upper bound, indicating the best

that SMPL model can produce given the ground-truth mesh

with the same topology.

Tab. 2 shows the comparison results on Dyna dataset.

We can see that SMPLify-mesh can fit the ground-truth mesh

quite well, but SMPLify-pcd performs poorly in fitting point

clouds where no correspondence is given. Our methods out-

perform 3DCODED in both the initial network output and

the final reconstruction. Fig. 8 gives the visual comparisons

on one example. 3D-CODED [13] can nicely reconstruct

human pose and rough shape, but its results may suffer from

rugged or over-bent meshes as shown in Fig. 8. We also

show the limited quality of the reconstruction results of [20]

by copying a figure from [20].

Other results. We also applied our framework to raw

scans for human completion and reconstruction. Compar-

ison results on DFAUST dataset are shown in Table 3,

where our method is better than 3DCODED [13] trained

with the same data and SMPLify [5], while comparable to

3DCODED [13] trained with more data. We also test our

method on point clouds generated from two depth images

of Berkeley MHAD dataset and the results are shown in Ta-

ble 4. A visual comparison in Fig. 9 shows that our method

achieves a more desirable reconstruction result than others.

Table 3. Comparisons of the distance results in mm on all se-

quences of DFAUST dataset. Note that in each cell, the first and

second numbers denote the distances Dp2v and Dv2p, respectively.

3DCODED [13]-syn 3DCODED [13]-author SMPLify [5]-pcd Ours

mean 11.5/16.9 7.0/12.5 25.4/31.9 8.1/12.6

max 617.4/380.9 564.2/215.7 296.2/229.4 127.5/102.1

Table 4. Comparison results on two sequences of Berkeley MHAD

dataset.
Method mean (seq1) max (seq1) mean (seq2) max (seq2)

3DCODED [13]-syn 22.3/26.6 36.0/38.5 18.9/21.9 32.1/32.9

3DCODED [13]-author 18.8/20.3 23.9/27.8 16.6/17.8 22.3/25.2

SMPLify [5]-pcd 31.1/41.1 43.3/58.8 31.3/39.7 48.6/58.4

Ours 21.4/23.5 28.6/34.7 16.9/18.2 21.5/21.2

Limitations. In our experiments, we observed our method

has relatively large errors in female shape reconstruction,

input 3DCODED-syn 3DCODED-author SMPLify Ours

Figure 9. A visual comparison on MHAD.

especially in chest, belly, and hip part (see Fig. 8). We con-

jecture this is inherited from the SMPL representation, since

SMPLify-mesh exhibits similar problems. The possible rea-

son may be that SMPL model only uses 10 parameters for

shapes, which makes it hard to model body parts with a

larger derivation from neutral shapes. Another major limi-

tation is that our method is restricted to SMPL model and

can only reconstruct naked human shapes.

6. Conclusion

In this paper, we have presented an end-to-end learning

framework for 3D human shape reconstruction from point

clouds. The main technical contributions include (1) intro-

ducing a graph aggregation module to augment PointNet++

by extracting better point features; (2) proposing an atten-

tion module to better map unordered point features into or-

dered skeleton joint features; and (3) designing a skeleton

graph module to extract better joint features for SMPL pa-

rameter prediction. The experimental results have demon-

strated that the proposed modules can significantly boost

the reconstruction accuracy. This work could lead to many

other future studies. For example, it is interesting to see

whether PointNet++ with GA can perform better in other

point cloud tasks such as segmentation and classification.

We can also make use of the extracted joint features in SGM

for estimating 3D joint locations.
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