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Abstract

We present a novel image editing system that gener-

ates images as the user provides free-form masks, sketches

and color as inputs. Our system consists of an end-to-end

trainable convolutional network. In contrast to the existing

methods, our system utilizes entirely free-form user input in

terms of color and shape. This allows the system to respond

to the user’s sketch and color inputs, using them as guide-

lines to generate an image. In this work, we trained the

network with an additional style loss, which made it pos-

sible to generate realistic results despite large portions of

the image being removed. Our proposed network architec-

ture SC-FEGAN is well suited for generating high-quality

synthetic images using intuitive user inputs.

1. Introduction

Image completion with generative adversarial networks

(GANs) is a topic of great interest in computer vision.

With image exchange becoming a common medium of daily

communication in the present day, there is an increasing de-

mand for realism in images generated with minimal image

completion features. This demand is reflected in social me-

dia statistics. However, most current image editing software

requires considerable expertise, such as knowing which spe-

cific tools to use in certain scenarios to effectively modify

the image in the desired way. Alternatively, an image com-

pletion method that could respond to user input would allow

a novice to easily modify images as desired. To this end,

our proposed system has the ability to easily produce high-

quality face images provided given sketch and color inputs,

even in the case that parts of the image have been erased.

In recent works, deep-learning-based image completion

methods have been used to restore erased portions of an

image. The most typical method is to use an ordinary

(square) mask and then restore the masked region using an
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Figure 1. Face image editing results generated by our system. It

can take free-form inputs consisting of masks, sketches and color.

These examples show that our system allows users to easily edit

the shape and color of the face, even if the user wants to completely

change the hairstyle and eyes (second row). Interestingly, the user

can even edit earrings with our system (third row).

encoder-decoder generator. Then, global and local discrim-

inators can be used to estimate whether the result is real

or fake [5, 9]. However, the applicability of this system

is limited to low-resolution images, and the generated im-

ages contain awkward edges around the masked regions. In

addition, the synthesized images in the restored regions of-

ten fall short of user expectations since the generator is not

given any user input to serve as a guide. Several works

that have improved upon these limitations include Deep-

Fillv2 [17], which utilizes user sketches as inputs, a work
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that utilized user’s sketch as an input, and GuidedInpaint-

ing [21], in which part of another image is used as an in-

put to restore the missing parts. However, since DeepFillv2

does not use color input, the color in the synthesized image

is generated via inference from a prior distribution learned

from the training dataset. By contrast, GuidedInpainting

uses parts of other images to restore deleted regions. How-

ever, it is difficult to achieve detailed restoration because

such a process requires inferring the user’s preferred refer-

ence image. Another recent work proposed the iDeepColor

system [20], which accepts color input from the user to use

as a reference in creating a color image from a black-and-

white image. However, the iDeepColor system does not

allow the editing of object structures or the restoration of

deleted parts of an image. In another work, the face edit-

ing system FaceShop [12], which accepts sketch and color

inputs from the user, was introduced. However, FaceShop

has some limitations as an interactive system for synthetic

image generation. First, it utilizes random rectangular rotat-

able masks to erase the regions that are used in the local and

global discriminators. This means that the local discrimina-

tor must resize a restored local patch to match the fitting

input dimensions, and this resizing process will distort the

information in both the erased and remaining portions of the

image. As a result, the produced image will contain awk-

ward edges around the restored portion. Second, FaceShop

will produce an unreasonable synthetic image if an exces-

sively large area is erased. For example, when given an im-

age with the entire hair region erased, the system typically

restores it with a distorted shape.

To address the aforementioned limitations, we propose

SC-FEGAN, a fully convolutional network that can be

trained in an end-to-end manner. Our proposed network

uses an SN-PatchGAN [17] discriminator to address and

improve on the problem of awkward edges. This system

is trained not only with general GAN loss but also concur-

rently with style loss, allowing it to successfully edit parts

of a face image even if a large area is missing. Our sys-

tem creates high-quality realistic composite images based

on the user’s free-form inputs. The use of free-form input

in the sketch and color domains also has an interesting ad-

ditive effect, as shown in Figure 1. In summary, we make

the following contributions:

• We propose a network architecture similar to

U-net [13] with gated convolutional layers [17].

With this architecture, both the training and

inference stages are easier and faster. In our

case, the proposed network produces superior

and more detailed results compared to those of a

network with the coarse-refined structure.

• We create free-form domain data consisting of

masks, color and sketches. These data are used to

create incomplete image data for training instead

of input of a fixed form.

• We apply an SN-PatchGAN [17] discriminator

to train our network with an additional style loss.

This approach enables the consideration of cases

in which large portions of an image are erased

and is shown to be robust in managing the edges

of masks. It also enables the creation of newly

introduced details in the produced images, such

as high-quality synthetic hairstyles and earrings.

2. Related Work

Interactive image modification has an extensive his-

tory, predominantly in regards to techniques that use hand-

crafted features rather than deep learning techniques. This

predominance is reflected in commercial image editing soft-

ware and its typical usage in practice. Because most com-

mercial image editing software relies on defined operations,

a typical image modification task requires expert knowledge

to guide the strategic application of a combination of spe-

cific transformations to an image. In addition to requiring

expert knowledge, users must devote many hours to produc-

ing a delicately crafted product. Therefore, the traditional

approach is disadvantageous for nonexperts, and producing

high-quality results is a tedious task. In addition to these

conventional modeling methods, recent breakthroughs in

GAN research have led to the development of several meth-

ods for the completion, modification, and transformation of

images by using generative models trained on large datasets.

In this section, we discuss several works in the fields of

image completion and image translation that are represen-

tative of the prevalent image editing methods based on deep

learning.

2.1. Image Translation

The use of GANs for image translation was first pro-

posed for learning image-domain transforms between two

datasets [22, 6]. Pix2Pix [6] was proposed as a system us-

ing a dataset consisting of pairs of images that can be used

to create models for converting segmentation labels into the

original image, a sketch into an image, or a black-and-white

image into a color image. However, this system requires

that the initial and target images must exist as pairs in the

training dataset in order to learn the transform between the

domains. CycleGAN [22] was proposed as an improvement

over such requirements. Given a target domain without a

target image, there exists a virtual result in the target domain

when an image is converted from the original domain. If

that virtual result is inverted again, the inverted result must

be the original image. Therefore, this system uses two gen-

erators for the conversion task.
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Recently, building on the previous work on domain-to-

domain transformation, several studies have demonstrated

systems that can take user input as a basis for adding certain

desired modifications to the generated results. StarGAN [3]

uses a single generator and a discriminator to flexibly trans-

late an input image into any desired target domain based on

training with domain labels. The IDeepColor [20] system

converts a monochrome image into a color image by taking

a user’s desired color mask as input. These works on inter-

active image transformation based on user input have shown

that user input can be learned by feeding it into a generator

along with images.

2.2. Image Completion

Image completion tasks involve two main challenges: 1)

filling in the deleted areas of an image and 2) properly re-

flecting the provided user input in the restored areas. A pre-

vious study explored the possibility of using a GAN system

to generate complete images from images with erased ar-

eas [5]. The presented system uses a generator with the

U-net [13] structure and utilizes local and global discrimi-

nators. These discriminators decide whether the generated

image is real or fake based on the newly filled-in parts and

the fully reconstructed image, respectively. Deepfillv1 [18]

also uses rectangular masks and global and local discrim-

inator models but additionally includes a contextual atten-

tion layer, which greatly improves its performance. How-

ever, the global and local discriminators still produce awk-

ward regions at the borders of the restored parts.

In the subsequent version, DeepFillv2 [17], free-form

masks and a single SN-PatchGAN discriminator replace

the rectangular masks and global and local discriminators

used in the previous version. Besides, a gated convolutional

layer that learns the features of the masked regions is intro-

duced. This layer can be trained to automatically generate

masks from data, giving the network the ability to utilize

user sketch input to guide the results.

Our proposed network described in the next section al-

lows the usage of not only sketch but also color data as

inputs for editing an image. Although we utilize a U-net

structure instead of a coarse-refined network structure such

as that in Deepfillv1,2 [5, 17], our network generates high-

quality results without requiring either a complex training

schedule or other complex layers.

3. Approach

In this section, we describe the proposed SC-FEGAN,

a neural-network-based face image editing system, and

present methods for creating the input batch data. This net-

work can be trained in an end-to-end manner and generates

high-quality synthetic images with realistic texture details.

In Section 3.1, we discuss our method of creating train-

ing data. In Section 3.2, we describe our network structure

Figure 2. Sketch and color domain dataset and batch inputs. We

extract sketches using the HED edge detector [16]. The color maps

are generated from the median color of each area segmented using

GFC [9]. The inputs to the network consist of the incomplete im-

age, the mask, and the corresponding sketch, color and noise data.

and loss functions, which permit the extraction of features

from sketch and color inputs while simultaneously achiev-

ing stability in training.

3.1. Training Data

Suitable training data are very important for enhanc-

ing the training performance of the network and increas-

ing the responsiveness to user input. To train our model,

we used the CelebA-HQ [8] dataset after the application of

several preprocessing steps, as described below. We first

randomly selected a set of 29,000 images for training and

a set of 1,000 images for testing. We resized the images

to 512×512 pixels before generating the sketch and color

dataset.

To better capture the complexity of the eyes in face im-

ages, we used a free-from masking approach based on the

eye positions to train the network. Additionally, we created

appropriate sketch and color domain data using a free-form

masking and face segmentation process based on GFC [9].

This was a crucial step for enabling our system to produce

persuasive results in the case of hand-drawn user input. We

randomly applied masks to the hair regions in the input

data because the hair has different properties compared with

other parts of the face. We provide further details below.

Free-form masking with eye-positions We used a

masking method similar to that presented in Deep-

Fillv2 [17] to generate incomplete images. However, when

training on the face images, we randomly applied a freely

drawn mask with the eye positions as a starting point to cap-

ture the complex eye region. We also randomly added hair

masks using GFC [9]. The details are described in Algo-

rithm 1.

Sketch & Color domain For this process, we used a

method similar to that used in FaceShop [12]. However, we

excluded AutoTrace [15] which converts bitmaps to vector
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Algorithm 1 Free-form masking with eye positions

maxDraw, maxLine, maxAngle, maxLength are hyperpa-

rameters

GFCHair is the GFC operation for obtaining the hair

mask of the input image

Mask=zeros(inputSize,inputSize)

HairMask=GFCHair(IntputImage)

numLine=random.range(maxDraw)

for i=0 to numLine do

startX = random.range(inputSize)

startY = random.range(inputSize)

startAngle = random.range(360)

numV = random.range(maxLine)

for j=0 to numV do

angleP = random.range(-maxAngle,maxAngle)

if j is even then

angle = startAngle+angleP

else

angle = startAngle+angleP+180

end if

length = random.range(maxLength)

Draw a line on Mask from the point (startX,

startY) with the angle and length generated above.

startX = startX + length * sin(angle)

startY = stateY + length * cos(angle)

end for

Randomly draw a line on Mask from the eye position.

end for

Mask = Mask + HairMask (randomly)

graphics to generate sketch data. We used the HED [16]

edge detector to generate sketch data corresponding to the

user’s input to enable the modification of the face image.

After that, we smoothed the curves and erased small edges.

To create color domain data, we first created blurred im-

ages by applying a median filter of size 3 followed by 20

applications of a bilateral filter. Then, GFC [9] was used

to segment the face, and each segmented part was replaced

with the median color of the corresponding parts (except for

hair and skin). When creating the data for the color domain,

histogram equalization was not applied to avoid color con-

tamination from light reflection and shadowing. However,

because it is more intuitive for users to express all parts of

the face in the sketch domain regardless of blur caused by

light interference, histogram equalization was used when

creating the sketch domain data. More specifically, af-

ter histogram equalization, we applied HED to extract the

edges from the image. Then, we smoothed the curves and

erased small edges. Finally, we multiplied a mask (obtained

through a process similar to the previous free-form masking

process) with the color image to obtain the color brushed

image. See Figure 2 for an example of our data.

3.2. Network Architecture

Inspired by recent image completion studies [5, 17,

12], our completion network (i.e., Generator) is based

on an encoder-decoder architecture similar to that of U-

net [13]], and our discrimination network is based on SN-

PatchGAN [17]. Our network structure produces high-

quality synthesis results with an image size of 512×512

while achieving stable and fast training. The generator

and discriminator in our network are also trained simulta-

neously, similar to the other networks on which it is based.

The generator receives an incomplete image along with user

input, creates an output image in the RGB channel, and in-

serts the generated output image into the masked area of the

incomplete input image to create a complete image. The

discriminator receives either such a completed image or an

original image (without masking) and determines whether

the given input is real or fake. During adversarial training,

additional user input is provided to the discriminator to help

improve performance. We have also found that considering

an additional loss that is different from the general GAN

loss is effective in helping to restore large erased portions.

The details of our network are shown below.

Generator Figure 3 shows our network architecture in

detail. Our generator is based on U-net [10] and all convo-

lutional layers use gated convolution [17] with a 3x3 ker-

nel. Local signal normalization (LRN) [8] is applied after

each feature map convolutional layer, excluding other soft

gates. LRN is applied to all convolutional layers except the

input and output layers. The encoder of our generator re-

ceives an input tensor with dimensions of 512×512×9: an

incomplete RGB-channel image with one or more removed

regions to be edited, a binary sketch that describes the struc-

ture of the removed parts, an RGB color stroke map, a bi-

nary mask and noise (see Figure 2). The encoder downsam-

ples the input 7 times via kernel convolutions with a stride

of 2, followed by dilated convolutions before upsampling.

The decoder uses transposed convolutions for upsampling.

Then, skip connections are added to allow concatenation

with the previous layer with the same spatial resolution. We

use the leaky ReLU activation function after each layer ex-

cept the output layer, which uses a tanh function. Overall,

our generator consists of 16 convolutional layers, and the

output of the network is an RGB image of the same size

as the input (512×512). We replace the remaining parts

of the image outside the mask with the input image before

applying the loss functions to it. This replacement allows

the generator to be trained exclusively on the edited region.

Our generator is trained with the losses that were introduced

in PartialConv [10]: per-pixel losses, perceptual loss, style

loss and total variance loss. The generic GAN loss function

is also used.

Discriminator We use the SN-PatchGAN [17] structure

for the discriminator. Unlike Deepfillv2 [17], we do not ap-
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Figure 3. Network architecture of SC-FEGAN. LRN is applied after each convolutional layers except the input and output layers. We use

tanh as the activation function for the output of generator. We use a SN convolutional layer [11] for the discriminator.

ply the ReLu function to the GAN loss. Additionally, we

use a 3×3 convolution kernel and apply a gradient penalty

loss term. We also add an extra term to prevent the discrim-

inator output patch from reaching a value close to zero. Our

overall loss functions are shown as below:

LG SN = −IE [D (Icomp)] , (1)

LD = IE [1−D(Igt)] + IE [1 +D(Icomp)] (2)

+θLGP + ǫIE
[

D(Igt)
2
]

,

LG = Lper−pixel + σLpercept + βLG SN (3)

+γ(Lstyle (Igen) + Lstyle (Icomp))

+υLtv.

Our generator is trained with LG, and the discriminator is

trained with LD. D(I) is the output of the discriminator

given input I . The additional losses Lstyle and Lpercept

are critical when editing large regions such as hairstyles.

The details of each loss are described below. The value of

Lper−pixel, based on the L1 distances between the ground-

truth image Igt and the generator output Igen, is computed

as

Lper−pixel = α
1

NIgt

‖M ⊙ (Igen − Igt)‖1 (4)

+
1

NIgt

‖(1−M)⊙ (Igen − Igt)‖1 ,

where Na is the number of elements of feature a, M is the

binary mask map and Igen is the output of the generator. We

used the factor α > 1 to give more weight to the loss on the

erased part. The perceptual loss, Lpercept, is also computed

based on the L1 distances, but after the images are projected

into the feature spaces using VGG-16 [14], which has been

pretrained on ImageNet. This loss is computed as

Lpercept =
∑

q

‖Θq (Igen)−Θq (Igt)‖1
NΘq(Igt)

+ (5)

∑

q

‖Θq (Icomp)−Θq (Igt)‖1
NΘq(Igt)

.

Here, Θq(x) is the feature map of the q-th layer of VGG-

16 [14] given the input x is and Icomp, which is the com-

pleted image obtained from Igen with the nonerased parts of

the image directly set equal to the ground truth. q is the se-

lected layer of VGG-16: we use the pool1, pool2 and pool3
layers. The style loss compares the contents of two images

on the basis of the Gram matrix. We compute the style loss

as

Lstyle (I) =
∑

q

1

CqCq

∥

∥

∥

∥

(Gq (I)−Gq (Igt))

NΘq(Igt)

∥

∥

∥

∥

1

, (6)

where the Gq(x) = (Θq(x))
T (Θq(x)) is the Gram ma-

trix used to perform autocorrelation on each feature map

of VGG-16. When the feature has dimensions of Hq ×
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Figure 4. Our results with the U-net structure (Left) and the coarse-

refined network structure (Right) when the eye region is removed.

Wq × Cq , the output of the Gram matrix has dimensions

of Cq × Cq .

Ltv = Ltv−col + Ltv−row is the total variation loss

suggested by the authors of the fast neural style transfer

method [7] to mitigate the checkerboard artifacts arsing

from the perceptual loss term. It is computed as

Ltv−col =
∑

(i,j)∈R

∥

∥Ii,j+1
comp − Ii,jcomp

∥

∥

1

NIcomp

, (7)

Ltv−row =
∑

(i,j)∈R

∥

∥Ii+1,j
comp − Ii,jcomp

∥

∥

1

Ncomp

, (8)

where R is the region consisting of the erased parts. The

WGAN-GP [4] loss is used to improve training and is com-

puted as

LGP = IE
[

(‖∇UD(U)⊙M‖2 − 1)
2
]

. (9)

Here, U is a data point uniformly sampled along the straight

line between the discriminator inputs from Icomp and Igt.

This term is critical to the quality of the synthetic image in

our case. We used σ = 0.05, β = 0.001, γ = 120, υ =
0.1, ǫ = 0.001 and θ = 10.

4. Results

In this section, we present ablation studies and compar-

isons to recent related works, followed by face editing re-

sults. All experiments were executed on an NVIDIA(R)

Tesla(R) V100 GPU and a Power9 @ 2.3 GHz CPU with

TensorFlow [1] v1.12, CUDA v10, cudnn v7 and Python

3. During testing, processing required an average of 44 ms

on the GPU and 53 ms on the CPU for an image resolu-

tion of 512×512, regardless of the size and shape of the

user inputs. The interactive code and additional results are

available at Github.

Figure 5. Our results from networks trained with and without VGG

loss. When the network is trained without VGG loss, we encounter

problems similar to those of FaceShop [12].

Figure 6. Face image editing results from our system. These re-

sults shown that our system can appropriately change the shape

and color of the face. They also show that it can be used to change

the color of the eyes or erase unnecessary parts of the image. In

particular, our system can also be used for hairstyle modification.

4.1. Ablation Studies and Comparisons

We first compare our results obtained using the coarse-

refined network structure and the U-net structure. The

authors of Deepfillv2 [17] have reported that the coarse-

refined structure and a contextual attention module enable

effective generation. However, we tested the coarse-refined

network structure and noticed that the refinement stage

blurred the output. We discovered that the reason for this is

because the L1 loss related to the output of the refined net-

work is generally smaller than that for the coarse network.

The coarse network generates a coarse estimate of the re-
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Figure 7. Qualitative comparisons with DeepFillv1 [18] on the

CelebA-HQ validation sets.

covered region using incomplete input. This coarse image

is then passed to the refined network. This setup allows the

refined network to learn the transform between the ground

truth and the coarsely recovered estimate. To achieve such

an effect with convolution operations, blurring on the input

data is used as a workaround for an otherwise much more

complicated training method. This approach can ameliorate

checkerboard artifacts, but it requires considerable mem-

ory and time for training. Figure 4 shows the results of our

system with the coarse-refined network structure.

FaceShop [12] has shown difficulty in modifying images

with very large erased regions, such as whole hair regions.

Our system performs better in that regard due to the use

of the perceptual and style losses. Figure 5 shows results

obtained with and without VGG loss. We also conducted

a comparison with the recently developed DeepFillv1 sys-

tem [18]. Figure 7 shows that our system produces better

results in terms of the quality of the image structure and

shape with free-form masks.

We also conducted a quantitative comparison of various

metrics (PSNR, SSIM, L2 Loss and LPIPS [19]) and the

following results, as shown as Table 1 were obtained. We

compared the Deepfillv1, PM [2] and our SC-FEGAN on

our CelebA-HQ test dataset which has 1000 test images. A

quantitative experiment on image inpainting task was per-

formed using 10 randomly generated mask for each image.

The base model SC-FEGAN does not take sketch and color

as input even though it was trained with sketch and color

data for fair evaluation. Nonetheless, SC-FEGAN outper-

formed PM and Deepfillv1 in every input configurations

and metrics. As shown in Table 1, SC-FEGAN with mask

and sketch show the best performance. That is, sketches

are more informative to inpainting tasks. Though the per-

formance for inpainting is slightly lower when color input

Figure 8. Our results regarding face restoration. Our system can

satisfactorily restore the face if given sufficient input information

even if many regions are erased.

is applied, it should be noted that additional color input en-

ables more flexible and complete image editing.

Algorithm Input1 PSNR(↑) SSIM(↑) L2(%)(↓) LPIPS(↓)

PM M 21.6649 0.9157 0.95 0.2068

Deepfillv12 M 23.7554 0.9145 0.52 0.1835

SC-FEGAN M 29.4799 0.9618 0.14 0.0641

SC-FEGAN M,S 31.1687 0.9671 0.0937 0.0552

SC-FEGAN M,C 27.9131 0.9543 0.2 0.0795

SC-FEGAN M,S,C 29.4912 0.9606 0.14 0.0682

Table 1. Quantitative results on the CelebA-HQ dataset

4.2. Face Image Editing and Restoration

Figure 6 shows various results obtained with sketch and

color inputs. It shows that our system allows users to in-

tuitively edit face image features such as the hairstyle, face

shape, eyes, and mouth. Even if the entire hair region is

erased, our system is capable of generating an appropriate

result when provided with a user sketch. Users can intu-

itively edit images with sketch and color inputs, and the

network can tolerate a small drawing error. Thus, a user

can intuitively modify a face image and obtain a realistic

synthetic image that reflects shadows and shapes in detail.

Figure 8 presents some results, which show that even when

the user makes many modifications, a high-quality compos-

ite image can be obtained with sufficient user input. In ad-

dition, to check the reliance on the dataset on which the

network was trained, we tested input with all image ar-

eas erased and compared the results with those of Deep-

Fillv1 [18]. Whereas DeepFillv1 generates a faint image of

the face, our SC-FEGAN generates only a faint image of

1M,S,C: denotes mask, sketch and color inputs, respectively
2Deepfillv1: we used publically released pre-trained model.
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Figure 9. Comparison with DeepFillv1 [18] regarding totally

erased input.

Figure 10. Our results regarding total restoration. These results

shown that SC-FEGAN can function as an image translator: it can

generate face images from only sketch and color input.

the hair (see Figure 9). This finding suggests that without

additional information, such as sketch and color input, the

shapes and positions of elements of the face show a certain

dependency. Therefore, it is necessary to provide additional

information to restore the image in the desired direction. In

addition, our SC-FEGAN can generate a face image from

only free-form sketch and color input even when the input

image is completely erased (see Figure 10).

4.3. Interesting results

The image results generated by a GAN often show a

strong dependency on the training dataset. The authors

of DeepFillv2 [17] used the same dataset, CelebA-HQ,

but used only landmarks to create the sketch dataset. In

Faceshop [12], AutoTrace [15] erases small details from

the images in the dataset. In our study, we applied HED to

all areas, and by using this approach to extend the masking

area, we were able to obtain specialized results; specifically,

we could produce face images with newly added or modi-

fied earrings. Figure 11 shows a selection of such interest-

Figure 11. Our specialized results demonstrating the ability to edit

earrings.

ing results. These examples demonstrate that our network is

capable of learning small details and generating reasonable

results even for small inputs.

5. Conclusions

In this paper, we present a novel image editing system

for free-form mask, sketch, and color inputs that is based

on an end-to-end trainable generative network with a novel

GAN loss. We show that our network architecture and loss

functions lead to significantly improved inpainting results

in comparison with other systems. We trained our system

on high-resolution imagery based on the CelebA-HQ

dataset and obtained a variety of successful and realistic

editing results in many cases. We have shown that our

system is excellent at modifying and restoring large re-

gions in one pass, and it produces high-quality and realistic

results while requiring minimal effort on the part of the user.
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